Research article Special Issues

New application of MOL-PACT for simulating buoyancy convection of a copper-water nanofluid in a square enclosure containing an insulated obstacle

  • Received: 02 August 2022 Revised: 28 August 2022 Accepted: 04 September 2022 Published: 16 September 2022
  • MSC : 65M06, 76R10

  • In this study, we have simulated transient and steady state free convection flow and heat transfer inside a square enclosure filled with a copper-water nanofluid of spherical shape nanoparticles following Tiwari-Das model. The cavity containing an insulated rectangular obstacle of height ranging from 0% to 50% of the cavity side-length. The vertical sides of the enclosure are kept at different temperatures, while the flat sides are assumed to be adiabatic as the obstacle. The combined method of lines/penalty-artificial compressibility technique (MOL-PACT) has been applied to solve the dimensional time dependent mathematical model after converting it into a non-dimensional structure. The combined method of lines/penalty-artificial compressibility technique is recently successfully applied to simulate free convection of MHD fluid in square enclosure with a localized heating. The extension of this promising technique for studying heat transfer of nanofluids is one of the objectives of this paper. Another objective of the study is to inspect the impact of several model parameters such as, the obstacle height, nanoparticles volume-fraction, nanoparticles radius and Rayleigh number on streamlines, temperature distribution and Nusselt number as an expression of heat transfer inside the enclosure. The results have been discussed and shown graphically. Comparisons with former results for related cases in the literature are made and reasonably good agreements are observed.

    Citation: Fahad Alsharari, Mohamed M. Mousa. New application of MOL-PACT for simulating buoyancy convection of a copper-water nanofluid in a square enclosure containing an insulated obstacle[J]. AIMS Mathematics, 2022, 7(11): 20292-20312. doi: 10.3934/math.20221111

    Related Papers:

  • In this study, we have simulated transient and steady state free convection flow and heat transfer inside a square enclosure filled with a copper-water nanofluid of spherical shape nanoparticles following Tiwari-Das model. The cavity containing an insulated rectangular obstacle of height ranging from 0% to 50% of the cavity side-length. The vertical sides of the enclosure are kept at different temperatures, while the flat sides are assumed to be adiabatic as the obstacle. The combined method of lines/penalty-artificial compressibility technique (MOL-PACT) has been applied to solve the dimensional time dependent mathematical model after converting it into a non-dimensional structure. The combined method of lines/penalty-artificial compressibility technique is recently successfully applied to simulate free convection of MHD fluid in square enclosure with a localized heating. The extension of this promising technique for studying heat transfer of nanofluids is one of the objectives of this paper. Another objective of the study is to inspect the impact of several model parameters such as, the obstacle height, nanoparticles volume-fraction, nanoparticles radius and Rayleigh number on streamlines, temperature distribution and Nusselt number as an expression of heat transfer inside the enclosure. The results have been discussed and shown graphically. Comparisons with former results for related cases in the literature are made and reasonably good agreements are observed.



    加载中


    [1] G. Lorenzini, C. Biserni, L. A. O. Rocha, Geometric optimization of X-shaped cavities and pathways according to Bejan's theory: Comparative analysis, Int. J. Heat Mass. Tran., 73 (2014), 1-8. https://doi.org/10.1016/j.jare.2021.08.003 doi: 10.1016/j.jare.2021.08.003
    [2] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78 (2001), 718. https://doi.org/10.1063/1.1341218 doi: 10.1063/1.1341218
    [3] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79 (2001), 2252. https://doi.org/10.1063/1.1408272 doi: 10.1063/1.1408272
    [4] S. K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125 (2003), 567-574. https://doi.org/10.1115/1.1571080 doi: 10.1115/1.1571080
    [5] N. Putra, W. Roetzel, S. K. Das, Natural convection of nano-fluids, Heat Mass Transfer, 39 (2003), 775-784. https://doi.org/10.1007/s00231-002-0382-z doi: 10.1007/s00231-002-0382-z
    [6] O. A. Olayemi, K. Al-Farhany, A. M. Obalalu, T. F. Ajide, K. R. Adebayo, Magnetoconvection around an elliptic cylinder placed in a lid-driven square enclosure subjected to internal heat generation or absorption, Heat Transf., 51 (2022), 4950-4976. https://doi.org/10.1002/htj.22530 doi: 10.1002/htj.22530
    [7] M. K. Moraveji, M. Hejazian, Natural convection in a rectangular enclosure containing an oval-shaped heat source and filled with Fe3O4/water nanofluid, Int. Commun. Heat Mass Tran., 44 (2013), 135-146. https://doi.org/10.1016/j.icheatmasstransfer.2013.03.011 doi: 10.1016/j.icheatmasstransfer.2013.03.011
    [8] M. M. Mousa, Modeling of laminar buoyancy convection in a square cavity containing an obstacle, Bull. Malays. Math. Sci. Soc., 39 (2016), 483-498. https://doi.org/10.1007/s40840-015-0188-z doi: 10.1007/s40840-015-0188-z
    [9] B. P. Geridonmez, RBF simulation of natural convection in a nanofluid-filled cavity, AIMS Mathematics, 1 (2016), 195-207. https://doi.org/10.3934/Math.2016.3.195 doi: 10.3934/Math.2016.3.195
    [10] S. M. Al-Weheibi, M. M. Rahman, M. S. Alam, K. Vajravelu, Numerical simulation of natural convection heat transfer in a trapezoidal enclosure filled with nanoparticles, Int. J. Mech. Sci., 131-132 (2017), 599-612. https://doi.org/10.1016/j.ijmecsci.2017.08.005
    [11] M. Mousa, Effects of porosity and heat generation on free convection in a porous trapezoidal cavity, Therm. Sci., 23 (2019), 1801-1811.
    [12] Z. H. Khan, W. A. Khan, R. U. Haq, M. Usman, M. Hamidf, Effects of volume fraction on water-based carbon nanotubes flow in a right-angle trapezoidal cavity: FEM based analysis, Int. Commun. Heat Mass Tran., 116 (2020), 104640. https://doi.org/10.1016/j.icheatmasstransfer.2020.104640 doi: 10.1016/j.icheatmasstransfer.2020.104640
    [13] Z. H. Khan, O. D. Makinde, M. Hamid, R. Ul Haq, W. A. Khan, Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium, J. Magn. Magn. Mater., 499 (2020), 166241. https://doi.org/10.1016/j.jmmm.2019.166241 doi: 10.1016/j.jmmm.2019.166241
    [14] S. M. Aminossadati, Hydromagnetic natural cooling of a triangular heat source in a triangular cavity with water-CuO nanofluid, Int. Commun. Heat Mass Tran., 43 (2013), 22-29. https://doi.org/10.1016/j.icheatmasstransfer.2013.02.009 doi: 10.1016/j.icheatmasstransfer.2013.02.009
    [15] M. M. Mousa, MHD free convection in a porous non-uniformly heated triangle cavity equipped with a circular obstacle subjected to various thermal configurations, Mod. Phys. Lett. B, 34 (2020), 2050354. https://doi.org/10.1142/S0217984920503546 doi: 10.1142/S0217984920503546
    [16] F. A. Soomro, R. Ul Haq, E. A. Algehyne, I. Tlili, Thermal performance due to magnetohydrodynamics mixed convection flow in a triangular cavity with circular obstacle, J Energy Storage, 31 (2020), 101702. https://doi.org/10.1016/j.est.2020.101702 doi: 10.1016/j.est.2020.101702
    [17] R. Ul Haq, S. S. Shah, E. A. Algehyne, Thermal drift and force convection analysis of nanofluid due to partially heated triangular fins in a porous circular enclosure, Phys. Scripta, 96 (2021), 065701.
    [18] T. Armaghani, A. Kasaeipoor, M. Izadi, I. Pop, MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure, Int. J. Numer. Method. H., 28 (2018), 2916-2941. https://doi.org/10.1108/HFF-02-2018-0041 doi: 10.1108/HFF-02-2018-0041
    [19] D. Toghraie, M. Mahmoudi, O. A. Akbari, F. Pourfattah, M. Heydari, The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels, J. Therm. Anal. Calorim., 135 (2019), 145-159. https://doi.org/10.1007/s10973-018-7254-3 doi: 10.1007/s10973-018-7254-3
    [20] R. Ul Haq, M. Usman, E. A. Algehyne, Natural convection of CuO-water nanofluid filled in a partially heated corrugated cavity: KKL model approach, Commun. Theor. Phys., 72 (2020), 085003.
    [21] R. Ul Haq, S. S. Shah, E. A. Algehyne, I. Tlili, Heat transfer analysis of water based SWCNTs through parallel fins enclosed by square cavity, Int. Commun. Heat Mass Tran., 119 (2020), 104797. https://doi.org/10.1016/j.icheatmasstransfer.2020.104797 doi: 10.1016/j.icheatmasstransfer.2020.104797
    [22] S. Eshaghi, F. Izadpanah, A. S. Dogonchi, A. J. Chamkha, M. B. B. Hamida, H. Alhumade, The optimum double diffusive natural convection heat transfer in H-Shaped cavity with a baffle inside and a corrugated wall, Case Stud. Therm Eng., 28 (2021), 101541. https://doi.org/10.1016/j.csite.2021.101541 doi: 10.1016/j.csite.2021.101541
    [23] A. M. Obalalu, Heat and mass transfer in an unsteady squeezed Casson fluid flow with novel thermophysical properties: Analytical and numerical solution, Heat Transf., 50 (2021), 7988-8011. https://doi.org/10.1002/htj.22263 doi: 10.1002/htj.22263
    [24] N. Biswas, M. K. Mondal, D. K. Mandal, N. K. Manna, R. S. R. Gorla, A. J. Chamkha, A narrative loom of hybrid nanofluid-filled wavy walled tilted porous enclosure imposing a partially active magnetic field, Int. J. Mech. Sci., 217 (2022), 107028. https://doi.org/10.1016/j.ijmecsci.2021.107028 doi: 10.1016/j.ijmecsci.2021.107028
    [25] N. V. Ganesh, Q. M. Al-Mdallal, G. Hirankumar, R. Kalaivanan, Impact of a hot constructal tree-shaped fin on the convection flow of single wall carbon nanotube water nanofluid inside a sinusoidal enclosure, Int. Commun. Heat Mass Tran., 137 (2022), 106279. https://doi.org/10.1016/j.icheatmasstransfer.2022.106279 doi: 10.1016/j.icheatmasstransfer.2022.106279
    [26] N. V. Ganesh, Q. M. Al-Mdallal, H. F. Öztop, R. Kalaivanan, Analysis of natural convection for a Casson-based multiwall carbon nanotube nanofluid in a partially heated wavy enclosure with a circular obstacle in the presence of thermal radiation, J. Adv. Res., 39 (2022), 167-185. https://doi.org/10.1016/j.jare.2021.10.006 doi: 10.1016/j.jare.2021.10.006
    [27] M. S. Alqarni, Thermo-bioconvection flow of Walter's B nanofluid over a Riga plate involving swimming motile microorganisms, AIMS Mathematics, 7 (2022), 16231-16248. https://doi.org/10.3934/math.2022886 doi: 10.3934/math.2022886
    [28] M. M. Mousa, M. R. Ali, W. X. Ma, A combined method for simulating MHD convection in square cavities through localized heating by method of line and penalty-artificial compressibility, J. Taibah Univ. Sci., 15 (2021), 208-217. https://doi.org/10.1080/16583655.2021.1951503 doi: 10.1080/16583655.2021.1951503
    [29] R. K. Tiwari, M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Tran., 50 (2007), 2002-2018. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034 doi: 10.1016/j.ijheatmasstransfer.2006.09.034
    [30] H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20 (1952), 571. https://doi.org/10.1063/1.1700493 doi: 10.1063/1.1700493
    [31] D. A. Nield, A. Bejan, Convection in porous media, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-5541-7
    [32] M. J. Uddin, K. S. Al Kalbani, M. M. Rahman, M. S. Alam, N. Al-Salti, I. Eltayeb, Fundamentals of nanofluids: Evolution, applications and new theory, Int. J. Biomath. Syst. Biol., 2 (2016), 1-32.
    [33] J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Proc. R. Soc. London, 27 (1878), 304-308. http://doi.org/10.1098/rspl.1878.0052 doi: 10.1098/rspl.1878.0052
    [34] R. L. Hamilton, O. K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundamem., 1 (1962), 187-191. https://doi.org/10.1021/i160003a005 doi: 10.1021/i160003a005
    [35] E. V. Timofeeva, J. L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, J. Appl. Phys., 106 (2009), 014304. https://doi.org/10.1063/1.3155999 doi: 10.1063/1.3155999
    [36] W. Yu, S. U. S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, J. Nanoparticle Res., 5 (2003), 167-171. https://doi.org/10.1023/A:1024438603801
    [37] E. Isaacson, H. B. Keller, Analysis of numerical methods, Dover Publications, 2012.
    [38] G. De Vahl Davis, Natural convection of air in a square cavity: A bench mark numerical solution, Int. J. Numer. Meth. Fl., 3 (1983), 249-264. https://doi.org/10.1002/fld.1650030305
    [39] K. Kahveci, Buoyancy driven heat transfer of nanofluids in a tilted enclosure, J. Heat Transfer, 132 (2010), 062501. https://doi.org/10.1115/1.4000744 doi: 10.1115/1.4000744
    [40] S. Mirmasoumi, A. Behzadmehr, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, Int. J. Heat Fluid Fl., 29 (2008), 557-566. https://doi.org/10.1016/j.ijheatfluidflow.2007.11.007 doi: 10.1016/j.ijheatfluidflow.2007.11.007
    [41] S. Z. Heris, S. G. Etemad, M. N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Commun. Heat Mass Tran., 33 (2006), 529-535. https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005 doi: 10.1016/j.icheatmasstransfer.2006.01.005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1317) PDF downloads(66) Cited by(2)

Article outline

Figures and Tables

Figures(13)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog