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1. Introduction

The importance of partial differential equations in comprehending and explaining physical
interpretation of problems that arise in numerous fields and engineering motivates many researchers
to analyze and investigate the existence and stability of their solutions. Hyperbolic partial differential
equations are the most interesting kind of partial differential equations, since they are utilized to
simulate a wide and important collection of phenomena, such as aerodynamic flows, fluid and
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contaminant flows through porous media, atmospheric flows, and so on. Of the higher order
hyperbolic equations, the wave equation is the most obvious. Klein-Gordon, Telegraph, sine-Gordon,
Van der Pol, dissipative nonlinear wave and others are well-known hyperbolic equations that are
important in the fields of wave propagation [1], random walk theory [2], signal analysis [3],
relativistic quantum mechanics, dislocations in crystals and field theory [4], quantum field theory,
solid-state physics, nonlinear optics [5], mathematical physics [6], solitons and condensed matter
physics [7], interaction of solitons in collision-less plasma [8], fluxions propagation in Josephson
junctions between two superconductors [9], motion of a rigid pendulum coupled to a stretched
wire [10], material sciences [11] and non-uniform transmission lines [12] are some of the topics
covered. For more related results, we refer to [13–15]. There is a vast range of publications for
numerical solutions of hyperbolic partial differential equations, such as the one in [16–21]. In recent
years, great efforts have been devoted to study problems with nonlinear dampings and source terms,
and several existence, decay and blow up results have been established. Georgiev and Todorova [22]
considered the following nonlinear problem

utt − ∆u + h(ut) = F(u), on Ω × (0,T )
u = 0, on ∂Ω × (0,T )
u(x, 0) = u0(x), ut(x, 0) = u1(x), on Ω,

(1.1)

where the damping term h(ut) = |ut|
m−2ut and the source term F(u) = |u|q−2u are localized on the

domain and established global existence when q ≤ m and a blow up result when q > m. This work
was improved by Levine and Serrin [23] to the case of negative energy and m > 1. For problems
with boundary damping and source terms, we mention the work of Vitillaro [24] who considered the
following problem 

utt − ∆u = 0, on Ω × (0,T )
∂u
∂n + h(ut) = F(u), on Γ1 × (0,T )
u = 0, on Γ0 × (0,T )
u(x, 0) = u0(x), ut(x, 0) = u1(x), on Ω.

(1.2)

where the damping term h(ut) = |ut|
m−2ut and the source term F(u) = |u|q−2u are localized on a part

of the boundary. The author established local existence and global existence of the solutions under
some suitable conditions on the initial data and the exponents. In the presence of the viscoelastic term,
Cavalcanti et al. [25] discussed the following problem

utt − ∆u +
∫ t

0
g(t − s)∆u(s)ds = 0, on Ω × (0,T )

∂u
∂n −

∫ t

0
g(t − s)∂u

∂nds + h(ut) = 0, on Γ1 × (0,T )
u = 0, on Γ0 × (0,T )
u(x, 0) = u0(x), ut(x, 0) = u1(x), on Ω,

(1.3)

In this work, a global existence result for strong and weak solutions was established and some uniform
decay rates were proved under some assumptions on g and h. Al-Gharabli et al. [26] established general
and optimal decay result for the same problem (1.3) considered in [25] where the relaxation g satisfies
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more general conditions than the one in [25]. For more results in this direction, we refer to [27–31]. In
particular, Liu and Yu [31] investigated the following problem

utt − ∆u +
∫ t

0
g(t − s)∆u(s)ds = 0, on Ω × (0,T )

∂u
∂n −

∫ t

0
g(t − s)∂u

∂nds + h(ut) = F(u), on Γ1 × (0,T )
u = 0, on Γ0 × (0,T )
u(x, 0) = u0(x), ut(x, 0) = u1(x), on Ω,

(1.4)

where the damping term h(ut) = |ut|
m−2ut and the source term F(u) = |u|q−2u are localized on a part

of the boundary, and established several decay and blow up results under some suitable conditions
on the initial data, the relaxation function and the exponents. Notice here that both the damping and
source terms in [31] are localized on a part of the boundary, although, they are of constant nonlinearity.
Moreover, the relaxation function g satisfies the condition

g′(t) ≤ −ξ(t)g(t), t ≥ 0, (1.5)

where ξ is a positive differentiable function. In fact, Liu and Yu [31] used the Multiplier method for
stability and the potential well technique to prove the existence of the global solution. Moreover, the
authors established a general decay when m ≥ 2 and an exponential decay m = 2.
Many new real-world problems, such as electro-rheological fluid flows, fluids with
temperature-dependent viscosity, filtration processes through porous media, image processing,
hemorheological fluids, and others, came as a result of advances in science and technology, such as
those problems which required modeling with non-standard mathematical functional spaces. The
Lebesgue and Sobolev spaces with variable exponents [32–35] have shown to be very important and
user-friendly tools to tackle such models. PDEs with variable exponents have recently attracted a lot
of attention from researchers and academics. However, the majority of the findings for hyperbolic
issues with variable exponents dealt with blow-up and non-global existence. On the stability of
nonlinear damped wave equations with variable exponent nonlinearities, we only have a few results. It
is worth mentioning the work of Messaoudi et al. [36], who explored the stability of the following
equation

utt − div
(
|∇u|r(·)−2∇u

)
+ |ut|

m(·)−2ut = 0,

where m(·) ≥ r(·) ≥ 2. The authors in their work showed that the solution energy decays exponentially
if m ≡ 2 and when m2 = esssupx∈Ωm(x) > 2, they obtained a polynomial decay at the rate of t2/(m2−2).
Also, Ghegal et al. [37] established a stability result similar to that of [36] for the equation

utt − ∆u + |ut|
m(·)−2ut = |u|q(·)−2u,

and proved under appropriate conditions on m(·), q(·), and the initial data, a global existence result.
Messaoudi et al. [38] recently looked at the following problem

utt − ∆u +

∫ t

0
g(t − s)∆u(s)ds + a|ut|

m(·)−2ut = |u|q(·)−2u,

and used the well-depth approach to verify global existence and provide explicit and general decay
results under a very general relaxation function assumption.
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In our present work, we are concerned with the following problem
utt − ∆u +

∫ t

0
g(t − s)∆u(s)ds = 0, on Ω × (0,T )

∂u
∂n −

∫ t

0
g(t − s)∂u

∂nds + |ut|
m(x)−2ut = |u|q(x)−2u, on Γ1 × (0,T )

u = 0, on Γ0 × (0,T )
u(x, 0) = u0(x), ut(x, 0) = u1(x), on Ω,

(1.6)

on a bounded domain Ω ⊆ Rn with a smooth boundary ∂Ω = Γ0 ∪ Γ1 where Γ0 and Γ1 are closed and
disjoint and meas.(Γ0) > 0. The vector n is the unit outer normal to ∂Ω. The function g is a relaxation
function and u0 and u1 are given data. The functions m(·) and q(·) are the variable exponents. System
1.6 describes the spread of strain waves in a viscoelastic configuration. We first prove a global existence
result for the solutions of problem (1.6) by using the potential well theory. Then we establish explicit
and general decay results of problem (1.6) for a larger class of relaxation functions (see Assumption
A1 below). To back up our theoretical decay results, we provide two numerical tests. Our decay
results extend and improve some earlier results such as the one of Cavalcanti et al. [25], Al-Gharabli
et al. [26], Liu and Yu [31] and the one of Messaoudi et al. [39]. In our work, we apply the energy
approach (Multiplier Method), combined with various differential and integral inequalities equipped
with the Lebesgue and Sobolev spaces with variable exponents. The multiplier method relies mostly
on the construction of an appropriate Lyapunov functional L equivalent to the energy of the solution
E. By equivalence L ∼ E, we mean

α1E(t) ≤ L(t) ≤ α2E(t), ∀t ∈ R+, (1.7)

for two positive constants α1 and α2. To prove the exponential stability, we show that L satisfies

L′(t) ≤ −c1L(t), ∀t ∈ R+, (1.8)

for some c1 > 0. A simple integration of (1.8) over (0, t) together with (1.7) gives the desired
exponential stability result. In the case of a general decay result, we prove that L satisfies a
differential inequality that combines the relaxation function and the other terms coming from the
nonlinearites. Then we use some properties of the convex functions and other mathematical
arguments to obtain general decay estimates depending on the relaxation function and the nature of
the variable exponent nonlinearity. In fact, the Multiplier Method proved to be efficient in tackling
such problems with dissipative terms either on the domain or in a part of the boundary. In the present
paper, some properties of the convex functions are exploited. We also use the well-depth method to
establish the global existence of the solutions. We show that the methods and tools used in this paper
are sufficient to handle our problem and are less complicated than other methods which guide us to
our target.

Related results to our problem

• Cavalcanti et al. [25] and Al-Gharabli et al. [26] investigated the same problem. However, in [25]
and [26], the nonlinear damping term is h(ut) which satisfies some specific conditions. In our case
h(ut) = |ut|

m(·)−2ut where m(·) is a function of x where x is in a part of the boundary which makes
our problem more complicated especially in the numerical computations . Additionally, in [25]
the class of the relaxation function is a special case of the one in our paper. The decay results in
both [25] and [26] were without numerical tests and without nonlinear source term.
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• Liu and Yu [31] investigated the same problem where the exponents m and q are of constant
nonlinearity and the relaxation function g satisfies the condition g′(t) ≤ −ξ(t)g(t). In our paper,
we extend the work of Liu and Yu [31] in which the exponents m(·) and q(·) are functions of x
where x is in a part of the boundary. Moreover, we use a wider class of relaxation functions; that
is g′(t) ≤ −ξ(t)H (g(t)) so that the class of the relaxation function in [31] is a special case. In
addition, we provide some numerical experiments to illustrate our decay theories.
• Messaoudi et al. [38] investigated a similar problem. However, the nonlinear damping terms

are in the domain. In our case the nonlinear damping and source terms are localized in the
boundary, which makes the computations are more difficult. Also, [38] did not provide numerical
computation.

The remainder of this work is arranged in the following manner: In Section 2, we write some of the
assumptions and materials that are needed for our work. In Section 3, we establish and prove the global
existence result. In Section 4, we present our main decay result as well as some examples. Section 5
presents and proves some technical lemmas. In Section 6, we prove the main decay results. Finally, in
Section 7, we show numerical simulations to support our theoretical findings.

2. Preliminaries

In this section, we present some background information on the Lebesgue and Sobolev spaces with
variable exponents (see [40, 41]) as well as some assumptions for the main result proofs . We will use
the letter c to denote a generic positive constant.

Definition 2.1.

1. The space H1
Γ0

(Ω) = {u ∈ H1(Ω) : u|Γ0 = 0} is a Hilbert space endowed with the equivalent norm
‖∇u‖22.

2. Let β : Γ1 → [1,∞] be a measurable function, where Ω is a domain of Rn, then:
a. the Lebesgue space with a variable exponent β(·) is defined by

Lβ(·)(Γ1) :=
{
v : Γ1 → R; measurable in Ω : %β(·)(αv) < ∞, for some α > 0

}
,

where %β(·)(v) =
∫

Ω

1
β(x) |v(x)|β(x)dx is a modular.

b. the variable-exponent Sobolev space W1,β(·)(Γ1) is:

W1,β(·)(Γ1) =
{
v ∈ Lβ(·)(Γ1) such that ∇v exists and |∇v| ∈ Lβ(·)(Γ1)

}
.

3. W1,β(·)
0 (Γ1) is the closure of C∞0 (Γ1) in W1,β(·)(Γ1).

Remark 2.2. [42]

1. Lβ(·)(Γ1) is a Banach space equipped with the following norm

‖v‖β(·) := inf
{
λ > 0 :

∫
Ω

∣∣∣∣v(x)
α

∣∣∣∣β(x)
dx ≤ 1

}
,
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2. W1,β(·)(Γ1) is a Banach space with respect to the norm

‖v‖W1,β(·)(Ω) = ‖v‖β(·) + ‖∇v‖β(·).

We define
β1 := essinfx∈Ωβ(x), β2 := esssupx∈Ωβ(x).

Lemma 2.3. [42] If β : Γ1 → [1,∞) is a measurable function with β2 < ∞, then C∞0 (Γ1) is dense in
Lβ(·)(Γ1).

Lemma 2.4. [42] If 1 < β1 ≤ β(x) ≤ β2 < ∞ holds, then

min
{
‖w‖β1

β(·), ‖w‖
β2
β(·)

}
≤ %β(·)(w) ≤ max

{
‖w‖β1

β(·), ‖w‖
β2
β(·)

}
,

for any w ∈ Lβ(·)(Γ1).

Lemma 2.5 (Hölder’s Inequality). [42] Let α, β, γ ≥ 1 be measurable functions defined on Ω such
that

1
γ(y)

=
1
α(y)

+
1
β(y)

, for a.e. y ∈ Ω.

If f ∈ Lα(·)(Ω) and g ∈ Lβ(·)(Ω), then f g ∈ Lγ(·)(Ω) and

‖ f g‖γ(·) ≤ 2 ‖ f ‖α(·)‖g‖β(·).

Lemma 2.6. [42] [Poincaré’s Inequality]Let Ω be a bounded domain of Rn and p(·) satisfies (2.4),
then, there exists cρ, such that

‖v‖p(·) ≤ cρ‖∇v‖p(·), for all v ∈ W1,p(·)
0 (Ω).

Lemma 2.7. [42] [Embedding Property] Let Ω be a bounded domain in Rn with a smooth boundary
∂Ω. Assume that p, k ∈ C(Ω) such that

1 < p1 ≤ p(x) ≤ p2 < +∞, 1 < k1 ≤ k(x) ≤ k2 < +∞, ∀x ∈ Ω,

and k(x) < p∗(x) in Ω with

p∗(x) =

{ np(x)
n−p(x) , i f p2 < n;
+∞, i f p2 ≥ n,

then we have continuous and compact embedding W1,p(.)(Ω) ↪→ Lk(.)(Ω). So, there exists ce > 0 such
that

‖v‖k ≤ ce‖v‖W1,p(.) , ∀v ∈ W1,p(.)(Ω). (2.1)

Assumptions

The following assumptions are essential in the proofs of the main results in this work.
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(A1) The relaxation function g : R+ → R+ is a C1 nonincreasing function satisfying

g(0) > 0, 1 −
∫ ∞

0
g(s)ds = ` > 0, (2.2)

and there exists a C1 function Ψ : (0,∞) → (0,∞) which is linear or it is strictly increasing and
strictly convex C2 function on (0, r] for some 0 < r ≤ g(0), with
Ψ(0) = Ψ′(0) = 0, lims→+∞Ψ′(s) = +∞, s 7→ sΨ′(s) and s 7→ s (Ψ′)−1 (s) are convex on (0, r] and
there exists a a C1 nonincreasing function ϑ such that

g′(t) ≤ −ϑ(t)Ψ(g(t)), ∀t ≥ 0. (2.3)

(A2) m : Γ1 → [1,∞) is a continuous function such that

m1 := essinfx∈Γ1m(x), m2 := esssupx∈Γ1
m(x).

and 1 < m1 < m(x) ≤ m2, where {
m2 < ∞, n = 1, 2;
m2 ≤

2n
n−2 , n ≥ 3.

(A3) q : Ω→ [1,∞) is a continuous function such that 2 < q1 < q(x) < q2, where{
q2 < ∞, n = 1, 2;
q2 ≤

2n
n−2 , n ≥ 3.

(A4) The variable exponents m and q are given continuous functions on Γ1 satisfying the log-Hölder
continuity condition:

|β(x) − β(y)| ≤ −
c

log |x − y|
, for all x, y ∈ Ω, with |x − y| < δ, (2.4)

where c > 0 and 0 < δ < 1.

Remark 2.8. [43] Using (A1), one can prove that, for any t ∈ [0, t0],

g′(t) ≤ −ϑ(t)Ψ(g(t)) ≤ −aϑ(t) = −
a

g(0)
ϑ(t)g(0) ≤ −

a
g(0)

ϑ(t)g(t)

and, hence,

ϑ(t)g(t) ≤ −
g(0)

a
g′(t), ∀ t ∈ [0, t0]. (2.5)

Moreover, we can define Ψ̄, for any t > r, by

Ψ̄(t) :=
Ψ′′(r)

2
t2 +

(
Ψ′(r) − Ψ′′(r)r

)
t +

(
Ψ(r) +

Ψ′′(r)
2

r2 − Ψ′(r)r
)
.

where Ψ̄ : [0,+∞) −→ [0,+∞), is a strictly convex and strictly increasing C2 function on (0,∞), is an
extension of Ψ and Ψ is defined in (A1).
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We introduce the “modified energy” associated to our problem

E(t) =
1
2

[
‖ut‖

2
2 + (g ◦ ∇u)(t) +

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22 −

∫
Γ1

1
q(x)
|u|q(x)dx

]
, (2.6)

where for v ∈ L2
loc(R

+; L2(Ω)),

(g ◦ v)(t) :=
∫ t

0
g(t − s)‖v(t) − v(s)‖22ds.

A direct differentiation, using (2.6), leads to

E′(t) = −
1
2

g(t)‖∇u‖22 −
∫

Γ1

|ut|
m(x)dx +

1
2

(g′ ◦ ∇u)(t) ≤ 0. (2.7)

Lemma 2.9. [43] Under the assumptions in (A1), we have, for any t ≥ t0,

ϑ(t)
∫ t0

0
g(s)‖∇u(t) − ∇u(t − s)‖22ds ≤ −cE′(t).

3. Existence

The local existence theorem is stated in this section, and its proof can be demonstrated by combining
the arguments of [44–46]. We also state and show a global existence result on the initial data under
smallness conditions on (u0, u1).

Theorem 3.1 (Local Existence). Given (u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω) and assume that (A1) − (A4) hold .
Then, there exists T > 0, such that problem (1.6) has a weak solution

u ∈ C((0,T ),H1
Γ0

(Ω)) ∩C1((0,T ), L2(Ω)), ut ∈ Lm(.)(Γ1 × (0,T )).

We will now go over the following functionals:

J(t) =
1
2

(
(g ◦ ∇u)(t) +

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22

)
−

1
q1

∫
Γ1

|u|q(x)dx (3.1)

and

I(t) = I(u(t)) = (g ◦ ∇u)(t) +

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22 −

∫
Γ1

|u|q(x)dx. (3.2)

Clearly, we have

E(t) ≥ J(t) +
1
2
‖ut‖

2
2. (3.3)

Lemma 3.2. Suppose that (A1) − (A4) hold and (u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω), such that

cq2
e E

q2−2
2 (0) + cq2

e E
q1−2

2 (0) < `, I(u0) > 0, (3.4)

then
I(u(t)) > 0, ∀t > 0.
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Proof. Sine I is continuous and I(u0) > 0, then there exists Tm < T such that

I(u(t)) ≥ 0, ∀t ∈ [0,Tm];

which gives

J(t) =
1
q1

I(t) +
q1 − 2

2q1

[
(g ◦ ∇u)(t) +

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22

]
≥

q1 − 2
2q1

[
(g ◦ ∇u)(t) +

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22

] (3.5)

Now,

`‖∇u‖22 ≤
(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22 ≤

2q1

q1 − 2
J(t) ≤

2q1

q1 − 2
E(t) ≤

2q1

q1 − 2
E(0). (3.6)

Using Youngs and Poincaré inequalities and the trace theorem, we get ∀t ∈ [0,Tm],∫
Γ1

|u|q(x)dx =

∫
Γ+

1

|u|q(x)dx +

∫
Γ−1

|u|q(x)dx

≤

∫
Γ+

1

|u|q2dx +

∫
Γ−1

|u|q1dx

≤

∫
Γ1

|u|q2dx +

∫
Γ1

|u|q1dx

≤ cq2
e ‖∇u‖q2

2 + cq1
e ‖∇u‖q1

2

≤
(
cq2

e ‖∇u‖q2−2
2 + cq1

e ‖∇u‖q1−2
2

)
‖∇u‖22

< `‖∇u‖22

≤

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22,

(3.7)

where
Γ−1 = {x ∈ Γ1 : |u(x, t)| < 1} and Γ+

1 = {x ∈ Γ1 : |u(x, t)| ≥ 1}.

Therefore,

I(t) = (g ◦ ∇u)(t) +

(
1 −

∫ t

0
g(s)ds

)
‖∇u‖22 −

1
q1

∫
Γ1

|u|q(x) > 0.

�

Notice that (3.7) shows that u ∈ Lq(·)(Γ1 × (0,T )).

Proposition 3.3. Suppose that (A1) − (A4) hold. Let (u0, u1) ∈ H1
Γ0

(Ω) × L2(Ω) be given, satisfying
(3.4). Then the solution of (1.6) is global and bounded.

Proof. It suffices to show that ‖∇u‖22 + ‖ut‖
2
2 is bounded independently of t. To achieve this, we use

(2.7), (3.2) and (3.5) to get

E(0) ≥ E(t) = J(t) +
1
2
‖ut‖

2
2

≥
q1 − 2

2q1

(
`‖∇u‖22 + (g ◦ ∇u)(t)

)
+

1
2
‖ut‖

2
2 +

1
q1

I(t)

≥
q1 − 2

2q1
`‖∇u‖22 +

1
2
‖ut‖

2
2.

(3.8)
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Since I(t) and (g ◦ ∇u)(t) are positive, Therefore

‖∇u‖22 + ‖ut‖
2
2 ≤ CE(0),

where C is a positive constant, which depends only on q1 and ` and the proof is completed. �

Remark 3.4. Using (3.6), we have

‖∇u‖22 ≤
2q1

`(q1 − 2)
E(0). (3.9)

4. Decay results

In this section, we state our decay result and provide some examples to illustrate our theorems.

Theorem 4.1 (The case: m1 ≥ 2). Assume that (A1) − (A4) and (3.4) hold. Let (u0, u1) ∈ H1
Γ0

(Ω) ×
L2(Ω). Then, there exist positive constants λ1, λ2, λ3, λ4 such that

E(t) ≤ λ1e−λ2
∫ t

t0
ϑ(s)ds

, ∀ t > t0, if Ψ is linear; (4.1)

and

E(t) ≤ λ3Ψ
−1
0

(
λ4

∫ t

t0
ϑ(s)ds

)
, ∀ t > t0, if Ψ is nonlinear; (4.2)

where Ψ0(s) =
∫ r

t
1

sΨ′(s)ds and r = g(t0).

Theorem 4.2 (The case: 1 < m1 < 2). Assume that (A1) − (A4) and (3.4) hold. Let (u0, u1) ∈
H1

Γ0
(Ω) × L2(Ω). Then, there exist positive constants β1, β2, β3 and t1 > t0 such that

E(t) ≤
β1(∫ t

t0
ϑ(s)ds

)m1−1 , ∀t > t0, if Ψ is linear, (4.3)

and, if Ψ is nonlinear, we have

E(t) ≤ β2(t − t0)2−m1Ψ−1
1

 1

β3

(
(t − t0)

m1−2
m1−1

∫ t

t1
ϑ(s)ds

)
 , ∀ t > t1, (4.4)

where Ψ1(τ) = τ
1

m1−1 Ψ′(τ).

Example 1 (The case: m1 ≥ 2). • We consider g(t) = ae−σt, t ≥ 0, where a, σ > 0 and a is chosen
in such a way that (A1) is hold, then

g′(t) = −σΨ(g(t)) with ϑ(t) = σ and Ψ(s) = s.

So, (4.1) gives, for d1, d2 > 0
E(t) ≤ d1e−d2t, ∀ t > t0.
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• Let g(t) = ae−(1+t)ν , for t ≥ 0, 0 < ν < 1 and a is chosen so that condition (A1) is satisfied. Then

g′(t) = −ϑ(t)Ψ(g(t)) with ϑ(t) = ν(1 + t)ν−1 and Ψ(s) = s.

Hence, (4.1) implies, for some C > 0,

E(t) ≤ Ce−c(1+t)ν .

• For ν > 1, let

g(t) =
a

(1 + t)ν
, t ≥ 0

and a is chosen so that hypothesis (A1) remains valid. Then

g′(t) = −ρΨ(g(t)) with ϑ(t) = ρ and Ψ(s) = sp,

where ρ is a fixed constant, p = 1+ν
ν

which satisfies 1 < p < 2. Therefore, by estimate (4.2), we
have

E(t) ≤
C

(1 + t)ν
, ∀ t > t0.

Example 2 (The case: 1 < m1 < 2). • Consider g(t) = αe−σ(1+t)ν , t ≥ 0, 0 < ν < 1, α, σ > 0,
and α is chosen so that (A1) holds, then g′(t) = −σΨ(g(t)) with ϑ(t) = ν(1 + t)ν−1 and Ψ(s) = s.
We next infer that the solution of (1.6) satisfies the following energy estimate under the conditions
of Theorem 4.2

E(t) ≤
C

(t − t0)m1−1 , ∀ t > t1.

• Let

g(t) =
α

(1 + t)ν
, ν > 1,

and α is chosen such that hypothesis (A1) remains valid. Then

g′(t) = −σΨ(g(t)) with ϑ(t) = σ and Ψ(s) = sp, p =
1 + ν

ν

where σ is a fixed constant. Then, we conclude for t large enough and some constant C > 0 that
the solution of (1.6) satisfies the following energy estimate under the conditions of Theorem 4.2

E(t) ≤
C

(t − t0)λ
,

where λ =
(m1−1)(m1+ν−2)

m1+ν−1 > 0.

The proofs of Theorem 4.1 and Theorem 4.2 will be done through several Lemmas.
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5. Technical lemmas

We establish various lemmas for our proofs in this section.

Lemma 5.1 ( [47]). Assume that (A1) holds. Then for any 0 < ε < 1, we have

Cε(hε ◦ v)(t) ≥
∫ L

0

(∫ t

0
g(t − s)(v(t) − v(s))ds

)2

dx, ∀ t ≥ 0. (5.1)

where

Cε :=
∫ ∞

0

g2(s)
hε(t)

ds and hε(t) := εg(t) − g′(t).

Lemma 5.2. Assume that (A1) − (A4) and (3.4) hold, the functional

F1(t) :=
∫

Ω

uutdx

satisfies the estimates:

F′1(t) ≤ −
`

4
||∇u(t)||22 + ||ut||

2
2 + cCε(hε ◦ ∇u)(t)

+

∫
Γ1

|u|q(x)dx + c
∫

Γ1

|ut|
m(x)dx, for m1 ≥ 2,

(5.2)

F′1(t) ≤ −
`

4
||∇u(t)||22 + ||ut||

2
2 + cCε(hε ◦ ∇u)(t) +

∫
Γ1

|u|q(x)dx

+ c
∫

Γ1

|ut|
m(x)dx +

( ∫
Γ1

|ut|
m(x)

)m1−1

, for 1 < m1 < 2.
(5.3)

Proof. By differentiating F1 and using (1.6), we get

F′1(t) =

∫
Ω

∇u(t)
∫ t

0
g(t − s) (∇u(s) − ∇u(t)) dsdx −

(
1 −

∫ t

0
g(s)ds

)
||∇u||22

+ ||ut||
2
2 +

∫
Γ1

|u|q(x)dx −
∫

Γ1

u|ut|
m(x)−2utdx.

(5.4)

(5.1) and Young’s inequality, give, for any δ0 > 0,∫
Ω

∇u.
∫ t

0
g(t − s)(∇u(s) − ∇u(t))dsdx

≤ δ0

∫
Ω

|∇u|2dx +
Cε

4δ0
(hε ◦ ∇u)(t).

(5.5)

The use of Young’s inequality with λ(x) =
m(x)

m(x)−1 and λ′(x) = m(x), leads to

−

∫
Γ1

u|ut|
m(x)utdx ≤

∫
Γ1

cδ(x)|ut|
m(x)dx + δ

∫
Γ1

|u|m(x)dx, (5.6)
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where

cδ(x) =
(m(x) − 1)m(x)−1

δm(x)−1(m(x))m(x)(m(x))m(x) .

Combining (2.1), (2.6), (2.7) and (3.9), we get

∫
Γ1

|u|m(x)dx ≤
∫

Γ+
1

|u|m(x)dx +

∫
Γ−1

|u|m(x)dx

≤

∫
Γ+

1

|u|m2dx +

∫
Γ−1

|u|m1dx

≤

∫
Γ1

|u|m2dx +

∫
Γ1

|u|m1dx

≤

(
cm1

e ||∇u||m1
2 + cm2

e ||∇u||m2
2

)
≤

(
cm1

e ||∇u||m1−2
2 + cm2

e ||∇u||m2−2
2

)
||∇u||22

≤

(
cm1

e

( 2q1

`(q1 − 2)
E(0)

)m1−2

+ cm2
e

( 2q1

`(q1 − 2)
E(0)

)m2−2)
||∇u||22

≤ c0||∇u||22,

(5.7)

where

c0 =

(
cm1

e

( 2q1

`(q1 − 2)
E(0)

)m1−2

+ cm2
e

( 2q1

`(q1 − 2)
E(0)

)m2−2)
.

From (5.6) and (5.7), we have

−

∫
Γ1

u|ut|
m(x)utdx ≤ δc0||∇u||22 +

∫
Γ1

cδ(x)|ut|
m(x)dx. (5.8)

Combining all the above results, choosing δ0 = `
2 and δ = `

4c0
and using Poincaré’s inequality and the

trace theorem completes the proof of (5.2).

To prove (5.3), we apply Young’s and Poincaré’s inequalities and the trace theorem to obtain

−

∫
Γ11

u|ut|
m(x)−2utdx ≤ η

∫
Γ11

|u|2dx +
1
4η

∫
Γ11

|ut|
2m(x)−2dx

≤ ηc2
ρ||∇u||22 + c

[ ∫
Γ+

11

|ut|
2m(x)−2dx +

∫
Γ−11

|ut|
2m(x)−2dx

]
≤ ηc2

ρ||∇u||22 + c
[ ∫

Γ+
11

|ut|
m(x)dx +

∫
Γ−11

|ut|
2m1−2dx

]
≤ ηc2

ρ||∇u||22 + c
[ ∫

Γ1

|ut|
m(x)dx +

( ∫
Γ−11

|ut|
2dx

)m1−1]
≤ ηc2

ρ||∇u||22 + c
[ ∫

Γ1

|ut|
m(x)dx +

( ∫
Γ−11

|ut|
m(x)dx

)m1−1]
≤ ηc2

ρ||∇u||22 + c
[ ∫

Γ1

|ut|
m(x)dx +

( ∫
Γ1

|ut|
m(x)dx

)m1−1]
,

(5.9)
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where

Γ11 = {x ∈ Ω : m(x) < 2}, Γ12 = {x ∈ Ω : m(x) ≥ 2},

Γ−11 = {x ∈ Γ11 : |ut(x, t)| < 1} and Γ+
11 = {x ∈ Γ11 : |ut(x, t)| ≥ 1}. (5.10)

By selecting η = `
8c2

ρ
, (5.9) becomes

−

∫
Γ11

u|ut|
m(x)−2utdx ≤ c

[
+

( ∫
Γ1

|ut|
m(x)dx

)m1−1

+

∫
Γ1

|ut|
m(x)dx

]
+
`

8
||∇u||22. (5.11)

Next, for any δ we have, by the case m(x) ≥ 2,

−

∫
Γ12

u|ut|
m(x)utdx ≤ δc0||∇u||22 +

∫
Γ1

cδ(x)|ut|
m(x)dx. (5.12)

As a result of combining the estimates above, we arrive at

F′1(t) ≤ −
(
3`
8
− c0δ

)
||∇u(t)||22 + ||ut||

2
2 + cCε(hε ◦ ∇u)(t) +

∫
Γ1

|u|q(x)dx

+ c
[( ∫

Γ1

|ut|
m(x)

)m1−1

+

∫
Γ1

(1 + cδ(x)) |ut|
m(x)dx

]
.

By choosing δ = `
8c0

, then cδ(x) is bounded and hence (5.3) is obtained. �

Lemma 5.3. Assume that (A1) − (A4) and (3.4) hold. Then for any δ > 0, the functional

F2(t) := −
∫

Ω

ut

∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx

satisfies the estimates:

F′2(t) ≤ δ(1 + cq)‖∇u‖22 −
( ∫ t

0
g(s)ds − δ

)
‖ut‖

2
2 +

∫
Γ1

cδ(x)|ut|
m(x)dx

+

[c
δ

(
Cε + 1

)
+ cCε

]
(hε ◦ ∇u)(t) + c1δ(1 − `)m1−1(g ◦ ∇u)(t), for m1 ≥ 2,

(5.13)

and for 1 < m1 < 2, we have

F′2(t) ≤ δ(1 + cq)‖∇u‖22 −
( ∫ t

0
g(s)ds − δ

)
‖ut‖

2
2 + cδ(g ◦ ∇u)(t)

+

[c
δ

(
Cε + 1

)
+ cCε

]
(hε ◦ ∇u)(t) +

c
δ

[ ∫
Γ1

|ut|
m(x)dx +

( ∫
Γ1

|ut|
m(x)dx

)m1−1] (5.14)

where the constant cm > 0 depends on m1,m2 and `, and hε is defined earlier in Lemma (5.1).
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Proof. Direct differentiation of F2 and using (1.6) leads to

F′2(t) =

∫
Ω

∇u
∫ t

0
g(t − s)

(
∇u(t) − ∇u(s)

)
dsdx

−

∫
Ω

( ∫ t

0
g(t − s)∇u(s)ds

)( ∫ t

0
g(t − s)

(
∇u(t) − ∇u(s)

)
ds

)
dx

−

∫
Ω

ut

∫ t

0
g′(t − s)

(
u(t) − u(s)

)
dsdx −

(∫ t

0
g(s)ds

)
‖ut‖

2
2

−

∫
Γ1

|ut|
m(x)−2ut

∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx

+

∫
Γ1

|u|q(x)−2u
∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx

=

(
1 −

∫ t

0
g(s)ds

) ∫
Ω

∇u
∫ t

0
g(t − s)

(
∇u(t) − ∇u(s)

)
dsdx

+

∫
Ω

( ∫ t

0
g(t − s)

(
∇u(t) − ∇u(s)

)
ds

)2
dx

−

∫
Ω

ut

∫ t

0
g′(t − s)

(
u(t) − u(s)

)
dsdx −

(∫ t

0
g(s)ds

)
‖ut‖

2
2

−

∫
Γ1

|ut|
m(x)−2ut

∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx

+

∫
Γ1

|u|q(x)−2u
∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx.

(5.15)

Using Young’s inequality and Lemma 5.1, we get(
1 −

∫ t

0
g(s)ds

) ∫
Ω

∇u.
∫ t

0
g(t − s)

(
∇u(t) − ∇u(s)

)
dsdx

≤ δ‖∇u‖22 +
c
δ

Cε(hε ◦ ∇u)(t) + cCε(hε ◦ ∇u)(t).
(5.16)

From Lemma (5.1) and Young’s inequality, we get

−

∫
Ω

ut

∫ t

0
g′(t − s)

(
u(t) − u(s)

)
dsdx

= −ε

∫
Ω

ut

∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx +

∫
Ω

ut

∫ t

0
hε(t − s)

(
u(t) − u(s)

)
dsdx

≤
δ

2
‖ut‖

2
2 +

ε2

2δ

∫
Ω

( ∫ t

0
g(t − s)

(
u(t) − u(s)

)
ds

)2
dx +

δ

2
‖ut‖

2
2

+
1
2δ

∫
Ω

( ∫ t

0
hε(t − s)

(
u(t) − u(s)

)
ds

)2
dx

≤ δ‖ut‖
2
2 +

c
δ

Cε(hε ◦ u)(t) +
1
2δ

∫ t

0
hε(s)ds

∫ t

0
hε(t − s)‖u(t) − u(s)‖22ds

≤ δ‖ut‖
2
2 +

c
δ

(Cε + 1)(hε ◦ ∇u)(t).

(5.17)
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Now, for almost every x ∈ Ω, we get∫ t

0
g(t − s)|u(t) − u(s)|ds ≤

(∫ t

0
g(s)ds

)m(x)−1
m(x)

(∫ t

0
g(t − s)|u(t) − u(s)|m(x)ds

) 1
m(x)

≤ (1 − `)
m(x)−1

m(x)

(∫ t

0
g(t − s)|u(t) − u(s)|m(x)ds

) 1
m(x)

.

(5.18)

Next, for almost every x ∈ Ω, we obtain∣∣∣∣∣ ∫ t

0
g(t − s)|u(t) − u(s)|ds

∣∣∣∣∣m(x)

≤ (1 − `)m1−1
∫ t

0
g(t − s)|u(t) − u(s)|m(x)ds. (5.19)

Using Young’s, Hölder’s, Poincaré’s inequalities and Lemma 5.1, we have

−

∫
Γ1

|ut|
m(x)−2ut

∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx

≤ δ

∫
Γ1

∣∣∣∣∣ ∫ t

0
g(t − s)

(
u(t) − u(s)

)
ds

∣∣∣∣∣m(x)

dx +

∫
Γ1

cδ(x)|ut|
m(x)dx

≤ δ
(
1 − `

)m1−1
∫

Γ1

∫ t

0
g(t − s)|(u(t) − u(s)|m(x)dsdx +

∫
Γ1

cδ(x)|ut|
m(x)dx,

(5.20)

where
cδ(x) = δ1−m(x)(m(x))−m(x)(m(x) − 1)m(x)−1.

Further, we have∫
Γ1

∫ t

0
g(t − s)|(u(t) − u(s)|m(x)dsdx

≤

∫
Γ+

1

∫ t

0
g(t − s)|(u(t) − u(s)|m2dsdx +

∫
Γ−1

∫ t

0
g(t − s)|(u(t) − u(s)|m1dsdx

≤

∫ t

0
g(t − s)||(u(t) − u(s)||m2

m2
ds +

∫ t

0
g(t − s)||(u(t) − u(s)||m1

m1
ds

≤

cm2
e

(
2q1

`(q1 − 2)
E(0)

)m2−2
2

+ cm1
e

(
2q1

`(q1 − 2)
E(0)

)m1−2
2

 ∫ t

0
g(t − s)||(u(t) − u(s)||22ds.

(5.21)

Therefore,

−

∫
Γ1

|ut|
m(x)−2ut

∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx ≤ c1δ

(
1 − `

)m1−1
(g ◦ ∇u)(t)

+

∫
Γ1

cδ(x)|ut|
m(x)dx,

(5.22)

where c1 =

[
cm2

e

(
2q1

`(q1−2) E(0)
)m2−2

2
+ cm1

e

(
2q1

`(q1−2) E(0)
)m1−2

2

]
.
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To estimate the last term in (5.15), we use Young’s inequality and Lemma 5.1, to obtain∫
Γ1

|u|q(x)−1
∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx

≤ δ

∫
Γ1

|u|2q(x)−2dx +
1
4δ

∫
Γ1

( ∫ t

0
g(t − s)

(
u(t) − u(s)

)
ds

)2
dx

≤ δ

∫
Γ1

|u|2q(x)−2dx +
Cε

4δ
(hε ◦ ∇u)(t).

(5.23)

The first term in (5.23) can be estimated as follows:∫
Γ1

|u|2q(x)−2dx =

∫
Γ+

1

|u|2q(x)−2dx +

∫
Γ−1

|u|2q(x)−2dx

≤

∫
Γ+

1

|u|2q2−2dx +

∫
Γ−1

|u|2q1−2dx

≤

∫
Γ1

|u|2q2−2dx +

∫
Γ1

|u|2q1−2dx

≤ c2q2−2
ρ ||∇u||2q2−2

2 + c2q1−2
ρ ||∇u||2q1−2

2

≤

(
c2q2−2
ρ

( 2q1

`(q1 − 2)
E(0)

)2q2−4

+ c2q1−2
ρ

( 2q1

`(q1 − 2)
E(0)

)2q1−4)
||∇u||22

≤ cq||∇u||22,

(5.24)

where

cq =

(
c2q2−2
ρ

( 2q1

`(q1 − 2)
E(0)

)2q2−4

+ c2q1−2
ρ

( 2q1

`(q1 − 2)
E(0)

)2q1−4)
.

Collecting all the above estimates with (5.15), we see that (5.13) is archived.
To prove (5.14), we start by re-estimating the fifth term in (5.15) as follows:

−

∫
Γ1

|ut|
m(x)−2ut

∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx

≤ δ

∫
Γ1

∣∣∣∣∣ ∫ t

0
g(t − s)

(
u(t) − u(s)

)
ds

∣∣∣∣∣2dx +
c
δ

∫
Γ1

|ut|
2m(x)−2dx

≤ δ(1 − `)(g ◦ u)(t) +
c
δ

∫
Γ1

|ut|
2m(x)−2dx

≤ cδ(g ◦ ∇u)(t) +
c
δ

∫
Γ11

|ut|
2m(x)−2dx +

c
δ

∫
Γ12

|ut|
2m(x)−2dx

≤ cδ(g ◦ ∇u)(t) +
c
δ

( ∫
Γ1

|ut|
m(x)dx +

( ∫
Γ1

|ut|
m(x)dx

)m1−1)
.

(5.25)

Hence, (5.14) is established. �

Lemma 5.4. [43] Assume that (A1) and (A3) hold, then the functional

F3(t) :=
∫ t

0
f (t − s)‖∇u(s)‖22ds
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satisfies the estimate:
F′3(t) ≤ 3(1 − `)‖∇u‖22 −

1
2 (g ◦ ∇u)(t), (5.26)

where f (t) =
∫ ∞

t
g(s)ds.

Lemma 5.5. Given t0 > 0. Assume that (A1)− (A4) and (3.4) hold and m1 ≥ 2. Then, the functional L
defined by

L(t) := NE(t) + ε1F1(t) + ε2F2(t)

satisfies, for fixed N, ε1, ε2 > 0,
L ∼ E (5.27)

and for any t ≥ t0,

L′(t) ≤ −c‖ut‖
2
2 − 4(1 − `)‖∇u‖22 +

1
4

(g ◦ ∇u)(t) + c
∫

Γ1

|u|q(x)dx. (5.28)

Proof. The equivalence L ∼ E can be proved straightforward. For the proof of (5.28), we start
combining (2.6), (2.7), (5.2) and (5.13) and recalling g′(t) := εg(t) − hε(t), to get:

L′(t) ≤ −
[( ∫ t

0
g(s)ds − δ

)
ε2 − ε1

]
‖ut‖

2
2 −

(
`

4
ε1 − δε2(1 + cq)

)
‖∇u‖22

−
[N

2
−
ε2c
δ
− cCε

(
ε1 +

ε2

δ
+ ε2

)]
(hε ◦ ∇u)(t)

−

∫
Γ1

(
N − cε1 − ε2cδ(x)

)
|ut|

m(x)dx + ε1

∫
Γ1

|u|q(x)dx

+

(Nε
2

+ ε2c1δ(1 − `)m1−1
)
(g ◦ ∇u)(t).

(5.29)

Now, set g0 =
∫ t0

0
g(s)ds and select δ small enough so that

δ < min
{1
2

g0,
`g0

16(1 + cq)
,

`g0

1024c1(1 − `)m1

}
.

Once δ is fixed, then cδ(x) is bounded and the choice of ε1 = 3
8g0ε2 yields

1
4

g0ε2 < ε1 <
1
2

g0ε2.

c1 := (g0 − δ)ε2 − ε1 >
1
2g0ε2 − ε1 = 1

8g0ε2 > 0,
c2 := `

4ε1 − δε2(1 + cq) > `
32g0ε2 > 0.

(5.30)

By taking ε2 = 1
8c1δ(1−`)m1−1 , we get

c1δ(1 − `)m1−1ε2 =
1
8

and c2 >
`

32
g0ε2 =

`g0

256c1δ(1 − `)m1−1 > 4(1 − `).
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Then (5.29) becomes

L′(t) ≤ −c1‖ut‖
2
2 − 4(1 − `)‖∇u‖22 +

(Nε
2

+
1
8

)
(g ◦ ∇u)(t) + ε1

∫
Γ1

|u|q(x)dx

−
[N

2
−
ε2c
δ
− cCε

(
ε1 +

ε2

δ
+ ε2

)]
(hε ◦ ∇u)(t) −

[
N − c(ε1 + ε2)

] ∫
Γ1

|ut|
m(x)dx

(5.31)

From
εg2(s)

εg(s) − g′(s)
< g(s) and using the Lebesgue Dominated Convergence Theorem, we conclude

that

lim
ε→0+

εCε = lim
ε→0+

∫ ∞

0

εg2(s)
εg(s) − g′(s)

ds = 0.

So, there exists 0 < ε0 < 1 such that if ε < ε0, then

εCε <
1

16
(
cε1 + cε2

δ
+ cε2

) .
Now, choosing N large enough so that L ∼ E and

N > max
{

4c
δ
ε2,

1
4ε
,

c(ε1 + ε2)
a

}
.

For ε = 1
4N , we have

N
4
−

c
δ
ε2 > 0 and ε < ε0.

This gives
N
2
−
ε2c
δ
−Cε

(
cε1 +

cε2

δ
+ cε2

)
> 0. (5.32)

A Combination of (5.31)-(5.32), leads to (5.28). �

Lemma 5.6. Given t0 > 0. Assume that (A1) − (A4) and (3.4) hold and 1 < m1 < 2. Then, the
functional L defined by

L(t) := NE(t) + ε1F1(t) + ε2F2(t)

satisfies, for fixed N, ε1, ε2 > 0,
L ∼ E (5.33)

and for any t ≥ t0,

L′(t) ≤ −c‖ut‖
2
2 − 4(1 − `)‖∇u‖22 +

1
4

(g ◦ ∇u)(t) + ε1

∫
Γ1

|u|q(x)dx + c
(
− E′(t)

)m1−1

. (5.34)

Proof. Estimate (5.34) can be established by using the same above arguments with some changes only
on

δ < min
{1
2

g0,
`

16c(1 + cq)
g0,

`g0

1024(1 − `)

}
, and ε2 =

1
8δ
.

�
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Lemma 5.7. Assume that (A1) − (A4) and (3.4) hold, then for m1 ≥ 2, then∫ ∞

0
E(s)ds < ∞. (5.35)

Proof. Combining Lemmas 5.4 and 5.5 and choosing ε1 small enough, we see that the functional L1

defined by
L1(t) := L(t) + F3(t)

is nonnegative and satisfies, for some c0 > 0 and for any t ≥ t0,

L′1(t) ≤ − c‖ut‖
2
2 − (1 − `) ‖∇u‖22 −

1
4

(g ◦ ∇u) (t) + ε1

∫
Γ1

|u|q(x)dx

≤ − c0E(t) −
(

c
2q2
− ε1

) ∫
Γ1

|u|q(x)dx

≤ − c0E(t).

An integration over (t0, t), leads∫ t

t0
E(s)ds ≤ −

L1(t) + L1(t0)
c0

, ∀t ≥ t0.

Using the continuity of E, we obtain ∫ ∞

0
E(s)ds < +∞.

�

Lemma 5.8. Assume that (A1) − (A4) and (3.4) hold, then for 1 < m1 < 2, we have∫ ∞

0
E

1
m1−1 (s)ds < ∞. (5.36)

Furthermore, ∫ ∞

t0
E(s)ds ≤ c(t − t0)2−m1 , ∀t ≥ t0. (5.37)

Proof. Combing Lemmas 5.4 and 5.6 and selecting ε1 small enough, we conclude that the functional
L2 defined by

L2(t) := L(t) + F3(t)

satisfies, for some c0, c > 0 and for any t ≥ t0,

L′2(t) ≤ − c‖ut‖
2
2 − (1 − `) ‖∇u‖22 −

1
4

(g ◦ ∇u) (t) + ε1

∫
Γ1

|u|q(x)dx + C
[ ∫

Γ1

|ut|
mdx

]m1−1

≤ − c0E(t) −
(

c
2q2
− ε1

) ∫
Γ1

|u|q(x)dx + c
(
− E′(t)

)m1−1

≤ − c0E(t) + c
(
− E′(t)

)m1−1
, ∀t ≥ t0.

(5.38)
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Now, multiplying (5.38) by Eα(t), α = 2−m1
m1−1 , and using Young’s inequality, we arrive at

Eα(t)L′2(t) ≤ −c0Eα+1(t) + c1Eα(t)
(
− E′(t)

)m1−1

≤ −c0(1 − ε)Eα+1(t) + c
ε

(
− E′(t)

)
.

(5.39)

Choosing ε small enough and using the fact E′ ≤ 0, then (5.39) becomes:

Eα+1(t) ≤ −cL′3(t), ∀t ≥ t0, (5.40)

where L3(t) = Eα(t)L2(t) + cE(t).
Integrating over (t0, t), we get ∫ t

t0
Eα+1(s)ds ≤ L3(t0), ∀t ≥ t0.

Therefore, we get ∫ ∞

0
E

1
m1−1 (s)ds < +∞.

Using Hölder’s inequality, we get∫ t

t0
E(s)ds ≤ (t − t0)

α
α+1

[ ∫ t

t0
Eα+1(s)ds

] 1
α+1
≤ c(t − t0)

α
α+1 = c(t − t0)2−m1 , ∀t ≥ t0. (5.41)

This completes the proof. �

6. Proofs of the decay theorems

In this section, we prove Theorem 4.1 and Theorem 4.2.

6.1. Proof of Theorem 4.1

Case 1: Ψ is linear. Using (2.3), (2.6), and (5.28), then for any t ≥ t0, we have

ϑ(t)L′(t) ≤ −cϑ(t)E(t) + cϑ(g ◦ ∇u)(t) ≤ −cϑ(t)E(t) + c(g′ ◦ ∇u)(t)
≤ −cϑ(t)E(t) − cE′(t).

Letting ϑL + cE ∼ E and integrating over (t0, t), we get for some C, λ > 0,

E(t) ≤ C exp
(
−λ

∫ t

t0
ϑ(s)ds

)
, t ≥ t0.

Case 2: Ψ is nonlinear. We start defining the following functional

η(t) := γ

∫ t

t0
‖∇u(t) − ∇u(t − s)‖22 , ∀ t ≥ t0, (6.1)

where γ > 0 should be carefully selected. Using (3.9) and (5.35), we get

η(t) = γ

∫ t

t0
‖∇u(t) − ∇u(t − s)‖22
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≤ 2γ
∫ t

t0

(
‖∇u(t)‖22 + ‖∇u(t − s)‖22

)
ds

≤
8γq1

`(q1 − 2)

∫ t

t0

(
E(t) + E(t − s)

)
ds

≤
8γq1

`(q1 − 2)

∫ ∞

t0
E(s)ds < ∞, ∀ t ≥ t0.

Therefore, we can select γ small enough so that

η(t) < 1, ∀ t ≥ t0. (6.2)

We also define the following

θ(t) := −
∫ t

t0
g′(s)‖∇u(t) − ∇u(t − s)‖22 ≤ −cE′(t). (6.3)

Since Ψ̄ is strictly convex and Ψ̄(0) = 0, we have

Ψ̄(sτ) ≤ sΨ̄(τ), for 0 ≤ s ≤ 1 and τ ∈ [0,∞).

Combining the above with (2.3), Jensen’s inequality and (6.2), we obtain, for any t > t0,

θ(t) = −
1
η(t)

∫ t

t0
η(t)g′(s) ‖∇u(t) − ∇u(t − s)‖22

≥
1
η(t)

∫ t

t0
η(t)ϑ(s)Ψ(g(s)) ‖∇u(t) − ∇u(t − s)‖22

≥
ϑ(t)
η(t)

∫ t

t0
Ψ̄(η(t)g(s)) ‖∇u(t) − ∇u(t − s))‖22

≥
ϑ(t)
γ

Ψ̄

(
γ

∫ t

t0
g(s) ‖∇u(t) − ∇u(t − s)‖22

)
.

Then, for any t ≥ t0, we have∫ t

t0
g(s) ‖∇(u(t) − u(t − s))‖22 ≤

1
γ

Ψ̄−1
(
γθ(t)
ϑ(t)

)
, ∀t > t0. (6.4)

Combining (2.6), (5.28), (6.4) and using Lemma 2.9, we get, for any t ≥ t0,

L′(t) ≤ −β1E(t) − cE′(t) + c
∫ t

t0
g(s) ‖∇(u(t) − u(t − s))‖22

≤ −β1E(t) − cE′(t) +
c
γ

Ψ̄−1
(
γθ(t)
ϑ(t)

)
.

(6.5)

F ′(t) ≤ −β1E(t) +
c
γ

Ψ̄−1
(
γθ(t)
ϑ(t)

)
, ∀ t ≥ t0, (6.6)

AIMS Mathematics Volume 7, Issue 8, 15370–15401.



15392

where F := L + cE. For ε0 < r, we define

F1(t) := Ψ̄′
(
ε0E(t)
E(0)

)
F (t), ∀ t ≥ t0.

Then, using the facts that E′ ≤ 0, Ψ′ > 0 and Ψ′′ > 0, estimate (6.6) becomes

F ′1 (t) =
ε0E′(t)
E(0)

Ψ̄′
(
ε0E(t)
E(0)

)
F (t) + Ψ̄′

(
ε0E(t)
E(0)

)
F ′(t)

≤ −β1E(t)Ψ̄′
(
ε0E(t)
E(0)

)
+

c
γ

Ψ̄′
(
ε0E(t)
E(0)

)
Ψ̄−1

(
γθ(t)
ϑ(t)

)
, ∀ t ≥ t0. (6.7)

Recall that Ψ̄ is convex on (0,∞) and let Ψ̄∗ be the convex conjugate of Ψ̄ in the sense of Young [48]
such that

Ψ̄∗(s) = s
(
Ψ̄′

)−1(s) − Ψ̄
[(

Ψ̄′
)−1(s),

]
∀s ∈ (0,∞). (6.8)

and satisfies the following generalized Young inequality

AB ≤ Ψ̄∗(A) + Ψ̄(B),∀A, B ∈ (0,∞). (6.9)

Then a combination of (2.7), (6.7)) and (6.9) with applying the generalized Young inequality over
(0,∞) with A = Ψ̄′

(
ε0E(t)
E(0)

)
and B = Ψ̄−1

(
γθ(t)
ϑ(t)

)
,

F ′1 (t) ≤ −β1E(t)Ψ̄′
(
ε0E(t)
E(0)

)
+

c
γ

Ψ̄∗
[
Ψ̄′

(
ε0E(t)
E(0)

)]
+

cθ(t)
ϑ(t)

≤ −(β1E(0) − cε0)
E(t)
E(0)

Ψ̄′
(
ε0E(t)
E(0)

)
+ c

θ(t)
ϑ(t)

, ∀ t ≥ t0.

Take ε0 small enough, if needed, to obtain, for some positive constant β1,

F ′1 (t) ≤ −β1
E(t)
E(0)

Ψ̄′
(
ε0E(t)
E(0)

)
+ c

θ(t)
ϑ(t)

, ∀ t ≥ t0.

Multiplying both sides of the last inequality by ϑ(t) and using ε0
E(t)
E(0)

< r and inequality 6.3, we get

ϑ(t)F ′1 (t) ≤ −β2
E(t)
E(0)

Ψ′
(
ε0E(t)
E(0)

)
ϑ(t) + cθ(t)

≤ −β2
E(t)
E(0)

Ψ′
(
ε0E(t)
E(0)

)
ϑ(t) − cE′(t), ∀ t ≥ t0.

Hence by setting F2 = ϑF1 + cE, we obtain, for two constants α1, α2 > 0,

α1F2(t) ≤ E(t) ≤ α2F2, ∀t ≥ t0 (6.10)

and

F ′2 (t) ≤ −β2
E(t)
E(0)

Ψ′
(
ε0E(t)
E(0)

)
ϑ(t), ∀t ≥ t0. (6.11)
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Now, let

Λ(t) :=
α1F2(t)

E(0)
and Ψ2(τ) = τΨ′(ε0τ),

then we deduce from (A2) that Ψ2,Ψ
′
2 > 0 on (0, 1], and from (6.10) and (6.11) that Λ ∼ E and

−
Λ′(t)

Ψ2(Λ(t))
≥ λ1ϑ(t), ∀t > t0, (6.12)

Integration over (t0, t), we get∫ ε0Λ(t0)

ε0Λ(t)

1
sΨ′(s)

ds ≥
∫ t

t0
ϑ(s)ds, ∀t > t0.

Hence,

E(t) ≤ λ2Ψ
−1
0

(
λ1

∫ t

t0
ϑ(s)ds

)
, ∀t > t0,

where Ψ0 =
∫ r

t
1

sΨ′(s)ds and λ2 > 0.

6.2. Proof of Theorem 4.2

Case 1: Ψ is linear. Combining (2.3), (2.6) and (5.34), then for some γ1 > 0, we have

ϑ(t)L′(t) ≤ −γ1ϑ(t)E(t) + cϑ(t)(g ◦ ∇u)(t) + cϑ(t)
[
− E′(t)

]m1−1

≤ −γ1ϑ(t)E(t) − cE′(t) + cϑ(t)
[
− E′(t)

]m1−1

, ∀t > t0.

(6.13)

Letting L1 := ϑL + cE ∼ E, multiplying both sides of the above estimate by Ek, with k = 2−m1
m1−1 and

applying Young’s inequality, we obtain

Ek(t)L′1(t) ≤ −(γ1 − ε)ϑ(t)Ek+1(t) − cE′(t), ∀t > t0.

Set L2 := EkL1 + cE ∼ E, take ε small enough and use the fact E′ ≤ 0 we get, for some γ2, γ3 > 0,

L′2(t) ≤ −γ2ϑ(t)Ek+1(t) ≤ −γ3ϑ(t)Lk+1
2 (t), ∀t ≥ t0.

Now, we integrate over (t0, t) and use L ∼ E, to get,

E(t) ≤ C
(∫ t

t0
ϑ(s)ds

)1−m1

, ∀t ≥ t0.

Case 2: Ψ is nonlinear. We define the following functional

η1(t) :=
γ0

(t − t0)2−m1

∫ t

t0
‖∇u(t) − ∇u(t − s)‖22 ds, ∀ t ≥ t0.

Thanks to (5.37), we can pick γ0 small enough so that η1(t) < 1. Then, for any t ≥ t0, we have

θ1(t) = −
1

η1(t)

∫ t

t0
η1(t)g′(s) ‖∇u(t) − ∇u(t − s)‖22 ds
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≥
1

η1(t)

∫ t

t0
η1(t)ϑ(s)Ψ(g(s)) ‖∇u(t) − ∇u(t − s)‖22 ds

≥
ϑ(t)
η1(t)

∫ t

t0
Ψ̄(η1(t)g(s)) ‖∇u(t) − ∇u(t − s)‖22 ds

≥
(t − t0)2−m1ϑ(t)

γ
Ψ̄

(
γ

(t − t0)2−m1

∫ t

t0
g(s) ‖∇u(t) − ∇u(t − s)‖22 ds

)
,

which gives

∫ t

t0
g(s) ‖∇u(t) − ∇u(t − s)‖22 ds ≤

1
γ0

(t − t0)2−m1Ψ̄−1
(

γ0θ1(t)
ϑ(t)(t − t0)2−m1

)
. (6.14)

Using (2.6), (5.34), (6.14) and Lemma 2.9, then for any t ≥ t0, we get

L′(t) ≤ −γ4E(t) − cE′(t) + c
γ0

(t − t0)2−m1Ψ̄−1
(

γ0θ1(t)
ϑ(t)(t−t0)2−m1

)
+ c

[
− E′(t)

]m1−1

. (6.15)

Thus, (6.15) becomes

F ′(t) ≤ −γ4E(t) +
c(t − t0)2−m1

γ0
Ψ̄−1

(
γ0θ1(t)

(t − t0)2−m1ϑ(t)

)
+ c

[
− E′(t)

]m1−1

, ∀ t ≥ t0, (6.16)

where F := L + cE ∼ E.
For 0 < ε1 < r, we shall define

F1(t) := Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
F (t), ∀ t ≥ t0.

Using (2.7), (6.16), the assumption (A1), and the generalized Young inequality, then for any t > t0, we
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have

F ′1 (t) =
[ ε1

(t − t0)2−m1
.
E′(t)
E(0)

−
(2 − m1)ε1

(t − t0)3−m1
.
E(t)
E(0)

]
Ψ̄′′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

)
F (t)

+ Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
F ′(t)

≤ Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
F ′(t)

≤ −γ4E(t)Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
+ cΨ̄′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

) [
− E′(t)

]m1−1

+
(t − t0)2−m1

γ0
Ψ̄−1

(
γ0θ1(t)

(t − t0)2−m1ϑ(t)

)
Ψ̄′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

)
≤ −γ4E(t)Ψ̄′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

)
+

c(t − t0)2−m1

γ0
Ψ̄∗

[
Ψ̄′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

)]
+ c

θ1(t)
ϑ(t)

+ cΨ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

) [
− E′(t)

]m1−1

.

≤ −γ4E(t)Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
+ cε1

E(t)
E(0)

Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
+ c

θ1(t)
ϑ(t)

+ cΨ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

) [
− E′(t)

]m1−1

≤ −(γ4E(0) − cε1)
E(t)
E(0)

Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
+ c

θ1(t)
ϑ(t)

+ cΨ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

) [
− E′(t)

]m1−1

≤ −γ5
E(t)
E(0)

Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
+ c

θ1(t)
ϑ(t)

+ cΨ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

) [
− E′(t)

]m1−1

,

(6.17)

where γ5 > 0. Multiplying the last inequality by ϑ(t) and using (6.3), then for any t > t0, we obtain

ϑ(t)F ′1 (t) ≤ −γ5E(t)ϑ(t)Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
− cE′(t)

+ cϑ(t)Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

) (
− E′(t)

)m1−1
.

By setting F2 := ϑF1 + cE, we get, for any t > t0,

F ′2 (t) ≤ −γ5E(t)ϑ(t)Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
+ cΨ̄′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

) (
− E′(t)

)m1−1
.

Multiplying the above inequality by En,
(
n = 2−m1

m1−1

)
, and using Young’s inequality, then for some γ6,
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we have

En(t)F ′2 (t) ≤ −
(
γ5

E(0)
− cε

)
En+1(t)Ψ̄′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

)
+ c(ε)Ψ̄′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

) (
− E′(t)

)
≤ −

(
γ5

E(0)
− cε

)
ϑ(t)E

2−m1
m1−1 (t)Ψ̄′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

)
− cE′(t).

Let F3 = EnF2 + cE and choose ε small enough, then for a constant γ6 > 0, we get

F ′3 (t) ≤ −γ6ϑ(t)
(

E(t)
E(0)

)n+1

Ψ̄′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
. (6.18)

We deduce from limt→∞
1

(t−t0)2−m1
= 0, that, there exists t1 > t0 such that 1

(t−t0)2−m1
< 1 for any t ≥ t1,

which implies

ϑ(t)
( E(t)
E(0)

)n+1
Ψ′

(
ε1

(t − t0)2−m1
.
E(t)
E(0)

)
≤ −cF ′3 (t), ∀t > t1. (6.19)

Integrating (6.19) over (t1, t) yields∫ t

t1

(
E(t)
E(0)

)n+1

Ψ′
(

ε1

(s − t0)2−m1
.
E(s)
E(0)

)
ϑ(s)ds ≤ −

∫ t

t1
F ′3 (s)ds ≤ cF ′3 (t1). (6.20)

Since Ψ′′ > 0 and E′ ≤ 0, it follows that the map

t 7−→
(

E(t)
E(0)

)n+1

Ψ′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

)
is non-increasing. Therefore, we get(

E(t)
E(0)

)n+1

Ψ′
(

ε1

(t − t0)2−m1
.
E(t)
E(0)

) ∫ t

t1
ϑ(s)ds ≤ cF ′3 (t1) ∀t > t1. (6.21)

Multiplying (6.21) by
(

ε1
(t−t0)2−m1

)n+1

and setting Ψ1(τ) := τn+1Ψ′(τ), which is strictly increasing, we

obtain, for λ1, λ2 > 0,

E(t) ≤ λ2(t − t0)2−m1Ψ−1
1

(λ1(t − t0)
m1−2
m1−1

∫ t

t1
ϑ(s)ds

)−1 , ∀ t > t1, (6.22)

This completes the proof.

7. Numerical tests

We give numerical simulations in this section to support our theoretical results in Theorems 4.1 and
4.2. We use the conservative Lax-Wendroff strategy presented in [49] to demonstrate the decay of two
tests. To discretize the system (1.1), we use a second-order finite difference method (FDM) in time and
space for the space-time domain Ω × (0,T ) = [0, 1] × (0, 25). The mixed boundary conditions in the
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system (1.1) could be viewed as a Dirichlet boundary condition on one hand and a Neuman boundary
condition on the other. Let for instance, u0(x) = x and u1(x) = 1 − x. Then, the condition

∂u
∂n
−

∫ t

0
g(t − s)

∂u
∂n

ds + |ut|
m(x)−2ut = |u|q(x)−2u, in Γ1 × (0,T )

will apply to the following two tests:

• TEST 1: In the first test, we set m(x) = q(x) = 2. We use the boundary condition at x = 1 (the
term u1 will be vanish at x = 1, while the right-hand side condition will have a nonzero starting
value).

• TEST 2: In the second numerical test, we examine the case m(x) , 2 and q(x) , 2 for all
x ∈ [0, 1]. We use the boundary at x = 0 (the term u1 term will not vanish at x = 0 and the right

hand side condition will be canceled). For this, we use the functions m(x) = q(x) = 2 +
1

1 + x
for

all x ∈ [0, 1].

To check that the implemented method and the run code are numerically stable, we use ∆t < 0.5∆x,
satisfying the stability condition according to the Courant-Friedrichs-Lewy (CFL) inequality, where
∆t = 0.0025 represents the time step and ∆x = 0.01 the spatial step. The spatial interval [0, 1] is
subdivided into 100 subintervals, whereas the temporal interval [0,T ] = [0, 25] is deduced from the
stability condition above. We run our code for 10, 000 time steps using the following initial conditions:

u(x, 0) = x(1 − x) and ut(x, 0) = 0, in [0, 1].

In Tests 1 and 2, we demonstrated the decay under the initial and boundary conditions. The plots
in Figure 1 show the temporal wave evolution in cross sections. The three cross sections are taken at
x = 0.75, 1.5, 2.25 (see Figure 1. The corresponding energies given by the “modified” equation (3.1)
are presented in Figure 2. The damping behavior is well seen in both tests. The result shown in Figure
2 is equally important. As a result, the similarity decrease for the energy decay rates obtained in Test
1 and Test 2 can be clearly observed. We normalized the output by dividing the maximums value in
order to compare the asymptotic convergence of the energy.

Finally, it should be stressed that our intention focuses is to show the energy decay represented in
Figure 2. However, we remarked that there are some similarities in the energy decay behavior. Both
functions have at least a polynomial decay. This is due to the initial conditions used for the problem.
We believe that, for other choices of the initial solution, we could obtain a clear difference between the
outputs of the energy function.
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Figure 1. The behavioral decay of the solution wave (left: TEST 1, right: TEST 2).

Figure 2. The energy functions (left: TEST 1, right: TEST 2).

8. Conclusions

In this work, we considered a viscoelastic wave equation with boundary damping and variable
exponents. We first proved the existence of global solutions and then we established optimal and
general decay estimates depending on the behavior of the relaxation function and the nature of the
variable exponent nonlinearity. We finally end our paper with some numerical illustrations. Working
with variable exponents in the boundary is totally different from the earlier results and of much
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challenging. We compared our results with other related results and showed that our results improved
and extended some earlier results in the literature.
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