In this paper, we obtain some coupled fixed point theorems on a bicomplex partial metric space. An example and an application to support our result are presented.
Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Khalil Javed, Muhammad Arshad, Fahd Jarad. Solving a Fredholm integral equation via coupled fixed point on bicomplex partial metric space[J]. AIMS Mathematics, 2022, 7(8): 15402-15416. doi: 10.3934/math.2022843
In this paper, we obtain some coupled fixed point theorems on a bicomplex partial metric space. An example and an application to support our result are presented.
[1] | C. Segre, Le Rappresentazioni Reali delle Forme Complesse e Gli Enti Iperalgebrici, Math. Ann., 40 (1892), 413–467. https://doi.org/10.1007/BF01443559 doi: 10.1007/BF01443559 |
[2] | G. S. Dragoni, Sulle funzioni olomorfe di una variabile bicomplessa, Reale Accad. d'Italia, Mem. Classe Sci. Nat. Fis. Mat., 5 (1934), 597–665. |
[3] | N. Spampinato, Estensione nel campo bicomplesso di due teoremi, del Levi-Civita e del Severi, per le funzioni olomorfe di due variablili bicomplesse Ⅰ, Ⅱ, Reale Accad, Naz. Lincei., 22 (1935), 38–43. |
[4] | N. Spampinato, Sulla rappresentazione delle funzioni do variabile bicomplessa totalmente derivabili, Ann. Mat. Pura Appl., 14 (1935), 305–325. https://doi.org/10.1007/BF02411933 doi: 10.1007/BF02411933 |
[5] | G. B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, New York, 1991. |
[6] | F. Colombo, I. Sabadini D. C. Struppa, A. Vajiac, M. Vajiac, Singularities of functions of one and several bicomplex variables, Ark. Math., 49 (2011), 277–294. https://doi.org/10.1007/s11512-010-0126-0 doi: 10.1007/s11512-010-0126-0 |
[7] | M. Younis, D. Singh, On the existence of the solution of Hammerstein integral equations and fractional differential equations, J. Appl. Math. Comput., (2021), 1–19. |
[8] | M. E. Luna-Elizaarrar$\acute{a}$s, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex numbers and their elementary functions, Cubo (Temuco), 14 (2012), 61–80. https://doi.org/10.4067/S0719-06462012000200004 doi: 10.4067/S0719-06462012000200004 |
[9] | J. Choi, S. K. Datta, T. Biswas, N. Islam, Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces, Honam Math. J., 39 (2017), 115–126. https://doi.org/10.5831/HMJ.2017.39.1.115 doi: 10.5831/HMJ.2017.39.1.115 |
[10] | I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdiscip. Math., 22 (2019), 1071–1082. https://doi.org/10.1080/09720502.2019.1709318 doi: 10.1080/09720502.2019.1709318 |
[11] | P. Dhivya, M. Marudai, Common fixed point theorems for mappings satisfying a contractive condition of rational expression on a ordered complex partial metric space, Cogent Mathematics, 4 (2017), 1389622. https://doi.org/10.1080/23311835.2017.1389622 doi: 10.1080/23311835.2017.1389622 |
[12] | M. Gunaseelan, L. N. Mishra, Coupled fixed point theorems on complex partial metric space using different type of contractive conditions, Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics, 11 (2019), 117–123. https://doi.org/10.5937/SPSUNP1902117G doi: 10.5937/SPSUNP1902117G |
[13] | M. Gunaseelan, G. Arul Joseph, L. Yongji, G. Zhaohui, The existence and uniqueness solution of nonlinear Integral equations via common fixed point theorems, Mathematics, 9 (2021), 1179. https://doi.org/10.3390/math9111179 doi: 10.3390/math9111179 |
[14] | I. Beg, S. K. Datta, D. Pal, Fixed point in bicomplex valued metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 717–727. |
[15] | G. Zhaohui, M. Gunaseelan, G. Arul Joseph, L. Yongjin, Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space, Mathematics, 9 (2021), 1584. https://doi.org/10.3390/math9141584 doi: 10.3390/math9141584 |