The paper aimed to achieve three primary objectives. First, it introduced significant common fixed point results in the context of newly proposed partial modular $ b- $metric spaces, thus contributing to the advancement of this field. Second, it presented unique results using a direct approach that did not depend on the strong continuity of the mapping, thereby offering a valuable perspective. Finally, it applied previously established convergence techniques to determine a common solution for a system of Fredholm integral equations, demonstrating the practical implications of the theoretical findings.
Citation: Abdurrahman Büyükkaya, Mudasir Younis, Dilek Kesik, Mahpeyker Öztürk. Some convergence results in modular spaces with application to a system of integral equations[J]. AIMS Mathematics, 2024, 9(11): 31030-31056. doi: 10.3934/math.20241497
The paper aimed to achieve three primary objectives. First, it introduced significant common fixed point results in the context of newly proposed partial modular $ b- $metric spaces, thus contributing to the advancement of this field. Second, it presented unique results using a direct approach that did not depend on the strong continuity of the mapping, thereby offering a valuable perspective. Finally, it applied previously established convergence techniques to determine a common solution for a system of Fredholm integral equations, demonstrating the practical implications of the theoretical findings.
[1] | S. Banach, Sur les operations dans les emsembles abstraits et leurs applications aux equations integrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[2] | M. Younis, L. Chen, D. Singh, Recent developments in fixed point theory: theoretical foundations and real-world applications, Springer, 2024. https://doi.org/10.1007/978-981-99-9546-2 |
[3] | A. Deep, M. Kazemi, Solvability for 2D non-linear fractional integral equations by Petryshyn's fixed point theorem, J. Comput. Appl. Math., 444 (2024), 115797. https://doi.org/10.1016/j.cam.2024.115797 doi: 10.1016/j.cam.2024.115797 |
[4] | A. Deep, Deepmala, J. Rezaei Roshan, K. Sooppy Nisar, T. Abdeljawad, An extension of Darbo's fixed point theorem for a class of system of nonlinear integral equations, Adv. Differ. Equ., 2020 (2020), 483. https://doi.org/10.1186/s13662-020-02936-y doi: 10.1186/s13662-020-02936-y |
[5] | A. Büyükkaya, M. Öztürk, On Suzuki-Proinov type contractions in modular $b-$metric spaces with an application, Commun. Adv. Math. Sci., 7 (2024), 27–41. https://doi.org/10.33434/cams.1414411 doi: 10.33434/cams.1414411 |
[6] | E. Girgin, A. Büyükkaya, N. K. Kuru, M. Younis, M. Öztürk, Analysis of Caputo-type non-linear fractional differential equations and their Ulam–Hyers stability, Fractal Fract., 8 (2024), 558. https://doi.org/10.3390/fractalfract8100558 doi: 10.3390/fractalfract8100558 |
[7] | M. E. Ege, C. Alaca, Some results for modular $b-$metric spaces and an application to a system of linear equations, Azerbaijan J. Math., 8 (2018), 1–12. |
[8] | M. Younis, A. A. N. Abdou, Novel fuzzy contractions and applications to engineering science, Fractal Fract., 8 (2024), 28. https://doi.org/10.3390/fractalfract8010028 doi: 10.3390/fractalfract8010028 |
[9] | M. Younis, D. Singh, A. A. N. Abdou, A fixed point approach for tuning circuit problem in dislocated $b$‐metric spaces, Math. Meth. Appl. Sci., 45 (2022), 2234–2253. https://doi.org/10.1002/mma.7922 doi: 10.1002/mma.7922 |
[10] | E. Girgin, A. Büyükkaya, N. K. Kuru, M. Öztürk, On the impact of some fixed point theorems on dynamic programming and RLC circuit models in $\Re-$modular $b-$metric-like spaces, Axioms, 13 (2024), 441. https://doi.org/10.3390/axioms13070441 doi: 10.3390/axioms13070441 |
[11] | I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[12] | S. Czerwik, Contraction mappings in $b-$metric spaces, Acta Math. Inf. Univ. Ostraviensis, 1 (1993), 5–11. |
[13] | S. Czerwik, Nonlinear set-valued contraction mappings in $b-$metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276. |
[14] | S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[15] | M. Younis, D. Singh, D. Gopal, A. Goyal, M. S. Rathore, On applications of generalized $F$-contraction to differential equations, Nonlinear Funct. Anal. Appl., 24 (2019), 155–174. |
[16] | L. S. Dönmez, A. Büyükkaya, M. Öztürk, Fixed-point results via $\alpha_{i}^{j}-\left(\mathbf{D}_{{C}}\left(\mathfrak{P}_{\hat E}\right)\right)-$ contractions in partial $b-$metric spaces, AIMS Math., 8 (2023), 23674–23706. https://doi.org/10.3934/math.20231204 doi: 10.3934/math.20231204 |
[17] | Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial $b-$metric spaces, J. Inequal. Appl., 2013 (2013), 562. https://doi.org/10.1186/1029-242X-2013-562 doi: 10.1186/1029-242X-2013-562 |
[18] | S. Shukla, Partial $b-$metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711. https://doi.org/10.1007/s00009-013-0327-4 doi: 10.1007/s00009-013-0327-4 |
[19] | H. Ahmad, M. Younis, M. E. Koksal, D. Lateef, Nonunique fixed‐point results in a general setting with an application, J. Math., 2024 (2024), 9190867. https://doi.org/10.1155/2024/9190867 doi: 10.1155/2024/9190867 |
[20] | V. V. Chistyakov, Modular metric spaces, I: basic concepts, Nonlinear Anal., 72 (2010), 1–14. https://doi.org/10.1016/j.na.2009.04.057 |
[21] | A. Büyükkaya, M. Öztürk, Some fixed point results for Sehgal$-$Proinov type contractions in modular $b-$metric spaces, An. St. Univ. Ovidius Constanta, 31 (2023), 61–86. |
[22] | A. Büyükkaya, A. Fulga, M. Öztürk, On generalized Suzuki-Proinov type $\left({\alpha, {\mathcal{Z}}_E ^*} \right) - $contractions in modular $b-$metric spaces, Filomat, 37 (2023), 1207–1222. https://doi.org/10.2298/FIL2304207B doi: 10.2298/FIL2304207B |
[23] | M. Öztürk, A. Büyükkaya, Fixed point results for Suzuki-type $\Sigma-$contractions via simulation functions in modular $b-$metric spaces, Math. Meth. Appl. Sci., 45 (2022), 12167–12183. https://doi.org/10.1002/mma.7634 doi: 10.1002/mma.7634 |
[24] | M. Öztürk, F. Golkarmanesh, A. Büyükkaya, V. Parvaneh, Generalized almost simulative ${\hat Z}_{_{\Psi ^*} }^\Theta - $contraction mappings in modular $b-$metric spaces, J. Math. Ext., 17 (2023), 1–37. https://doi.org/10.30495/JME.2023.2424 doi: 10.30495/JME.2023.2424 |
[25] | H. Hosseinzadeh, V. Parvaneh, Meir-Keeler type contractive mappings in modular and partial modular metric spaces, Asian-Eur. J. Math., 13 (2020), 1–18. https://doi.org/10.1142/S1793557120500874 doi: 10.1142/S1793557120500874 |
[26] | D. Kesik, A. Büyükkaya, M. Öztürk, On modified interpolative almost $\mathcal{E}-$type contraction in partial modular $b-$metric spaces, Axioms, 12 (2023), 669. https://doi.org/10.3390/axioms12070669 doi: 10.3390/axioms12070669 |
[27] | P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21. https://doi.org/10.1007/s11784-020-0756-1 doi: 10.1007/s11784-020-0756-1 |
[28] | E. Karapınar, A. Fulga, A fixed point theorem for Proinov mappings with a contractive iterate, Appl. Math. J. Chin. Univ., 38 (2023), 403–412. https://doi.org/10.1007/s11766-023-4258-y doi: 10.1007/s11766-023-4258-y |
[29] | E. Karapınar, M. De La Sen, A. Fulga, A note on the Gornicki-Proinov type contraction, J. Funct. Spaces, 2021 (2021), 6686644. https://doi.org/10.1155/2021/6686644 doi: 10.1155/2021/6686644 |
[30] | E. Karapınar, J. Martinez-Moreno, N. Shahzad, A. F. Roldan Lopez de Hierro, Extended Proinov $\mathfrak{X}-$contractions in metric spaces and fuzzy metric spaces satisfying the property $\mathcal{NC}$ by avoiding the monotone condition, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116 (2022), 140. https://doi.org/10.1007/s13398-022-01268-8 doi: 10.1007/s13398-022-01268-8 |
[31] | A. F. Roldan Lopez de Hierro, A. Fulga, E. Karapınar, N. Shahzad, Proinov type fixed point results in non-Archimedean fuzzy metric spaces, Mathematics, 9 (2021), 1594. https://doi.org/10.3390/math9141594 doi: 10.3390/math9141594 |
[32] | T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 7 (2009), 5313–5317. https://doi.org/10.1016/j.na.2009.04.017 doi: 10.1016/j.na.2009.04.017 |