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1. Introduction and Preliminaries

The field of metric fixed point theory, denoted as (FP), holds significant relevance for the
mathematical research community and scholarly discourse. The foundational work of S. Banach,
particularly the introduction of the Banach contraction principle in his doctoral dissertation [1], stands
as a seminal contribution within this domain. This significant result has not only been the foundation
for several developments in fixed point theory, but it has also been the impetus for a wide variety of
generalizations and novel adaptations to the idea of contraction maps [2].

Fixed point theory, a cornerstone of contemporary mathematical sciences, is characterized by its
dynamic evolution and the vibrancy of its research community. This field, rooted in rich foundational
principles and methodological innovations, extends its influence far beyond its initial mathematical
confines, offering broad applications across a multitude of disciplines. The versatility and utility of
fixed point theory’s methodological approaches render it an indispensable tool for tackling complex
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problem-solving tasks within myriad mathematical contexts. Its capacity to bridge theoretical and
practical aspects across diverse areas underscores its pivotal role in advancing both the understanding
and application of mathematical principles; see [3–6].

Moreover, the study of metric spaces, symbolized as (MS), occupies a central position in the realm
of mathematical analysis and its wide-ranging applications, as evidenced by references such as [7–10].
This concept has undergone substantial refinement and expansion, with scholars broadening the scope
of MS to encompass more abstract spaces, thus enhancing its applicability across diverse domains.
Notably, the introduction of b − MS, initially proposed by Bakhtin [11], represents a significant
extension in this direction. Bakhtin’s definition of the b−metric function has garnered widespread
acceptance and has been subject to extensive development by researchers such as Czerwik [12, 13],
thereby enriching the theoretical landscape of metric fixed point theory. A b−metric function differs
from a typical metric function by relaxing the triangle inequality to a more general form, as seen below:

b (–λ, ℏ) ≤ ρ [b (–λ, z) + b (z, ℏ)] .

In this definition, the function b : X × X → [0,∞) is regarded a b−metric on the set X, where ρ
is a positive real number (≥ 1) and the pair (X, b) defines a b − MS. Upon the condition ρ = 1,
the conceptualizations of a b−metric and the canonical metric converge, thereby suggesting that the
b−metric framework serves as an expansion of the conventional MS. On the other hand, unlike its
canonical counterpart, the b−metric formulation does not always display continuity, even though the
canonical metric does. This augmentation facilitates the exploration of MS within realms of increased
complexity or abstraction.

In the seminal work of Matthews, a groundbreaking concept of partial MS was introduced,
which built upon and extended the foundational principles of denotational semantics within computer
languages [14]. This innovative framework diverges from the conventional understanding of MS

through its utilization of a partial metric that allows for nonzero self-distances, thereby broadening
the scope for mathematical analysis and practical application. It is important to note that while
traditional MS configurations can be considered as special cases of partial MS (wherein self-distances
are uniformly zero), the incorporation of nonzero self-distances significantly enriches the versatility
and adaptability of this conceptual model across a diverse spectrum of computational and theoretical
domains [15, 16]. This nuanced extension offers a more comprehensive and flexible approach, paving
the way for enhanced computational and theoretical explorations in various domains.

In their pivotal work published in 2014, Mustafa et al. [17] proposed a pioneering advancement
in the MS framework by introducing the concept of partial b−metrics. This novel distance function
not only incorporates the fundamental principles of partial metrics and b−metrics but also extends
the existing theoretical framework. Moreover, the authors went on to establish a robust analogue
to the Banach contraction principle within these spaces, which represents a significant theoretical
development and has the potential to enrich the field of study further.

Definition 1.1. [17] A partial b−metric on a nonempty set X is a mapping pb : X × X → [0,∞) such
that for all –λ, ℏ, z ∈ X, which fulfills the subsequent circumstances:(
pb 1

)
pb (–λ, –λ) = pb (ℏ, ℏ) = pb (–λ, ℏ)⇔ –λ = ℏ,(

pb 2

)
pb (–λ, –λ) ≤ pb (–λ, ℏ),(

pb 3

)
pb (–λ, ℏ) = pb (ℏ, –λ),
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pb 4

)
pb (–λ, ℏ) ≤ ρ

[
pb (–λ, z) + pb (z, ℏ) − pb (z, z)

]
+

(
1−ρ

2

) (
pb (–λ, –λ) − pb (ℏ, ℏ)

)
.

A partial b−metric is a pair
(
X, pb

)
such that X is a nonempty set and pb is a partial b−metric on X. The

number ρ ≥ 1 is called the coefficient of
(
X, pb

)
.

In the inspiring work by Shukla [18], a pivotal modification was proposed to the triangle property
inherent to partial b−metric spaces. This modification was meticulously designed to ensure that every
partial b−metric space is associated with a corresponding b−metric space. Through this innovative
approach, Shukla not only established a comprehensive convergence criterion but also delineated a set
of operational guidelines within the framework of partial b − MS. This breakthrough significantly
enhances our comprehension of metric spaces and extends the utility of b−metrics across various
domains in mathematical analysis and adjacent fields (see [19]). The proposed convergence criterion
and operational guidelines offer a sophisticated framework for examining partial b−metric spaces,
thereby facilitating further advancements in this intricate area of mathematical research. Definition 1.1
has been modified in [18] by considering the following condition instead of

(
pb 4

)
:

(
pb
′

4

)
for all

–λ, ℏ, z ∈ X:
pb (–λ, ℏ) ≤ ρ

[
pb (–λ, z) + pb (z, ℏ)

]
− pb (z, z) .

As ρ ≥ 1, from
(
pb 4

)
we have

pb (–λ, ℏ) ≤ ρ
[
pb (–λ, z) + pb (z, ℏ) − pb (z, z)

]
≤ ρ

[
pb (–λ, z) + pb (z, ℏ)

]
− pb (z, z) .

Remark 1. If –λ, ℏ ∈ X and pb (–λ, ℏ) = 0, then –λ = ℏ, but the converse may not be true. The notion of
partial b−metric and partial metric coincide in the case of ρ = 1. Moreover, a partial b−metric on X is
neither a partial metric nor a b−metric. As far as we understand, a partial b −MS includes the set of a
b −MS and partial MS.

In 2006, Chistyakov [20] pioneered the introduction of the concept of a modular metric on an
arbitrary set. This innovative metric represents a significant departure from classical metrics, offering
a novel framework for quantifying distances between elements within a set that boasts greater flexibility
and versatility. Furthermore, Chistyakov embarked on the formulation of the corresponding modular
space, presenting a paradigm that encompasses a more extensive array of structures in contrast to
the conventional mathematical structure MS. Building on this foundational premise, Chistyakov, in
subsequent research conducted in 2010, made substantial strides in the advancement of the theory of
modular MS. This research phase was principally centered on exploring spaces constituted by such
modular metrics. The contributions made through this line of inquiry have significantly facilitated
a profound comprehension of modular metric spaces, alongside fostering their application in various
domains.

In 2018, Ege and Alaca [7] introduced the notion of modular b −MS as follows:

Definition 1.2. [7] Let X , ∅. A functionω : (0,∞)×X×X→ [0,∞], defined byω (λ, –λ, ℏ) = ωλ (–λ, ℏ),
is called a modular b−metric on X if it satisfies the following statements for all –λ, ℏ, z ∈ X, λ, µ > 0:

(ω1) ωλ (–λ, ℏ) = 0 for all λ > 0⇔ –λ = ℏ,
(ω2) ωλ (–λ, ℏ) = ωλ (ℏ, –λ) for all λ > 0,
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(ω3) there exists ρ ≥ 1 such that

ωλ+µ (–λ, ℏ) ≤ ρ
[
ωλ (–λ, z) + ωµ (z, ℏ)

]
.

Modular MS can be achieved from modular b −MS in the case of ρ = 1. Also, the set

X
∗
ω (–λ0) = {–λ ∈ X : ∃λ > 0 such that ωλ (–λ, –λ0) < ∞}

is mentioned as modular b −MS (around –λ0). For further synthesis, we refer the reader to [21–24].
In 2010, the concept of partial modular MS was introduced by Hosseinzadeh and Parvaneh [25] as

a combination of partial MS and modular MS.
In 2023, Kesik et al. [26] made a significant contribution to the field of topology by proposing the

concept of the partial modular b−metric function. This novel concept represents a synthesis of the
principles underlying partiality, modularity, and the b−metric framework. By doing so, they have not
only introduced a new perspective but have also delineated several results that explicate the topological
properties intrinsic to this innovative space. This development marks a notable advancement in the
understanding and application of topological structures, providing a foundation for further explorations
and applications within the domain.

Definition 1.3. [26] Let X be a non-void set and ρ ≥ 1 be a real number. A mapping ϖpb : (0,∞) ×
X × X → [0,∞] is called a partial modular b−metric (briefly PMbM ) on X if the following conditions
hold for all –λ, ℏ, z ∈ X,(
ϖ

pb

1

)
ϖ

pb
λ (–λ, –λ) = ϖpb

µ (–λ, –λ) and ϖpb
λ (–λ, –λ) = ϖpb

λ (ℏ, ℏ) = ϖpb
λ (–λ, ℏ)⇔ –λ = ℏ,(

ϖ
pb

2

)
ϖ

pb
λ (–λ, –λ) ≤ ϖpb

λ (–λ, ℏ), for all λ > 0,(
ϖ

pb

3

)
ϖ

pb
λ (–λ, ℏ) = ϖpb

λ (ℏ, –λ), for all λ > 0,(
ϖ

pb

4

)
ϖ

pb
λ+µ (–λ, ℏ) ≤ ρ

[
ϖ

pb
λ (–λ, z) +ϖpb

µ (z, ℏ)
]
−ϖ

pb
λ (z, z), for all λ, µ > 0.

Then,
(
X, ϖ

pb
λ

)
= Xϖpb is called a partial modular b −MS which indicates PMbMS .

Definition 1.4. [26] Let ϖpb be a PMbM on a set X. For given –λ0 ∈ X, we define

• Xϖpb (–λ0) =
{
–λ ∈ X : lim

λ→∞
ϖ

pb
λ (–λ0, –λ) = c

}
, for some c ≥ 0 and

• X∗
ϖpb (–λ0) =

{
–λ ∈ X : ∃ λ = λ (–λ) > 0, ϖpb

λ (–λ0, –λ) < ∞
}
.

Then, two sets Xϖpb and X∗
ϖpb are called PMbMS centered at –λ0.

It is clear that a partial modular MS and PMbMS coincide in the case of ρ = 1, and every modular
b −MS is a PMbMS with the same coefficient and zero self-distance. However, the converse of these
facts need not hold in general.

Because a PMbM is a partial modular when ρ = 1, the PMbMS class is more significant than that of
partial modular MS.

Now, we derive different examples, which evidently hold the conditions of this newly enunciated
generalized MS.

Example 1.5. Let X = R and ϖpb : (0,∞) × X × X→ [0,∞] be defined by, for all –λ, ℏ ∈ X,

ϖ
pb
λ (–λ, ℏ) = e−λ|–λ − ℏ|2 + |–λ| + |ℏ| , ∀λ > 0.

Then, ϖpb is a PMbM on X with the coefficient ρ = 2.
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Example 1.6. Let X = R and ϖpb : (0,∞) × X × X→ [0,∞] be defined by for all –λ, ℏ ∈ X

ϖ
pb
λ (–λ, ℏ) =

|–λ − ℏ|2

λ + |–λ − ℏ|2
, ∀λ > 0.

Then, ϖpb is a PMbM on X with the coefficient ρ = 2.

To get acquainted with different notions and concepts within the structure of PMbMS , such as
completeness, convergence, etc., we refer to [26].

Lemma 1.7. [26] Let ϖpb be a PMbM on a nonempty set X. Define

ωλ (–λ, ℏ) = 2ϖpb
λ (–λ, ℏ) −ϖpb

λ (–λ, –λ) −ϖpb
λ (ℏ, ℏ) . (1.1)

Then, ω is a modular b−metric on X.

Lemma 1.8. [26] Let ϖpb be a PMbM on X and
{
–λϱ

}
ρ∈N

be a sequence in X∗
ϖpb . Then:

(i)
{
–λϱ

}
n∈N

is aϖpb−Cauchy sequence in the PMbMS X∗
ϖpb ⇔ it is an ω−Cauchy sequence in modular

b −MS X∗ω induced by PMbMS ϖpb .
(ii) A PMbMS X∗

ϖpb isϖpb−complete⇔ the modular b−MS X∗ω induced by PMbMS ϖpb isω−complete.
Furthermore,

lim
n→∞
ωλ

(
–λϱ, –λ

)
= 0⇔ lim

n→∞

[
2ϖpb
λ

(
–λϱ, –λ

)
−ϖ

pb
λ

(
–λϱ, –λϱ

)
−ϖ

pb
λ (–λ, –λ)

]
= 0.

(iii)
{
–λϱ

}
ρ∈N

is called ϖpb−convergent to –λ∗ ∈ X∗
ϖpb ⇔ lim

n→∞
ϖ

pb
λ

(
–λϱ, –λ∗

)
= lim

n,m→∞
ϖ

pb
λ

(
–λϱ, –λm

)
=

ϖ
pb
λ (–λ∗, –λ∗) ,∀λ > 0, as n→ ∞.

During the subsequent analysis, we employed auxiliary functions to get a broader range of outcomes
in the field of fixed point theory. Proinov [27] recently presented a new fixed point theorem by adding
auxiliary functions. This theorem has led to the discovery of several significant findings.

Theorem 1.9. [27] Let G : X → X be a self-map on a complete MS (X, d). Presume that ∀ –λ, ℏ ∈ X,
d (G–λ,Gℏ) > 0, and the following condition

ℸ (d (G–λ,Gℏ)) ≤ Γ (d (–λ, ℏ))

is met, where ℸ,Γ : (0,∞)→ R are two functions that fulfill the below axioms:

(℘1) ℸ is nondecreasing,
(℘2) Γ (ℓ) < ℸ (ℓ) for all ℓ > 0,
(℘3) lim sup

ℓ→ℓ0+

Γ (ℓ) < ℸ (ℓ0+) for any ℓ0 > 0.

Then, G is called a Proinov type contraction and admits a unique fixed point (UFP).

Because of its diverse applications, several FP results, including the Proinov type contraction, may
be found in the literature; see, for instance, the noteworthy articles [28–31].

On the other hand, in 2009, Suzuki [32] proved the below theorem and, subsequently, it was
mentioned as a Suzuki type contraction.
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Theorem 1.10. [32] Let G : X→ X be a self-map on a compact MS (X, d). If the expression

1
2

d (–λ,G–λ) < d (–λ, ℏ)⇒ d (G–λ,Gℏ) < d (–λ, ℏ)

is satisfied for all distinct –λ, ℏ ∈ X, then G owns a UFP.

Motivated by the diverse applications of Proinov type FP results and keeping in view the
applicability and adaptability of PMbMS in various computational and theoretical contexts, in this
article, we articulate Suzuki-type contraction and Proinov-type contraction in the realm of PMbMS .
We provide an illustrative example to uphold our results with an application to a system of Fredholm
integral equations.

2. Common fixed point results

This section is devoted to enunciating some novel common FP in the realm of partial-modular MS.
In order to demonstrate the subsequent FP outcomes in the sequel, two requirements must be met:

(Ξ1) ϖ
pb
λ (–λ,G–λ) < ∞ for all –λ > 0 where –λ ∈ X∗

ϖpb .

(Ξ2) ϖ
pb
λ (–λ, ℏ) < ∞ for all –λ > 0 where –λ, ℏ ∈ X∗

ϖpb .

Now, we establish some common FP theorems considering Suzuki contraction and Proinov type
contraction in the context of PMbMS .

Theorem 2.1. Let X∗
ϖpb be a ϖpb−complete PMbMS with ρ ≥ 1 and G,R : X∗

ϖpb → X
∗

ϖpb be self-maps.
If the underneath axioms are contended:

(i) For all –λ, ℏ ∈ X∗
ϖpb and all λ > 0 with ϖpb

λ (G–λ,RGℏ) > 0 such that

1
2ρ

min
{
ϖ

pb
λ (–λ,G–λ) , ϖpb

λ (Gℏ,RGℏ)
}
≤ ϖ

pb
λ (–λ,Gℏ)

implies

ℸ
(
ρ3ϖ

pb
λ (G–λ,RGℏ)

)
≤ Γ


χ
(
ϖ

pb
λ (–λ,Gℏ)

)
max



ϖ
pb
λ (–λ,Gℏ) , ϖpb

λ (–λ,G–λ) ,

ϖ
pb
λ (Gℏ,RGℏ) ,

ϖ
pb
2λ(–λ,RGℏ)+ϖ

pb
2λ(Gℏ,G–λ)

2ρ




, (2.1)

where χ : P̄ → R+ is upper semicontinuous on P̄ :=
{
ϖ

pb
λ (–λ, ℏ) : –λ, ℏ ∈ X∗

ϖpb

}
, χ (t ) < t for each

t ∈ P̄, and the functions ℸ,Γ : (0,∞)→ R are fulfill the following circumstances:

(c1) ℸ is lower semicontinuous and nondecreasing;
(c2) Γ (ℓ) < ℸ (ℓ) for all ℓ > 0;
(c3) lim sup

ℓ→ℓ0+

Γ (ℓ) < ℸ (ℓ0+) for any ℓ0 > 0.

(ii) The mapping G is continuous.
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So, G and R own a common FP provided that the (Ξ1) is met. Furthermore, by (Ξ2), G and R possess
a common UFP.

Proof. Let –λ0 ∈ X
∗

ϖpb . Then, there exists –λ1 ∈ X
∗

ϖpb such that –λ1 = G–λ0. Likewise, there exists –λ2 ∈ X
∗

ϖpb

such that –λ2 = R–λ1. By proceeding in this line, we constitute a sequence
{
–λϱ

}
ϱ∈N

in X∗
ϖpb featured

–λ2ϱ+1 = G–λ2ϱ and –λ2ϱ+2 = R–λ2ϱ+1.

Presume that ϖpb
λ

(
–λϱ, –λϱ+1

)
= 0 for some ϱ ∈ N and for all λ > 0. Without loss of generality, if we

consider ϱ = 2k for some k ∈ N, then we achieve ϖpb
λ (–λ2k, –λ2k+1) = 0 for all λ > 0. So, assume that

ϖ
pb
λ (–λ2k+1, –λ2k+2) > 0, and we have

1
2ρ

min
{
ϖ

pb
λ (–λ2k,G–λ2k) , ϖ

pb
λ (G–λ2k,RG–λ2k)

}
≤ ϖ

pb
λ (–λ2k,G–λ2k) ,

which implies, by (2.1), that

ℸ
(
ρ3ϖ

pb
λ (G–λ2k,RG–λ2k)

)
≤ Γ

(
χ
(
ϖ

pb
λ (–λ2k,G–λ2k)

)
max

{
ϖ

pb
λ (–λ2k,G–λ2k) ,

ϖ
pb
λ (–λ2k,G–λ2k) , ϖ

pb
λ (G–λ2k,RG–λ2k) ,

ϖ
pb
2λ(–λ2k ,RG–λ2k)+ϖ

pb
2λ(G–λ2k ,G–λ2k)

2ρ

})
.

Let ηk = ϖ
pb
λ (–λk, –λk+1). Thereby, the above inequality becomes

ℸ
(
ρ3η2k+1

)
≤ Γ

χ (η2k) max

η2k, η2k+1,
ϖ

pb

2λ (–λ2k, –λ2k+2) +ϖpb

2λ (–λ2k+1, –λ2k+1)
2ρ


 .

Utilizing the fact that ϖpb

2λ (–λ2k, –λ2k+2) ≤ ρ (η2k + η2k+1) and since η2k = ϖ
pb
λ (–λ2k, –λ2k+1) = 0, we achieve

max
{
0, η2k+1,

η2k+1

2

}
= η2k+1.

Hence, by using (c2), we conclude that

ℸ
(
ρ3η2k+1

)
≤ Γ (χ (0) η2k+1) < ℸ (χ (0) η2k+1) .

Considering the property of (c2), we get

η2k+1 ≤ ρ
3η2k+1 < χ (0) η2k+1,

which causes a contradictory situation because of χ (0) < 1.
Consequently, we procure η2k+1 = 0, i.e., –λ2k+1 = –λ2k+2. Thus, –λ2k = –λ2k+1 = –λ2k+2 and –λ2k = G–λ2k =

R–λ2k are met and this results in –λ2k being a common FP of G and R. Henceforth, we also assume that
–λϱ , –λϱ+1. Hence, taking into consideration the above fact, by (2.1) and (c2), we arrive at

ℸ
(
ρ3η2ϱ+1

)
≤ Γ

(
χ
(
η2ϱ

)
max

{
η2ϱ, η2ϱ, η2ϱ+1,

η2ϱ+η2ϱ+1

2

})
= Γ

(
χ
(
η2ϱ

)
max

{
η2ϱ, η2ϱ+1

})
< ℸ

(
χ
(
η2ϱ

)
max

{
η2ϱ, η2ϱ+1

})
.
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Also, taking the properties of ℸ into account, the above inequality turns into

ρ3η2ϱ+1 < χ
(
η2ϱ

)
max

{
η2ϱ, η2ϱ+1

}
. (2.2)

If max
{
η2ϱ, η2ϱ+1

}
= η2ϱ+1, then (2.2) becomes

η2ϱ+1 ≤ ρ
3η2ϱ+1 < χ

(
η2ϱ

)
η2ϱ+1 < η2ϱ+1,

and this causes a contradiction. Then, max
{
η2ϱ, η2ϱ+1

}
must be equal to η2ϱ. Hence, from (2.2), we

achieve
ℸ
(
η2ϱ+1

)
≤ ℸ

(
ρ3η2ϱ+1

)
≤ Γ

(
χ
(
η2ϱ

)
η2ϱ

)
< ℸ

(
χ
(
η2ϱ

)
η2ϱ

)
, (2.3)

for all ϱ ∈ N. Again, by considering the property (c1), the inequality (2.3) becomes

η2ϱ+1 < χ
(
η2ϱ

)
η2ϱ < η2ϱ.

Similarly, one can conclude that η2ϱ < η2ϱ−1. Thereby, we guarantee that
{
ηϱ

}
ϱ∈N
=

{
ϖ

pb
λ

(
–λϱ, –λϱ+1

)}
ϱ∈N

is a nonincreasing sequence of nonnegative real numbers. Also, a similar consequence can be obtained
when k is an odd number. Then, there exists p ≥ 0 such that lim

ϱ→∞
ηϱ = p. Assume, on the contrary, we

aim to demonstrate that p > 0. Then, by (2.3), we have

ℸ (p) = lim
ϱ→∞
ℸ
(
η2ϱ+1

)
≤ lim sup

ϱ→∞

Γ
(
χ
(
η2ϱ

)
η2ϱ

)
< lim sup

ℓ→p
ℸ (χ (ℓ) ℓ) ≤ lim sup

ℓ→p
ℸ (ℓ) ,

such that this contradicts with the assumption (c3). Then, we notice that our assumption is false, that
is, for all λ > 0,

lim
ϱ→∞
ϖ

pb
λ

(
–λϱ, –λϱ+1

)
= 0. (2.4)

By the second condition of Definition 1.3, we derive that

lim
ϱ→∞
ϖ

pb
λ

(
–λϱ, –λϱ

)
≤ lim
ϱ→∞
ϖ

pb
λ

(
–λϱ, –λϱ+1

)
= 0.

Thus, taking Lemma 1.7 into account, for all ϱ,m ≥ 1, we obtain

lim
ϱ→∞
ωλ

(
–λm, –λϱ

)
= 2 lim

ϱ→∞
ϖ

pb
λ

(
–λm, –λϱ

)
− lim
ϱ→∞
ϖ

pb
λ (–λm, –λm) − lim

ϱ→∞
ϖ

pb
λ

(
–λϱ, –λϱ

)
,

such that
lim
ϱ→∞
ωλ

(
–λm, –λϱ

)
= 2 lim

ϱ→∞
ϖ

pb
λ

(
–λm, –λϱ

)
. (2.5)

In the next step, we show that
{
–λϱ

}
ϱ∈N

is a ϖpb− Cauchy sequence in X∗
ϖpb . For this, it is necessary to

prove that
{
–λϱ

}
ϱ∈N

is a ω− Cauchy sequence in X∗ω (see Lemma 1.11). Suppose, on the contrary, that{
–λϱ

}
ϱ∈N

is not a ω− Cauchy sequence. Then, there exists ε > 0 for which we can find two sequences{
–λ2mq

}
and

{
–λ2ϱq

}
that can be constructed of positive integers satisfying mq > ϱq > q such that

ω4λ

(
–λ2ϱq , –λ2mq

)
≥ ε (2.6)
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for all λ > 0, which yields that ω2λ

(
–λ2ϱq , –λ2mq

)
≥ ε. Also, let mq be the smallest index satisfying the

above condition such that
ωλ

(
–λ2ϱq , –λ2mq−2

)
< ε. (2.7)

Then, by using (2.4) and (2.6), we get

ε ≤ ω4λ

(
–λ2ϱq , –λ2mq

)
≤ ρω2λ

(
–λ2ϱq , –λ2ϱq+1

)
+ ρ2ωλ

(
–λ2ϱq+1, –λ2mq+2

)
+ρ3ωλ/2

(
–λ2mq+2, –λ2mq+1

)
+ ρ3ωλ/2

(
–λ2mq+1, –λ2mq

)
,

such that
lim sup

q→∞
ωλ

(
–λ2ϱq+1, –λ2mq+2

)
≥
ε

ρ2 . (2.8)

Likewise, we have

ωλ
(
–λ2ϱq , –λ2mq+1

)
≤ ρωλ/2

(
–λ2ϱq , –λ2mq−2

)
+ ρ2ωλ/4

(
–λ2mq−2, –λ2mq−1

)
+ρ3ωλ/8

(
–λ2mq−1, –λ2mq

)
+ ρ3ωλ/8

(
–λ2mq , –λ2mq+1

)
,

such that
lim sup

q→∞
ωλ

(
–λ2ϱq , –λ2mq+1

)
≤ ρε. (2.9)

Similarly, considering the property of triangular inequality, we obtain

ωλ
(
–λϱq , –λmq+2

)
≤ ρω λ

2

(
–λϱq , –λmq+1

)
+ ρω λ

2

(
–λmq+1, –λmq+2

)
,

and
ωλ

(
–λmq+1, –λϱq+1

)
≤ ρω λ

2

(
–λmq+1, –λmq

)
+ ρω λ

2

(
–λmq , –λϱq+1

)
.

By means of (2.4) and (2.9), we conclude that

lim sup
q→∞

ωλ
(
–λmq , –λϱq+2

)
= lim sup

q→∞
ωλ

(
–λmq+1, –λϱq+1

)
≤ ρ2ε. (2.10)

On the other hand, by using (2.5), if we apply it to (2.8)–(2.10), we attain the following:

lim sup
q→∞

ϖ
pb
λ

(
–λ2ϱq+1, –λ2mq+2

)
≥
ε

2ρ2 , (2.11)

lim sup
q→∞

ϖ
pb
λ

(
–λ2ϱq , –λ2mq+1

)
≤
ρε

2
, (2.12)

lim sup
q→∞

ϖ
pb
λ

(
–λmq , –λϱq+2

)
= lim sup

q→∞
ϖ

pb
λ

(
–λmq+1, –λϱq+1

)
≤
ρ2ε

2
. (2.13)

For a sufficiently large q ∈ N, if mq > ϱq > q, we infer

1
2ρ

min
{
ϖ

pb
λ

(
–λ2ϱq ,G–λ2ϱq

)
, ϖ

pb
λ

(
G–λ2mq ,RG–λ2mq

)}
≤ ϖ

pb
λ

(
–λ2ϱq ,G–λ2mq

)
. (2.14)
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Given the fact that ϱq > mq and the sequence
{
ϖ

pb
λ

(
–λϱ, –λϱ+1

)}
ϱ≥1

is nondecreasing, we acquire

ϖ
pb
λ

(
G–λ2mq ,RG–λ2mq

)
= ϖ

pb
λ

(
–λ2mq+1, –λ2mq+2

)
≤ ϖ

pb
λ

(
–λ2ϱq+1, –λ2ϱq+2

)
≤ ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
= ϖ

pb
λ

(
–λ2ϱq ,G–λ2ϱq

)
.

Hence,

1
2ρ min

{
ϖ

pb
λ

(
–λ2ϱq ,G–λ2ϱq

)
, ϖ

pb
λ

(
G–λ2mq ,RG–λ2mq

)}
= 1

2ρϖ
pb
λ

(
G–λ2mq ,RG–λ2mq

)
= 1

2ρϖ
pb
λ

(
–λ2mq+1, –λ2mq+2

)
.

According to (2.4), there exists q1 ∈ N such that for any q > q1,

ϖ
pb
λ

(
–λ2mq+1, –λ2mq+2

)
<
ε

2ρ
.

Also, there exists q2 ∈ N such that for any q > q2,

ϖ
pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
<
ε

2ρ
.

Therefore, for any q > max {q1, q2} and mq > ϱq > q, we have

ε ≤ ϖ
pb

2λ

(
–λ2ϱq , –λ2mq

)
≤ ρϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

)
+ ρϖ

pb
λ

(
–λ2mq+1, –λ2mq+2

)
≤ ρϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

)
+ ρ ε2ρ .

So, one concludes that
ε

2ρ
≤ ϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

)
.

Thus, we deduce that for any q > max {q1, q2} and ϱq > mq > q,

ϖ
pb
λ

(
–λ2mq+1, –λ2mq+2

)
<
ε

2ρ
≤ ϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

)
,

that is, the expression (2.14) is proved. Therefore, from (2.1), we have

ℸ
(
ρ3ϖ

pb
λ

(
G–λ2ϱq ,RG–λ2mq

))
≤ Γ


χ
(
ϖ

pb
λ

(
–λ2ϱq ,G–λ2mq

))
max

{
ϖ

pb
λ

(
–λ2ϱq ,G–λ2mq

)
, ϖ

pb
λ

(
–λ2ϱq ,G–λ2ϱq

)
,

ϖ
pb
λ

(
G–λ2mq ,RG–λ2mq

)
,
ϖ

pb
2λ(–λ2ϱq ,RG–λ2mq)+ϖpb

2λ(G–λ2mq ,G–λ2ϱq)
2ρ

}


= Γ


χ
(
ϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

))
max

{
ϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

)
, ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
,

ϖ
pb
λ

(
–λ2mq+1, –λ2mq+2

)
,
ϖ

pb
2λ(–λ2ϱq ,–λ2mq+2)+ϖpb

2λ(–λ2mq+1,–λ2ϱq+1)
2ρ

}
 .

(2.15)
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Thereupon, if we pass to the limit superior in (2.15), and using (2.11)–(2.13), we conclude that

ℸ
(
ρε

2

)
≤ lim sup

q→∞
ℸ
(
ρ3ϖ

pb
λ

(
–λ2ϱq+1, –λ2mq+2

))

≤ lim sup
q→∞

Γ


χ
(
ϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

))
max

{
ϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

)
, ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
,

ϖ
pb
λ

(
–λ2mq+1, –λ2mq+2

)
,
ϖ

pb
2λ(–λ2ϱq ,–λ2mq+2)+ϖpb

2λ(–λ2mq+1,–λ2ϱq+1)
2ρ

}


< ℸ

lim sup
q→∞


χ
(
ϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

))
max

{
ϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

)
, ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
,

ϖ
pb
λ

(
–λ2mq+1, –λ2mq+2

)
,
ϖ

pb
2λ(–λ2ϱq ,–λ2mq+2)+ϖpb

2λ(–λ2mq+1,–λ2ϱq+1)
2ρ

}



≤ ℸ

(
χ
(
ρε

2

)
max

{
ρε, 0, 0,

ρ2ε
2 +

ρ2ε
2

2ρ

})
< ℸ

(
ρε

2

)
,

which results in a contradiction. Consequently, it yields that
{
–λϱ

}
ϱ∈N

is a ω−Cauchy sequence in X∗ω.

By Lemma 1.8 (i),
{
–λϱ

}
ϱ∈N

is also a ϖpb− Cauchy sequence in X∗
ϖpb . Since X∗

ϖpb is a ϖpb−complete
PMbMS , by Lemma 1.8 (ii), X∗ω is also a ω−complete modular b−MS. Thus, there exists –λ∗ ∈ X∗ω such
that –λϱ → –λ∗, that is, lim

ρ→∞
ωλ

(
–λϱ, –λ∗

)
= 0. By Lemma 1.8 (iii), we get

lim
ρ→∞
ϖ

pb
λ

(
–λϱ, –λ∗

)
= ϖ

pb
λ (–λ∗, –λ∗) = lim

ρ,m→∞
ϖ

pb
λ

(
–λϱ, –λm

)
, ∀λ > 0. (2.16)

Because lim
ρ,m→∞

ϖ
pb
λ

(
–λϱ, –λm

)
= 0, we get ϖpb

λ (–λ∗, –λ∗) = 0. Thus, the sequence
{
–λϱ

}
ϱ∈N

converges to –λ∗ in

X∗
ϖpb . If G is a continuous mapping, then we have

ϖ
pb
λ (–λ∗,G–λ∗) = lim

ϱ→∞
ϖ

pb
λ

(
–λ2ϱ,G–λ2ϱ

)
= 0 = lim

ϱ→∞
ϖ

pb
λ

(
–λ2ϱ, –λ2ϱ+1

)
,

which implies that –λ∗ is the FP of G. Assuming –λ∗ , R–λ∗, i.e., ϖpb
λ (–λ∗,R–λ∗) > 0, we obtain,

considering (2.1),

1
2ρ

min
{
ϖ

pb
λ (–λ∗,G–λ∗) , ϖpb

λ (G–λ∗,RG–λ∗)
}
≤ ϖ

pb
λ (–λ∗,G–λ∗) ,

which yields that

ℸ
(
ρ3ϖ

pb
λ (G–λ∗,RG–λ∗)

)
≤ Γ

χ (ϖpb
λ (–λ∗,G–λ∗)

)
max


ϖ

pb
λ (–λ∗,G–λ∗) , ϖpb

λ (–λ∗,G–λ∗) , ϖpb
λ (G–λ∗,RG–λ∗)

ϖ
pb
2λ(–λ∗,RG–λ∗)+ϖ

pb
2λ(G–λ∗,G–λ∗)

2ρ


 .
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Thus, the subsequent statement is derived. However, it represents a contradiction.

ℸ
(
ρ3ϖ

pb
λ (–λ∗,R–λ∗)

)
≤ Γ

(
χ (0) max

{
0, 0, ϖpb

λ (–λ∗,R–λ∗) , ϖ
pb
2λ(–λ∗,R–λ∗)

2ρ

})
≤ Γ

(
χ (0)ϖpb

λ (–λ∗,R–λ∗)
)

< ℸ
(
ϖ

pb
λ (–λ∗,R–λ∗)

)
,

that is, –λ∗ = R–λ∗. Hence, –λ∗ is a common FP of the mappings G and R when the mapping G is
continuous.

In conclusion, let us choose –λ∗ and –λ∗1 to be two distinct common FPs of G and R. We conclude
ϖ

pb
λ

(
G–λ∗,RG–λ∗1

)
= ϖ

pb
λ

(
–λ∗, –λ∗1

)
> 0 and, also,

0 =
1

2ρ
min{ϖpb

λ (–λ∗,G–λ∗) , ϖpb
λ

(
G–λ∗1,RG–λ∗1

)
} ≤ ϖ

pb
λ

(
–λ∗,G–λ∗1

)
= ϖ

pb
λ

(
–λ∗, –λ∗1

)
.

Utilizing (2.1), we infer

ℸ
(
ρ3ϖ

pb
λ

(
G–λ∗,RG–λ∗1

))
≤ Γ

(
χ
(
ϖ

pb
λ

(
–λ∗,G–λ∗1

))
max

{
ϖ

pb
λ

(
–λ∗,G–λ∗1

)
,

ϖ
pb
λ (–λ∗,G–λ∗) , ϖpb

λ

(
G–λ∗1,RG–λ∗1

)
,
ϖ

pb
2λ(–λ∗,RG–λ∗1)+ϖ

pb
2λ(G–λ∗1,G–λ∗)

2ρ

})
.

It follows that

ℸ
(
ρ3ϖ

pb
λ

(
–λ∗, –λ∗1

))
≤ Γ

(
χ
(
ϖ

pb
λ

(
–λ∗, –λ∗1

))
max

{
ϖ

pb
λ

(
–λ∗, –λ∗1

)
, 0, 0, ϖ

pb
2λ(–λ∗,–λ∗1)
ρ

})
≤ Γ

(
χ
(
ϖ

pb
λ

(
–λ∗, –λ∗1

))
ϖ

pb
λ

(
–λ∗, –λ∗1

))
< ℸ

(
ϖ

pb
λ

(
–λ∗, –λ∗1

))
,

which is a contradiction, so we have –λ∗ = –λ∗1. This authenticates the uniqueness of the common FP of
G and R. □

Theorem 2.2. Presume that all the conditions of Theorem 2.1 are held without G being continuous.
Then, the mappings G and R own a unique common FP.

Proof. As in the proof of Theorem 2.1, we say that the sequence
{
–λϱ

}
ϱ∈N

is aϖpb− Cauchy sequence in
X∗
ϖpb and there exists –λ∗ ∈ X∗

ϖpb such that –λϱ → –λ∗. If for infinite values ϱ ∈ N, G–λ2ϱ = G–λ∗, we arrive at

–λ∗ = lim
ϱ→∞

–λ2ϱ+1 = lim
ϱ→∞
G–λ2ϱ = G–λ∗,

thereby by proving –λ∗ to be FP of G. Since G–λ2ϱ = G–λ∗ = –λ∗, we conclude that RG–λ2ϱ = R–λ2ϱ+1 = R–λ∗

and also get
–λ∗ = lim

ϱ→∞
–λ2ϱ+2 = lim

ϱ→∞
R–λ2ϱ+1 = R–λ∗.
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Thus, R admits an FP viz. –λ∗.
Now, assume that –λ2ϱ+2 , G–λ∗ ∀ ϱ ∈ N. To prove –λ∗ = G–λ∗, let one of the subsequent inequalities

hold:
1

2ρ
ϖ

pb
λ

(
–λ2ϱ+1, –λ2ϱ+2

)
≤ ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

)
, (2.17)

or
1

2ρ
ϖ

pb
λ

(
–λ2ϱ+2, –λ2ϱ+3

)
≤ ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

)
. (2.18)

Unlike if, for some ϱ0 ≥ 0, both of them are not provided, that is,

1
2ρ
ϖ

pb
λ

(
–λ2ϱ+1, –λ2ϱ+2

)
≥

1
2ρ
ϖ

pb

2λ

(
–λ2ϱ+1, –λ2ϱ+2

)
> ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

)
,

or
1

2ρ
ϖ

pb
λ

(
–λ2ϱ+2, –λ2ϱ+3

)
≥

1
2ρ
ϖ

pb

2λ

(
–λ2ϱ+2, –λ2ϱ+3

)
> ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

)
.

Hence, using (2.17) and (2.18), we conclude that

ϖ
pb

2λ

(
–λ2ϱ0+1, –λ2ϱ0+2

)
≤ ρϖ

pb
λ

(
–λ2ϱ0+1, –λ∗

)
+ ρϖ

pb
λ

(
–λ∗, –λ2ϱ0+2

)
−ϖ

pb
λ (–λ∗, –λ∗)

< 1
2ϖ

pb

2λ

(
–λ2ϱ0+1, –λ2ϱ0+2

)
+ 1

2ϖ
pb

2λ

(
–λ2ϱ0+2, –λ2ϱ0+3

)
< 1

2ϖ
pb

2λ

(
–λ2ϱ0+1, –λ2ϱ0+2

)
+ 1

2ϖ
pb

2λ

(
–λ2ϱ0+1, –λ2ϱ0+2

)
= ϖ

pb

2λ

(
–λ2ϱ0+1, –λ2ϱ0+2

)
,

such that a contradictory situation arises, which causes our assertion to be true. Then, we refer to the
following two cases.

Case (i): The inequality (2.17) satisfies for infinitely many ϱ ≥ 0. In this case, for infinitely many ϱ ≥ 0,
we have

1
2ρ min

{
ϖ

pb
λ (–λ∗,G–λ∗) , ϖpb

λ

(
G–λ2ϱ,RG–λ2ϱ

)}
= 1

2ρ min
{
ϖ

pb
λ (–λ∗,G–λ∗) , ϖpb

λ

(
–λ2ϱ+1, –λ2ϱ+2

)}
≤ ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

)
.

Then, by (2.1), we get

ℸ
(
ρ3ϖ

pb
λ

(
G–λ∗,RG–λ2ϱ

))
≤ Γ

(
χ
(
ϖ

pb
λ

(
–λ∗,G–λ2ϱ

))
max

{
ϖ

pb
λ

(
–λ∗,G–λ2ϱ

)
,

ϖ
pb
λ (–λ∗,G–λ∗) , ϖpb

λ

(
G–λ2ϱ,RG–λ2ϱ

)
,
ϖ

pb
2λ(–λ∗,RG–λ2ϱ)+ϖpb

2λ(G–λ2ϱ,G–λ∗)
2ρ

})
and so, it implies that

ℸ
(
ρ3ϖ

pb
λ

(
G–λ∗, –λ2ϱ+2

))
≤ Γ

(
χ
(
ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

))
max

{
ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

)
,

ϖ
pb
λ (–λ∗,G–λ∗) , ϖpb

λ

(
–λ2ϱ+1, –λ2ϱ+2

)
,
ϖ

pb
2λ(–λ∗,–λ2ϱ+2)+ϖpb

2λ(–λ2ϱ+1,G–λ∗)
2ρ

})
.

(2.19)
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Then, considering the upper semicontinuity of χ, we achieve

lim
ϱ→∞

sup χ
(
ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

))
≤ χ (0) .

Hence, taking the upper limit as ϱ→ ∞ in (2.19),

ℸ
(
ρ3ϖ

pb
λ (G–λ∗, –λ∗)

)
≤ Γ

lim sup
ϱ→∞


χ
(
ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

))
max

{
ϖ

pb
λ

(
–λ∗, –λ2ϱ+1

)
, ϖ

pb
λ (–λ∗,G–λ∗) ,

ϖ
pb
λ

(
–λ2ϱ+1, –λ2ϱ+2

)
,
ϖ

pb
2λ(–λ∗,–λ2ϱ+2)+ϖpb

2λ(–λ2ϱ+1,G–λ∗)
2ρ

}



≤ Γ
(
χ (0)ϖpb

λ (–λ∗,G–λ∗)
)

< ℸ
(
χ (0)ϖpb

λ (–λ∗,G–λ∗)
)
,

is obtained. Since the mapping ℸ is nondecreasing, we get

ϖ
pb
λ (G–λ∗, –λ∗) ≤ ρ3ϖ

pb
λ (G–λ∗, –λ∗) ≤ χ (0)ϖpb

λ (–λ∗,G–λ∗) ,

which yields –λ∗ = G–λ∗.
Similarly, taking –λ2ϱ+1 , R–λ∗ ∀ ϱ ∈ N, we achieve R–λ∗ = –λ∗.

Case (ii): One can see that (2.17) merely holds for finite values ϱ ≥ 0. Consequently, ∃ ϱ0 ≥ 0
satisfies (2.18) for any ϱ ≥ ϱ0. As proved in Case (i), (2.18) also arrives at a contradiction unless
–λ∗ is a common FP of G and R. Thus, –λ∗ is the common FP of G and R in either of the cases. We can
use the same approach as demonstrated in the preceding theorem to achieve uniqueness concisely. □

Now, we present an example illustrating the usability of the main theorem.

Example 2.3. Let X∗
ϖpb = [0, 1] and ϖpb : (0,∞) × X × X→ [0,∞] be defined by

ϖ
pb
λ (–λ, ℏ) =


[max{–λ,ℏ}]2

λ+[max{–λ,ℏ}]2 , –λ , ℏ

0 , –λ = ℏ
,

for all –λ, ℏ ∈ X. Then, we conclude that ϖpb is a PMbM on X with the coefficient ρ = 2. Consider the
mappings G,R : X∗

ϖpb → X
∗

ϖpb by G–λ = –λ
8 and R–λ = 2–λ for all –λ ∈ X∗

ϖpb . Without loss of the generality,
we assume that –λ > ℏ ≥ 0. Thereupon, it is clear that ϖpb

λ (G–λ,RGℏ) = ϖpb
λ

(–λ
8 ,
ℏ
4

)
> 0 such that

1
2ρ min

{
ϖ

pb
λ (–λ,G–λ) , ϖpb

λ (Gℏ,RGℏ)
}
= 1

4 min
{
ϖ

pb
λ

(
–λ, –λ8

)
, ϖ

pb
λ

(
ℏ
8 ,
ℏ
4

)}
= 1

4 min
{

–λ2

λ+–λ2 ,
( ℏ4 )2

λ+( ℏ4 )2

}
= ℏ2

64λ+4ℏ2 ≤ ϖ
pb
λ

(
–λ, ℏ8

)
= –λ2

λ+–λ2
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implies

ℸ
(
ρ3ϖ

pb
λ (G–λ,RGℏ)

)
= ℸ

(
8ϖpb
λ

(–λ
8 ,
ℏ
4

))
= ℸ

(
8 (–λ

8 )2

λ+(–λ
8 )2

)
= ℸ

(
8–λ2

64λ+–λ2

)

≤ Γ


χ
(
ϖ

pb
λ (–λ,Gℏ)

)
max



ϖ
pb
λ (–λ,Gℏ) , ϖpb

λ (–λ,G–λ) ,

ϖ
pb
λ (Gℏ,RGℏ) ,

ϖ
pb
2λ(–λ,RGℏ)+ϖ

pb
2λ(Gℏ,G–λ)

2ρ





= Γ

χ
(
ϖ

pb
λ

(
–λ, ℏ8

))
max


ϖ

pb
λ

(
–λ, ℏ8

)
, ϖ

pb
λ

(
–λ, –λ8

)
, ϖ

pb
λ

(
ℏ
8 ,
ℏ
4

)
ϖ

pb
2λ(–λ, ℏ4 )+ϖpb

2λ( ℏ8 ,–λ8 )
4




= Γ

χ ( –λ2

λ+–λ2

)
max


–λ2

λ+–λ2 ,
ℏ2

16λ+ℏ2

1
4

( –λ2

2λ+–λ2 +
–λ2

128λ+–λ2

)



= Γ
(
χ
( –λ2

λ+–λ2

) –λ2

λ+–λ2

)
< ℸ

(
χ
( –λ2

λ+–λ2

) –λ2

λ+–λ2

)
.

Moreover, by the property (c1) and considering the features of χ : P̄→ R+, we yield that the inequality

8–λ2

64λ + –λ2 <
–λ2

λ + –λ2

holds for all –λ ∈ (0, 1]. Also, even if ℏ = 0, the result is still valid; that is, all of the conditions of
Theorem 2.1 are satisfied.

We achieve the following consequence by taking G = R in Theorem 2.1.

Corollary 2.4. Let X∗
ϖpb be aϖpb−complete PMbMS with ρ ≥ 1 andG : X∗

ϖpb → X
∗

ϖpb be a self-mapping.
For all –λ, ℏ ∈ X∗

ϖpb and all λ > 0 with ϖpb
λ

(
G–λ,G2ℏ

)
> 0 such that

1
2ρ
ϖ

pb
λ (–λ,G–λ) ≤ ϖpb

λ (–λ,Gℏ)

implies

ℸ
(
ρ3ϖ

pb
λ

(
G–λ,G2ℏ

))
≤ Γ

χ
(
ϖ

pb
λ (–λ,Gℏ)

)
max


ϖ

pb
λ (–λ,Gℏ) , ϖpb

λ (–λ,G–λ) , ϖpb
λ

(
Gℏ,G2ℏ

)
,

ϖ
pb
2λ(–λ,G2ℏ)+ϖpb

2λ(Gℏ,G–λ)
2ρ


 ,

χ : P̄ → R+ as upper semicontinuous on P̄ :=
{
ϖ

pb
λ (–λ, ℏ) : –λ, ℏ ∈ X∗

ϖpb

}
, and χ (t ) < t for each t ∈ P̄

and the functions ℸ,Γ : (0,∞) → R, which hold the features of (c1)–(c3). If G is continuous (not
necessary), then G admits a UFP in X∗

ϖpb , whenever the assumptions (Ξ1) and (Ξ2) are satisfied.
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Theorem 2.5. Consider X∗
ϖpb to be aϖpb−complete PMbMS with 1 ≤ ρ and G,R : X∗

ϖpb → X
∗

ϖpb be two
self-maps. If (i)–(iii) are contended:

(i) there exist α ∈ (0, 1) and the functions ℸ,Γ : (0,∞) → R, which have the properties of (c1)–(c3)
such that

1
2ρ

min
{
ϖ

pb
λ (–λ,G–λ) , ϖpb

λ (Gℏ,RGℏ)
}
≤ ϖ

pb
λ (–λ,Gℏ)

implies

ℸ
(
ρ3ϖ

pb
λ (G–λ,RGℏ)

)
≤ Γ

(
αmax

{
ϖ

pb
λ (–λ,Gℏ) , ϖ

pb
λ

(–λ,G–λ)+ϖpb
λ

(Gℏ,RGℏ)
2 ,

ϖ
pb
2λ(–λ,RGℏ)+ϖ

pb
2λ(Gℏ,G–λ)

2ρ

})
for all –λ, ℏ ∈ X∗

ϖpb and all λ > 0,
(ii) the mapping G is continuous,

(iii) the conditions (Ξ1) and (Ξ2) hold.

Then, G and R admit a unique common FP in X∗
ϖpb .

Proof. The proof can be completed on similar lines as followed in Theorem 2.1. □

Remark 2. Note that we can acquire other consequences by taking G = R in Theorem 2.5.

In what follows, we establish a new contraction mapping, which involves a quadratic term in the
setting of PMbMS .

Theorem 2.6. Let X∗
ϖpb be a ϖpb−complete PMbMS with ρ ≥ 1 and G,R : X∗

ϖpb → X
∗

ϖpb be two
self-maps. If the underneath conditions are contented:

(i) there exist α, β ≥ 0 with α + β < 1
ρ

such that

1
2ρ

min
{
ϖ

pb
λ (–λ,G–λ) , ϖpb

λ (ℏ,Rℏ)
}
≤ ϖ

pb
λ (–λ, ℏ)

implies

ℸ
(
ρ7ϖ2

λ (G–λ,Rℏ)
)
≤ Γ


α
[
ϖ

pb
λ (–λ,G–λ)ϖpb

λ (ℏ,Rℏ) + 1
ρ
ϖ

pb

2λ (–λ,Rℏ)ϖpb

2λ (ℏ,G–λ)
]

+β
[
ϖ

pb
λ (–λ,G–λ)ϖpb

2λ (ℏ,G–λ) + 1
ρ
ϖ

pb

2λ (–λ,Rℏ)ϖpb
λ (ℏ,Rℏ)

]
 (2.20)

for all –λ, ℏ ∈ X∗
ϖpb and all λ > 0 with ϖpb

λ (G–λ,Rℏ) > 0, where the functions ℸ,Γ : (0,∞) → R
hold the features of (c1)–(c3),

(ii) G is a mapping, which need not be continuous,
(iii) (Ξ1) and (Ξ2) are fulfilled.

Then, G and R admit a unique-common FP in X∗
ϖpb .

Proof. Let –λ0 ∈ X
∗

ϖpb be arbitrary, and ∃ –λ1 ∈ X
∗

ϖpb with –λ1 = G–λ0. Likewise, there exists –λ2 ∈ X
∗

ϖpb

such that –λ2 = R–λ1. Continuing in the same manner, we can set up a sequence
{
–λϱ

}
ϱ∈N

in X∗
ϖpb such that

–λ2ϱ+1 = G–λ2ϱ and –λ2ϱ+2 = R–λ2ϱ+1.
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Presume thatϖpb
λ

(
–λϱ, –λϱ+1

)
= 0, ∀ λ > 0. Now, taking ϱ = 2i for some i ∈ N yields intoϖpb

λ (–λ2i, –λ2i+1) =
0 for all λ > 0. So, we suppose ϖpb

λ (–λ2i+1, –λ2i+2) > 0. Due to the fact that

1
2ρ

min
{
ϖ

pb
λ (–λ2i,G–λ2i) , ϖ

pb
λ (–λ2i+1,R–λ2i+1)

}
≤ ϖ

pb
λ (–λ2i, –λ2i+1) ,

from (2.20), this implies that

ℸ
(
ρ7ϖ

pb
λ (G–λ2i,R–λ2i+1)2

)
≤ Γ



α


ϖ

pb
λ (–λ2i,G–λ2i)ϖ

pb
λ (–λ2i+1,R–λ2i+1)

+ 1
ρ
ϖ

pb

2λ (–λ2i,R–λ2i+1)ϖpb

2λ (–λ2i+1,G–λ2i)


+β


ϖ

pb
λ (–λ2i,G–λ2i)ϖ

pb

2λ (–λ2i+1,G–λ2i)

+ 1
ρ
ϖ

pb

2λ (–λ2i,R–λ2i+1)ϖpb
λ (–λ2i+1,R–λ2i+1)




.

Also, let ηi = ϖ
pb
λ (–λi, –λi+1). Then, we get

ℸ
(
ρ7η2i+1

2
)
≤ Γ

(
α
[
η2iη2i+1

]
+ β

[
1
ρ
ϖ

pb

2λ (–λ2i, –λ2i+2) η2i+1

])
.

Note that ϖpb

2λ (–λ2i, –λ2i+2) ≤ ρ (η2i + η2i+1) and as η2i = ϖ
pb
λ (–λ2i, –λ2i+1) = 0, by (c2), we obtain

ℸ
(
ρ7η2i+1

2
)
≤ Γ

(
βη2i+1

2
)
< ℸ

(
βη2i+1

2
)
.

In view of the property (c1), we determine ρ7η2i+1
2 < βη2i+1

2, a contradiction. Hence, –λ2i+1 = –λ2i+2 , we
obtain –λ2i = G–λ2i = R–λ2i. This ensures –λ2i is a common FP of G and R. In the rest of the analysis, we
suppose that –λϱ , –λϱ+1. Utilizing (2.20), we derive

ℸ
(
ρ7η2ϱ+1

2
)
≤ Γ

(
α
[
η2ϱη2ϱ+1

]
+ β

[(
η2ϱ + η2ϱ+1

)
η2ϱ+1

])
= Γ

([
α + β

]
η2ϱη2ϱ+1 + βη2ϱ+1

2
)
.

By using the features of (c1) and (c2), we deduce that

ρ7η2ϱ+1
2 < (α + β) η2ϱη2ϱ+1 + βη2ϱ+1

2,

hence (
ρ7 − β

)
η2ϱ+1 < (α + β) η2ϱ,

for all ϱ ∈ N. Since α + β < 1
ρ
, where ρ ≥ 1, we obtain ρ7 − β > 0, and so

η2ϱ+1 <

(
α + β

ρ7 − β

)
η2ϱ < η2ϱ.

Therefore, by following the same steps as in the proof of Theorem 2.1, the equality (2.4) is easily
achieved.
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Next, we will demonstrate that
{
–λϱ

}
ϱ∈N

is aϖpb− Cauchy sequence in X∗
ϖpb . Similarly, if we consider

the same steps as in Theorem 2.1, then we obtain (2.11) and (2.13). On the other hand, it is clear that
the inequality

1
2ρ

min
{
ϖ

pb
λ

(
–λ2ϱq ,G–λ2ϱq

)
, ϖ

pb
λ

(
–λ2mq+1,R–λ2mq+1

)}
≤ ϖ

pb
λ

(
–λ2ϱq , –λ2mq+1

)
is fulfilled. Then, from (2.20), we have

ℸ
(
ρ7ϖ

pb
λ

(
G–λ2ϱq ,R–λ2mq+1

)2
)
≤ Γ



α


ϖ

pb
λ

(
–λ2ϱq ,G–λ2ϱq

)
ϖ

pb
λ

(
–λ2mq+1,R–λ2mq+1

)
+ 1
ρ
ϖ

pb

2λ

(
–λ2ϱq ,R–λ2mq+1

)
ϖ

pb

2λ

(
–λ2mq+1,G–λ2ϱq

)


+β


ϖ

pb
λ

(
–λ2ϱq ,G–λ2ϱq

)
ϖ

pb

2λ

(
–λ2mq+1,G–λ2ϱq

)
+ 1
ρ
ϖ

pb

2λ

(
–λ2ϱq ,R–λ2mq+1

)
ϖ

pb
λ

(
–λ2mq+1,R–λ2mq+1

)




= Γ



α


ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
ϖ

pb
λ

(
–λ2mq+1, –λ2mq+2

)
+ 1
ρ
ϖ

pb

2λ

(
–λ2ϱq , –λ2mq+2

)
ϖ

pb

2λ

(
–λ2mq+1, –λ2ϱq+1

)


+β


ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
ϖ

pb

2λ

(
–λ2mq+1, –λ2ϱq+1

)
+ 1
ρ
ϖ

pb

2λ

(
–λ2ϱq , –λ2mq+2

)
ϖ

pb
λ

(
–λ2mq+1, –λ2mq+2

)



.

Hence, if we take the limit superior in the above inequality and consider the expressions (2.11)
and (2.13), together with the property of (c1), we gain

ℸ
(
ρ3ε2

4

)
= ℸ

(
ρ7

(
ε

2ρ2

)2
)
≤ lim sup

q→∞
ℸ
(
ρ7ϖ

pb
λ

(
–λ2ϱq+1, –λ2mq+2

)2
)

≤ lim sup
q→∞

Γ



α


ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
ϖ

pb
λ

(
–λ2mq+1, –λ2mq+2

)
+ 1
ρ
ϖ

pb

2λ

(
–λ2ϱq , –λ2mq+2

)
ϖ

pb

2λ

(
–λ2mq+1, –λ2ϱq+1

)


+β


ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
ϖ

pb

2λ

(
–λ2mq+1, –λ2ϱq+1

)
+ 1
ρ
ϖ

pb

2λ

(
–λ2ϱq , –λ2mq+2

)
ϖ

pb
λ

(
–λ2mq+1, –λ2mq+2

)



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< ℸ


lim sup

q→∞



α


ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
ϖ

pb
λ

(
–λ2mq+1, –λ2mq+2

)
+ 1
ρ
ϖ

pb

2λ

(
–λ2ϱq , –λ2mq+2

)
ϖ

pb

2λ

(
–λ2mq+1, –λ2ϱq+1

)


+β


ϖ

pb
λ

(
–λ2ϱq , –λ2ϱq+1

)
ϖ

pb

2λ

(
–λ2mq+1, –λ2ϱq+1

)
+ 1
ρ
ϖ

pb

2λ

(
–λ2ϱq , –λ2mq+2

)
ϖ

pb
λ

(
–λ2mq+1, –λ2mq+2

)





≤ ℸ

(
α
[

1
ρ

ρ2ε

2
ρ2ε

2

])
= ℸ

(
αρ

3ε2

4

)
.

Owing to α+β < 1
ρ
, the last inequality causes a contradiction, that is, we conclude that the sequence{

–λϱ
}
ϱ∈N

is a ϖpb− Cauchy sequence in X∗
ϖpb . Also, as in the proof of Theorem 2.1, considering the

Lemma 1.8 (ii-iii), we acquire that

lim
ρ→∞
ϖ

pb
λ

(
–λϱ, –λ∗

)
= ϖ

pb
λ (–λ∗, –λ∗) = lim

ρ,m→∞
ϖ

pb
λ

(
–λϱ, –λm

)
, ∀λ > 0

and
{
–λϱ

}
ϱ∈N

converges to –λ∗ in ϖpb−complete PMbMS X∗
ϖpb .

Now, if G is continuous, then we have

ϖ
pb
λ (–λ∗,G–λ∗) = lim

ϱ→∞
ϖ

pb
λ

(
–λ2ϱ,G–λ2ϱ

)
= lim
ϱ→∞
ϖ

pb
λ

(
–λ2ϱ, –λ2ϱ+1

)
= 0,

which implies that –λ∗ is a FP of G. Assume that –λ∗ , R–λ∗, that is, ϖpb
λ (–λ∗,R–λ∗) > 0. Then, because

1
2ρ

min
{
ϖ

pb
λ (–λ∗,G–λ∗) , ϖpb

λ (–λ∗,R–λ∗)
}
≤ ϖ

pb
λ (–λ∗, –λ∗) ,

from (2.20), we get

ℸ
(
ρ7ϖ

pb
λ (G–λ∗,R–λ∗)2

)
≤ Γ



α


ϖ

pb
λ (–λ∗,G–λ∗)ϖpb

λ (–λ∗,R–λ∗)

+ 1
ρ
ϖ

pb

2λ (–λ∗,R–λ∗)ϖpb

2λ (–λ∗,G–λ∗)


+β


ϖ

pb
λ (–λ∗,G–λ∗)ϖpb

2λ (–λ∗,G–λ∗)

+ 1
ρ
ϖ

pb

2λ (–λ∗,R–λ∗)ϖpb
λ (–λ∗,R–λ∗)




.

Note that 1
ρ
ϖ

pb

2λ (–λ∗,R–λ∗) ≤ ϖpb
λ (–λ∗,R–λ∗), and by using (c2), the above inequality turns into

ℸ
(
ρ7ϖ

pb
λ (–λ∗,R–λ∗)2

)
≤ Γ

(
β

[
1
ρ
ϖ

pb

2λ (–λ∗,R–λ∗)ϖpb
λ (–λ∗,R–λ∗)

])
< ℸ

(
βϖ

pb
λ (–λ∗,R–λ∗)2

)
,

such that this conclusion causes a contradiction due to α + β < 1
ρ
, i.e., –λ∗ = R–λ∗. Finally, for

the uniqueness, let –λ∗ and –λ∗1 be two distinct common FPs of G and R. Hence, ϖpb
λ

(
G–λ∗,R–λ∗1

)
=

ϖ
pb
λ

(
–λ∗, –λ∗1

)
> 0 and the expression

0 =
1

2ρ
min

{
ϖ

pb
λ (–λ∗,G–λ∗) , ϖpb

λ

(
–λ∗1,R–λ∗1

)}
≤ ϖ

pb
λ

(
–λ∗, –λ∗1

)
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implies from the inequality (2.20):

ℸ
(
ρ7ϖ

pb
λ

(
–λ∗, –λ∗1

)2
)
= ℸ

(
ρ7ϖ

pb
λ

(
G–λ∗,R–λ∗1

)2
)

≤ Γ



α


ϖ

pb
λ (–λ∗,G–λ∗)ϖpb

λ

(
–λ∗1,R–λ∗1

)
+ 1
ρ
ϖ

pb

2λ
(
–λ∗,R–λ∗1

)
ϖ

pb

2λ
(
–λ∗1,G–λ∗

)


+β


ϖ

pb
λ (–λ∗,G–λ∗)ϖpb

2λ
(
–λ∗1,G–λ∗

)
+ 1
ρ
ϖ

pb

2λ
(
–λ∗,R–λ∗1

)
ϖ

pb
λ

(
–λ∗1,R–λ∗1

)



= Γ

(
α
[

1
ρ
ϖ

pb

2λ
(
–λ∗, –λ∗1

)2
])
< ℸ

(
αϖ

pb
λ

(
–λ∗, –λ∗1

)2
)
.

This is a contradiction, that is, –λ∗ = –λ∗1. Consequently, it is asserted that the common fixed point of the
mappings G and R possesses uniqueness, concluding the proof. □

Theorem 2.7. In Theorem 2.6, if we ignore the continuity of G, then, under the same conditions, we
get a similar inference.

Proof. As in the proof of Theorem 2.6, we say that
{
–λϱ

}
ϱ∈N

is a ϖpb− Cauchy sequence in X∗
ϖpb and

there exists –λ∗ ∈ X∗
ϖpb such that –λϱ → –λ∗. Thus, if G–λ2ϱ = G–λ∗ for infinite values of ϱ ∈ N, then we

have
–λ∗ = lim

ϱ→∞
–λ2ϱ+1 = lim

ϱ→∞
G–λ2ϱ = G–λ∗.

This proves that –λ∗ is an FP of G. Since G–λ2ϱ = G–λ∗ = –λ∗, we conclude that RG–λ2ϱ = R–λ2ϱ+1 = R–λ∗.
Then, we get

–λ∗ = lim
ϱ→∞

–λ2ϱ+2 = lim
ϱ→∞
R–λ2ϱ+1 = R–λ∗,

which means that –λ∗ is an FP of R. We suppose that –λ2ϱ+2 , G–λ∗ for all ϱ ∈ N. Again, as in
Theorem 2.1, we have

1
2ρ

min
{
ϖ

pb
λ (–λ∗,G–λ∗) , ϖpb

λ

(
G–λ2ϱ,RG–λ2ϱ

)}
≤ ϖ

pb
λ

(
–λ∗,G–λ2ϱ

)
.

Hence, by (2.20), we obtain

ℸ
(
ρ7ϖ

pb
λ

(
G–λ∗,R–λ2ϱ+1

)2
)
≤ Γ



α


ϖ

pb
λ (–λ∗,G–λ∗)ϖpb

λ

(
–λ2ϱ+1,R–λ2ϱ+1

)
+ 1
ρ
ϖ

pb

2λ

(
–λ∗,R–λ2ϱ+1

)
ϖ

pb

2λ

(
–λ2ϱ+1,G–λ∗

)


+β


ϖ

pb
λ (–λ∗,G–λ∗)ϖpb

2λ

(
–λ2ϱ+1,G–λ∗

)
+ 1
ρ
ϖ

pb

2λ

(
–λ∗,R–λ2ϱ+1

)
ϖ

pb
λ

(
–λ2ϱ+1,R–λ2ϱ+1

)



,
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and so this implies that

ℸ
(
ρ7ϖ

pb
λ

(
G–λ∗, –λ2ϱ+2

)2
)
≤ Γ



α


ϖ

pb
λ (–λ∗,G–λ∗)ϖpb

λ

(
–λ2ϱ+1, –λ2ϱ+2

)
+ 1
ρ
ϖ

pb

2λ

(
–λ∗, –λ2ϱ+2

)
ϖ

pb

2λ

(
–λ2ϱ+1,G–λ∗

)


+β


ϖ

pb
λ (–λ∗,G–λ∗)ϖpb

2λ

(
–λ2ϱ+1,G–λ∗

)
+ 1
ρ
ϖ

pb

2λ

(
–λ∗, –λ2ϱ+2

)
ϖ

pb
λ

(
–λ2ϱ+1, –λ2ϱ+2

)



. (2.21)

Then, taking the limit as ϱ→ ∞ in (2.21) and using (c2), the following expression is acquired;

ℸ
(
ρ7ϖ

pb
λ (G–λ∗, –λ∗)2

)
≤ lim
ϱ→∞
Γ
(
β
[
ϖ

pb
λ (G–λ∗, –λ∗)

(
ρϖ

pb
λ

(
–λ2ϱ+1, –λ2ϱ+2

)
+ ρϖ

pb
λ

(
–λ2ϱ+2,G–λ∗

))])
< ℸ

(
lim
ϱ→∞

[
β
[
ϖ

pb
λ (G–λ∗, –λ∗)

(
ρϖ

pb
λ

(
–λ2ϱ+1, –λ2ϱ+2

)
+ ρϖ

pb
λ

(
–λ2ϱ+2,G–λ∗

))]])
≤ ℸ

(
βρϖ

pb
λ (G–λ∗, –λ∗)2

)
.

This means that G–λ∗ = –λ∗. Similarly, taking –λ2ϱ+1 , R–λ∗ for all ϱ ∈ N, we also attain R–λ∗ = –λ∗.
Consequently, –λ∗ is a common FP of G and R. □

The following result is procured in the case of G = R in Theorem 2.6.

Corollary 2.8. Let X∗
ϖpb be aϖpb−complete PMbMS with ρ ≥ 1 andG : X∗

ϖpb → X
∗

ϖpb be a self-mapping.
All –λ, ℏ ∈ X∗

ϖpb and all λ > 0 with ϖpb
λ (G–λ,Gℏ) > 0 such that

1
2ρ
ϖ

pb
λ (–λ,G–λ) ≤ ϖpb

λ (–λ, ℏ) (2.22)

implies

ℸ
(
ρ2ϖ2

λ (G–λ,Gℏ)
)
≤ Γ


α
[
ϖ

pb
λ (–λ,G–λ)ϖpb

λ (ℏ,Gℏ) + 1
ρ
ϖ

pb

2λ (–λ,Gℏ)ϖpb

2λ (ℏ,G–λ)
]

+β
[
ϖ

pb
λ (–λ,G–λ)ϖpb

2λ (ℏ,G–λ) + 1
ρ
ϖ

pb

2λ (–λ,Gℏ)ϖpb
λ (ℏ,Gℏ)

]
 , (2.23)

where the functions ℸ,Γ : (0,∞) → R are held the features of (c1)–(c3). If G is continuous (not
necessary), then under the conditions (Ξ1) and (Ξ2), G holds a UFP in X∗

ϖpb .

In the ensuing discussion, we aim to present an illustrative example demonstrating that the
prerequisites of Corollary 2.8 can be satisfied even in the absence of continuity in G.

Example 2.9. Let X = [0, 1] and define the PMbM by ϖpb
λ =

|–λ−ℏ|2
λ

. So, we clearly attain that X∗
ϖpb is a

ϖpb−complete PMbMS with ρ = 2. Also, we introduced a self-mapping G : X∗
ϖpb → X

∗

ϖpb as indicated
below:

G–λ =


0, if –λ = 1

–λ
2 , otherwise

.
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Upon careful analysis, it becomes apparent that the mapping denoted as G lacks continuity at the
point –λ = 1, given that G (1) = 0. Conversely, within the interval –λ ∈ [0, 1), the mapping G exhibits
continuous behavior, characterized by the relation G (–λ) = –λ

2 . Furthermore, it is pertinent to note
that all prerequisites stipulated in Corollary 2.8 have been satisfactorily fulfilled. In our forthcoming
analysis, we shall delve into two distinct scenarios. To facilitate a comprehensive discussion without
compromising generality, it is posited under the assumption that ℏ ≥ 2–λ.

Case 1: For –λ ∈
[
0, 1

2

)
and ℏ = 1, the inequality (2.22) becomes

1
4
ϖ

pb
λ

(
–λ,

–λ
2

)
=

–λ2

16λ
≤ ϖ

pb
λ (–λ, 1) =

|–λ − 1|2

λ
,

which holds for all –λ ∈
[
0, 1

2

)
. So, from the inequality (2.23), we get

ℸ
( –λ4

4λ2

)
= ℸ

(
4ϖpb
λ

(–λ
2 , 0

)2
)
≤ Γ


α
[
ϖ

pb
λ

(
–λ, –λ2

)
ϖ

pb
λ (1, 0) + 1

2ϖ
pb

2λ (–λ, 0)ϖpb

2λ

(
1, –λ2

)]
β
[
ϖ

pb
λ

(
–λ, –λ2

)
ϖ

pb

2λ

(
1, –λ2

)
+ 1

2ϖ
pb

2λ (–λ, 0)ϖpb
λ (1, 0)

]


≤ Γ


α
[ –λ2

4λ2 +
–λ2(2−–λ)2

8λ2

]
β
[–λ2(2−–λ)2

16λ2 +
–λ2

2λ2

]


< ℸ
(
(α + β)

[ –λ2

2λ2 +
–λ2(2−–λ)2

8λ2

])
,

which yields that –λ4

4λ2 < (α + β)
[

4–λ2+–λ2(2−–λ)2

8λ2

]
. Thereby, considering the fact that α + β < 1

2 , by simple

calculations, it is obvious that the inequality (2.23) is fulfilled for all –λ ∈
[
0, 1

2

)
with a sufficiently large

value of α + β.

Case 2: Let –λ, ℏ ∈ [0, 1). Then, from (2.22), the inequality

1
4
ϖ

pb
λ

(
–λ,

–λ
2

)
=

–λ2

16λ
≤
|–λ − ℏ|2

λ
= ϖ

pb
λ (–λ, ℏ)

is fulfilled because of ℏ ≥ 2–λ. So, we have

ℸ
(
|–λ−ℏ|4

4λ2

)
= ℸ

(
4ϖpb
λ

(–λ
2 ,
ℏ
2

)2
)
≤ Γ


α
[
ϖ

pb
λ

(
–λ, –λ2

)
ϖ

pb
λ

(
ℏ, ℏ2

)
+ 1

2ϖ
pb

2λ

(
–λ, ℏ2

)
ϖ

pb

2λ

(
ℏ, –λ2

)]
β
[
ϖ

pb
λ

(
–λ, –λ2

)
ϖ

pb

2λ

(
ℏ, –λ2

)
+ 1

2ϖ
pb

2λ

(
–λ, ℏ2

)
ϖ

pb
λ

(
ℏ, ℏ2

)]


≤ Γ


α
[–λ2ℏ2

16λ2 +
(2–λ−ℏ)2(2ℏ−–λ)2

32λ2

]
β
[–λ2(2ℏ−–λ)2

16λ2 +
(2–λ−ℏ)2ℏ2

32λ2

]


< ℸ
(
(α + β)

[–λ2ℏ2

16λ2 +
–λ2(2ℏ−–λ)2

16λ2

])
< ℸ

(
(α + β)

[
(2ℏ−–λ)4

8λ2

])
.
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Hence, considering the properties of ℸ, we conclude that the inequality |–λ−ℏ|4
4λ2 < (α + β)

[
(2ℏ−–λ)4

8λ2

]
is

satisfied for all –λ, ℏ ∈ [0, 1) with ℏ ≥ 2–λ and for the sufficiently closest value of α+β to 1
2 . Consequently,

despite the discontinuous to –λ = 1, the mapping G has a fixed point at –λ = 0.

3. An application to a system of Fredholm integral equations

This section aims to show that our results can be applied to the existence of a common solution in
the Fredholm integral equation system. Let us consider the following Fredholm integral equations:

–λ (t ) = φ (t ) +
b̂∫

â
K1 (t , s , –λ (s)) ds

ℏ (t ) = φ (t ) +
b̂∫

â
K2 (t , s , –λ (s)) ds

, (3.1)

where â, b̂ ∈ R with â < b̂, φ :
[
â, b̂

]
→ R, and –λ ∈ C

([
â, b̂

]
,R

)
and K1,K2 :

[
â, b̂

]
×
[
â, b̂

]
×R→ R are

given continuous mappings. Also, let X∗
ϖpb = C

([
â, b̂

]
,R

)
and defineϖpb : (0,∞) × X × X→ [0,∞] by

ϖ
pb
λ (–λ, ℏ) = e−λ|–λ (t ) − ℏ (t )|2 + |–λ (t )| + |ℏ (t )| ,

for all –λ, ℏ ∈ X∗
ϖpb and all λ > 0. Evidently, X∗

ϖpb is a ϖpb−complete PMbMS with the constant ρ = 2.
Furthermore, let G,G2 = G ◦ G : X∗

ϖpb → X
∗

ϖpb be defined by

G (–λ (t )) =

b̂∫
â

K1 (t , s , –λ (s)) ds ,

G2 (–λ (t )) =

b̂∫
â

K2 (t , s , –λ (s)) ds

for all –λ ∈ X∗
ϖpb and t ∈

[
â, b̂

]
.

Theorem 3.1. Consider the nonlinear integral equation (3.1). Presume that the following statements
are satisfied:

(i) K1,K2 :
[
â, b̂

]
×

[
â, b̂

]
× R→ R is continuous and nondecreasing in the third order,

(ii) for each t , s ∈
[
â, b̂

]
and –λ, ℏ ∈ X∗ϖ with –λ (r) ≤ ℏ (r) for all r ∈

[
â, b̂

]
, we have

|K1 (t , s , –λ (s)) −K2 (t , s , ℏ (s))| ≤ σ (t , s)
 |–λ (s) − Gℏ (s)|2 + eλ (|–λ (s)| + |Gℏ (s)|)
−64eλ

(
|G–λ (t )| +

∣∣∣G2ℏ (t )
∣∣∣)

 1
2

, (3.2)

where σ :
[
â, b̂

]
×

[
â, b̂

]
→ [0,∞) is a continuous function defined by

sup
t∈[â,b̂]


b̂∫

â

σ(t , s)2ds

 ≤ 1
64
. (3.3)
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Then, the system of integral equations (3.1) has a unique solution.

Proof. From (3.2) and (3.3), for all t ∈
[
â, b̂

]
, we have

ℸ
(
ρ3ϖ

pb
λ

(
G–λ,G2ℏ

))
= 16ϖpb

λ

(
G–λ,G2ℏ

)
= 16 sup

t∈[â,b̂]

[
e−λ

∣∣∣G–λ (t ) − G2ℏ (t )
∣∣∣2 + |G–λ (t )| +

∣∣∣G2ℏ (t )
∣∣∣]

= 16 sup
t∈[â,b̂]

e−λ
∣∣∣∣∣∣∣ b̂∫
â
K1 (t , s , –λ (s)) ds −

b̂∫
â
K2 (t , s , ℏ (s)) ds

∣∣∣∣∣∣∣
2

+ |G–λ (t )| +
∣∣∣G2ℏ (t )

∣∣∣
≤ 16 sup

t∈[â,b̂]


e−λ b̂∫

â
|K1 (t , s , –λ (s)) −K2 (t , s , ℏ (s))| ds

2

+ |G–λ (t )| +
∣∣∣G2ℏ (t )

∣∣∣

≤ 16


e−λ sup

t∈[â,b̂]

b∫
a
σ (t , s) ds


|–λ (s) − Gℏ (s)|2 + eλ (|–λ (s)| + |Gℏ (s)|)

−64eλ
(
|G–λ (t )| +

∣∣∣G2ℏ (t )
∣∣∣)


1
2


2

+ |G–λ (t )| +
∣∣∣G2ℏ (t )

∣∣∣


≤ 16

e−λ sup
t∈[â,b̂]

b∫
a
σ(t , s)2ds


|–λ (s) − Gℏ (s)|2 + eλ (|–λ (s)| + |Gℏ (s)|)

−64eλ
(
|G–λ (t )| +

∣∣∣G2ℏ (t )
∣∣∣)

 + |G–λ (t )| +
∣∣∣G2ℏ (t )

∣∣∣


≤ 1
4

[
e−λ|–λ (s) − Gℏ (s)|2 + |–λ (s)| + |Gℏ (s)|

]
≤ Γ

(
1
2ϖ

pb
λ (–λ,Gℏ)

)

≤ Γ

χ
(
ϖ

pb
λ (–λ,Gℏ)

)
max


ϖ

pb
λ (–λ,Gℏ) , ϖpb

λ (–λ,G–λ) , ϖpb
λ

(
Gℏ,G2ℏ

)
ϖ

pb
2λ(–λ,G2ℏ)+ϖpb

2λ(Gℏ,G–λ)
2ρ


 ,

where χ : P̄ → [0, 1) and, also, ℸ (ι) = ρι and Γ (ι) = 1
ρ
ι for all ι > 0. Thereupon, we conclude that

all the conditions of Corollary 2.4 are contended. Then, the system of nonlinear Fredholm integral
equations (3.1) has a unique solution. □

4. Conclusions

This paper provides a method for solving a system of Fredholm integral equations that is based
on Suzuki-type and Proinov-type contractions. To underscore the significance of the proposed
methodology, an illustrative example is meticulously analyzed. Within the ambit of partial modular
b−metric spaces, this study successfully derives new common fixed-point results through the
application of Suzuki-type and Proinov-type contractions.
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Furthermore, it presents an intriguing avenue for future research, suggesting the potential
applicability of the findings to the domain of multivalued mappings. This prospect opens up fertile
ground for exploration, possibly expanding the scope and utility of the current study’s methodologies
and outcomes.
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A. Büyükkaya: Conceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Resources, Data Curation, Writing-Original Draft Preparation, Writing-Review and
Editing, Visualization; M. Younis: Methodology, Formal analysis, Investigation, Writing-Review
and Editing, Visualization, Supervision; D. Kesik: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources; M.Öztürk; Data Curation, Writing-Original
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26. D. Kesik, A. Büyükkaya, M. Öztürk, On modified interpolative almost E−type contraction in partial
modular b−metric spaces, Axioms, 12 (2023), 669. https://doi.org/10.3390/axioms12070669

27. P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed
Point Theory Appl., 22 (2020), 21. https://doi.org/10.1007/s11784-020-0756-1

28. E. Karapınar, A. Fulga, A fixed point theorem for Proinov mappings with a contractive iterate,
Appl. Math. J. Chin. Univ., 38 (2023), 403–412. https://doi.org/10.1007/s11766-023-4258-y

29. E. Karapınar, M. De La Sen, A. Fulga, A note on the Gornicki-Proinov type contraction, J. Funct.
Spaces, 2021 (2021), 6686644. https://doi.org/10.1155/2021/6686644

30. E. Karapınar, J. Martinez-Moreno, N. Shahzad, A. F. Roldan Lopez de Hierro, Extended Proinov
X−contractions in metric spaces and fuzzy metric spaces satisfying the property NC by avoiding
the monotone condition, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116 (2022), 140.
https://doi.org/10.1007/s13398-022-01268-8

31. A. F. Roldan Lopez de Hierro, A. Fulga, E. Karapınar, N. Shahzad, Proinov type fixed
point results in non-Archimedean fuzzy metric spaces, Mathematics, 9 (2021), 1594.
https://doi.org/10.3390/math9141594

32. T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 7 (2009), 5313–
5317. https://doi.org/10.1016/j.na.2009.04.017

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 11, 31030–31056.

https://dx.doi.org/https://doi.org/10.30495/JME.2023.2424
https://dx.doi.org/https://doi.org/10.1142/S1793557120500874
https://dx.doi.org/https://doi.org/10.3390/axioms12070669
https://dx.doi.org/https://doi.org/10.1007/s11784-020-0756-1
https://dx.doi.org/https://doi.org/10.1007/s11766-023-4258-y
https://dx.doi.org/https://doi.org/10.1155/2021/6686644
https://dx.doi.org/https://doi.org/10.1007/s13398-022-01268-8
https://dx.doi.org/https://doi.org/10.3390/math9141594
https://dx.doi.org/https://doi.org/10.1016/j.na.2009.04.017
https://creativecommons.org/licenses/by/4.0

	Introduction and Preliminaries
	Common fixed point results
	An application to a system of Fredholm integral equations
	Conclusions

