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materials by utilizing a modified mathematical fractional thermoelastic model. This model combines 

a fractional derivative with Rabotnov's exponential kernel and the idea of a two-phase delay, which 

makes it possible to show thermoelastic behavior more accurately. The model was utilized to 

investigate an unbounded material with a spherical cavity subjected to a decreasing and shifting heat 

flux on its inner surface. The problem was solved using analytical approaches, with a strong focus on 

the Laplace transform. The transform was numerically inverted to provide time-domain results. The 

study presented graphs that compared the outcomes of utilizing a single kernel fractional derivative 

with the results obtained using the Rabotnov kernel and fractional order. These graphs showed how 

the Rabotnov kernel and fractional order affected the physical fields under investigation. This novel 

theoretical framework has the potential to be advantageous in diverse domains, including engineering, 

solid mechanics, and materials science. 
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1. Introduction 

One of the ongoing investigations that is being conducted on the subject of fractional calculus is 

the examination of the optimal characterization of fractional operators. Fractional derivatives, which 

extend differentiation to orders that are not integers, make it possible to do analysis on systems that 

have fractional dynamics characteristics. The Caputo-Liouville and Riemann-Liouville derivatives are 

examples of fractional derivatives that are often utilized. These derivatives have been extensively 

researched and used in a variety of fields [1,2]. However, in recent years, there has been an increase in 

the number of fractional derivative classifications that have presented alternatives to conventional 

fractional derivatives [3–6]. The absence of singularities distinguishes these novel derivatives, and 

their design aims to overcome limitations or deficiencies found in existing derivatives. Researchers 

have investigated the mathematical features of these unique operators, examining their behavior with 

various kinds of functions and their interactions with other fractional operators [7]. Scientists have 

initiated additional research and exploration into the features of these new fractional derivatives, as 

well as their practical applications, following their introduction. Scientists from a variety of fields, 

including engineering, signal processing, and physics, are investigating the applicability of these 

materials [8]. While selecting a particular fractional derivative, one should consider both the nature of 

the problem at hand and the desired qualities in the solution. It is possible that different variations are 

better suited for certain applications; the selection process ought to be directed by the requirements 

and characteristics of the particular problem that is being investigated. Ongoing research attempts to 

improve the characterization of fractional operators, investigate their mathematical properties, and 

evaluate the extent to which they can be applied in a variety of domains, taking into account the specific 

requirements of the problem being addressed [9]. 

Recent literature has introduced various non-singular fractional derivatives, including the Caputo-

Fabrizio, Atangana-Baleanu, and Rabotnov exponential kernel fractional derivatives. These 

derivatives provide options that are different from ordinary fractional calculus and have unique 

properties. The Caputo-Fabrizio fractional derivative, first proposed in reference [5], is a non-singular 

alternative that has found applications in diverse fields. The Atangana-Baleanu fractional derivative 

also referred to as the Mittag-Leffler kernel fractional derivative, was introduced in [4] and has been 

applied in practical situations, as demonstrated by references [10–14]. The Rabotnov exponential 

kernel fractional derivative, which was recently suggested and discussed in [6], is a non-singular 

fractional derivative that has been successfully applied in real issues, as evidenced by references [15–18]. 

These examples show how fractional calculus and non-singular fractional derivatives are useful in a 

wide range of disciplines. Applications encompass a wide range of areas, including physics, 

engineering, biology, economics, and various others. Also, applications in many fields have proven the 

effectiveness of these non-singular fractional derivatives in solving many problems. 

Thermoelasticity is a field within solid mechanics that studies how materials react to both heat 

and mechanical stresses. This field focuses on understanding the impact of temperature changes on 

materials' mechanical properties as well as the generation of thermal stresses due to mechanical 

deformation [19]. The fundamental equations employed in thermoelasticity theory to characterize 

material behavior are the equations of motion and the heat conduction equation. The equations of 

motion, deduced from Newton's second rule of motion, delineate the material's mechanical dynamics 
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by creating a correlation between stress and strain. These equations incorporate material properties 

such as elasticity and viscosity and can be solved to ascertain displacement and stress distributions 

under specified mechanical loads [20]. The heat conduction equation relates the temperature 

distribution of a material to its heat generating, conduction, and convection properties. It is based on 

the principles of energy conservation and Fourier's law of heat conduction. The heat conduction 

equation's solution provides valuable insights into the spatial distribution of temperature within a 

material due to thermal stresses [21]. Comprehending and forecasting thermal stresses are essential in 

many engineering applications, such as the development of structures subjected to elevated 

temperatures, thermal barrier coatings, and thermal management systems. Thermoelasticity theory 

provides a systematic approach to examining and forecasting the behavior of materials under thermal 

loading conditions, as well as the resulting thermal stresses [22,23]. It examines the interaction 

between thermal and mechanical properties. 

The Fourier equation for heat conduction states that the rate of heat transfer is directly proportional 

to the temperature gradient, assuming that heat propagation occurs instantaneously. This implies an 

almost infinite rate of heat transport. In reality, heat transfer does not occur instantaneously but rather 

at a finite speed [24]. One can utilize advanced mathematical models, such as hyperbolic heat 

conduction models or the Cattaneo-Vernotte equation, to precisely mimic heat transfer processes that 

occur at a finite pace [25–30]. These generalized thermoelasticity models incorporate the time delay 

associated with heat propagation and offer a more precise depiction of the temperature distribution and 

heat transmission rates. Generalized thermoelasticity models expand upon traditional thermoelasticity 

models by incorporating a larger range of physical phenomena and providing a more accurate 

representation of material behavior under heating conditions. 

The incorporation of fractional differentiation into thermoelasticity is a state of the art 

methodology that has recently garnered significant interest. Fractional calculus offers a mathematical 

structure for phenomena that involve nonlocality, memory effects, and intricate dynamics. By 

integrating fractional derivative operators into thermoelastic equations, a new framework is established 

that allows for differentiation with non-integer orders. This technique is well-suited for representing 

materials with intricate behaviors, such as viscoelastic materials or those with fractional characteristics, 

because it accurately accounts for memory effects and interactions across vast distances. By 

incorporating fractional differentiation, it becomes possible to account for nonlocal and memory-

dependent effects in the governing equations. This leads to a more precise representation of the thermal 

characteristics of materials, particularly those with long-term memory or anomalous diffusion 

processes. 

This paper presents a novel thermoelasticity model that integrates fractional differentiation with 

two-phase delays by combining a fractional operator with the recently developed Rabotnov 

exponential kernel. The model is utilized to examine the thermomagnetic characteristics of solid 

materials, including a spherical hollow subjected to a diminishing and mobile heat flux. The hollow is 

enclosed and encompassed by a persistent axial magnetic field of uniform thickness. A numerical 

method was employed to execute Laplace inversions, allowing for the calculation of the temporal 
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solution. Graphical depictions depict the estimated values for temperature, deformation, thermal 

stresses, and induced electromagnetic fields. The impact of this new factor on thermoelastic material 

behavior is evaluated by comparing its results with those obtained via fractional derivatives with a 

singular kernel. Numerical data is utilized to quantify and assess the reactions of distinct physical 

domains, taking into account influential factors such as phase delay durations and fractional differential 

order. 

List of symbols 

𝑇0 
Environmental 

temperature 
(𝑟, Θ, 𝜙) Cylindrical coordinate 

𝛾 = (3𝜆 + 2𝜇)𝛼𝑡 Coupling coefficient 𝜆, 𝜇 Lame’s elastic coefficients 

𝑈𝑖 Displacements 𝑄 Heat source 

𝑆𝑖𝑗 Thermal stresses �⃗� Heat flux 

𝛼 Fractional order 𝜏𝑞 Phase-lag of heat flow 

𝑒𝑖𝑗 Strains 𝜏𝜃 Phase-lag of temperature gradient 

𝜃 = 𝑇 − 𝑇0 Temperature change 𝛼 Fractional order 

𝜌 Density of the material ℎ⃗⃗ Induced magnetic field 

𝑇 Absolute temperature �⃗⃗� Induced electric field 

𝐾 Thermal conductivity 𝐽 Current density 

𝐶𝑒 Specific heat �⃗⃗� Magnetic field 

𝛼𝑡 
Thermal expansion 

parameter 
𝜇0 Magnetic permeability 

𝛿𝑖𝑗 Kronecker delta 𝑅𝑖 External forces 

Γ(𝛼) Gamma function   

2. Fractional thermoelastic DPL model derivation 

The generalized thermoelasticity governing equations express the relationship between a 

material's mechanical and thermal properties. The concepts of mass, momentum, and energy 

conservation derived these equations, which include constitutive relationships connecting 

displacement, heat, and stress. The theory of generalized thermoelasticity uses the following formulas 

for isotropic and homogeneous bodies to fully capture these interactions [24–27]: 

 𝜎𝑘𝑙 = 2𝜇휀𝑘𝑙 + [𝜆휀𝑚𝑚 − 𝛾𝜃]𝛿𝑘𝑙 , (2.1) 

 2휀𝑘𝑙 = 𝑢𝑘,𝑙 + 𝑢𝑙,𝑘, (2.2) 

 𝜎𝑘𝑙,𝑙 + 𝑅𝑘 = 𝜌
𝜕2𝑢𝑘

𝜕𝑡2 , (2.3) 
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 (𝜆 + 𝜇)𝑢𝑙,𝑘𝑙 + 𝜇𝑢𝑘,𝑙𝑙 − 𝛾𝜃,𝑘 + 𝑅𝑘 = 𝜌
𝜕2𝑢𝑘

𝜕𝑡2 . (2.4) 

The following formulation expresses the relationship between energy conservation and heat 

transport in elastic materials [25]: 

 𝜌𝐶𝑒
𝜕𝜃

𝜕𝑡
+ 𝑇0𝛾

𝜕 𝑘𝑘

𝜕𝑡
= −∇ ∙ �⃗� + 𝑄. (2.5) 

Advanced and sophisticated models have been created to overcome the constraints of Fourier's 

law. These encompass altered thermoelastic models, models grounded on fractional calculus, and 

systems featuring phase delays. Advanced mathematical models are capable of representing heat 

transport in materials that display nonlocal or memory-based behavior with greater accuracy. The dual-

phase-lag (DPL) model [29–31] was developed to include the effects of both limited heat transport and 

microstructural interactions, which are not accounted for by the conventional Fourier's law. The 

enhanced version of Fourier's law in the DPL model can be expressed as [30, 31]: 

 �⃗� + 𝜏𝑞  
𝜕�⃗�

𝜕𝑡
= −𝐾 (1 + 𝜏𝜃

𝜕

𝜕𝑡
) ∇𝜃. (2.6) 

The expansion of the traditional heat transfer equation to the fractional heat transmission equation 

has provided new opportunities for modeling heat transfer in materials with nonlocal or memory-

dependent characteristics. These models give a more accurate picture of heat transfer in these materials 

by including fractional derivatives, which show how heat conduction is affected by what has happened 

in the past. In the present work, a new formulation of Fourier's law will be presented by replacing the 

usual time derivative ( 𝜕/𝜕𝑡 ) with the fractional time derivative (represented by 𝐷𝑡
(𝛼)

 ). The 

introduction of the fractional derivative operator is essential to capture the memory-based behavior of 

materials subjected to thermal conductivity. In view of this, the modified Fourier fractional law can be 

represented as follows: 

 �⃗� + 𝜏𝑞
𝛼  𝐷𝑡

(𝛼)
�⃗� = −𝐾(∇⃗⃗⃗𝜃 + 𝜏𝜃

𝛼 𝐷𝑡
(𝛼)

∇𝜃). (2.7) 

The fractional derivative 𝐷𝑡
(𝛼)

 can be expressed using different fractional derivative operators, 

including the Caputo [32], Riemann-Liouville, Caputo-Fabrizio (CF) [5], and Atangana-Baleanu (AB) [4] 

fractional derivatives. Each operator possesses its unique mathematical definition and features, 

rendering them appropriate for various applications in fractional calculus. In the field of 

thermoelasticity, the application of the fractional derivative with the Ratbotnov exponential kernel is 

fascinating. The Ratbotnov exponential kernel, which is explained in reference [6], has unique 

properties that make it useful for showing certain aspects of thermoelastic behavior. Conventional 

fractional derivative operators may not adequately address particular memory impacts or nonlocal 

interactions. The operators for fractional derivatives that are associated with the Caputo [32], CF [5], 

and AB [4,33] can be represented as: 

 𝐷𝑡
(𝛼)

⬚
𝐶 ℏ(𝑥, 𝑡) =

1

Γ(1−𝛼)
∫ (𝑡 − 𝜉)−𝛼 𝜕ℏ(𝑥,𝜉)

𝜕𝜉

𝑡

0
𝑑𝜉, 𝛼 ∈ (0,1], (2.8) 
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 𝐷𝑡
(𝛼)

⬚
𝐶𝐹 ℏ(𝑥, 𝑡) =

1

1−𝛼
∫ ℏ̇(𝑥, 𝜉)Exp (−

𝛼

(1−𝛼)
(𝑡 − 𝜉))

𝑡

0
𝑑𝜉, (2.9) 

 𝐷𝑡
(𝛼)

⬚
𝐴𝐵 ℏ(𝑥, 𝑡) =

1

1−𝛼
∫ ℏ̇(𝑥, 𝜉)𝐸𝛼 (−

𝛼

(1−𝛼)
(𝑡 − 𝜉)𝛼)

𝑡

0
𝑑𝜉, (2.10) 

where 𝐸𝛼(𝑧) denotes the enhanced Mittag-Leffler function. 

One possible representation of the Rabotnov exponential function (REF) of order 𝛼 ∈ ℝ+ with 

parameter 𝜉 ∈ ℝ+ is the series that is illustrated below [34,35]: 

 ℛ𝛼(𝜒𝑧𝛼) = ∑
𝜒𝑘𝑧(𝑘+1)(𝛼+1)−1

Γ[(1+𝛼)(𝑘+1)]
∞
𝑘=0 , 𝑧 ∈ ℂ. (2.11) 

Using the non-singular kernel of the Rabotnov fractional-exponential function, the following is 

the definition of the generic fractional-order derivative of the Liouville-Caputo type [6,36]: 

 𝐷𝑡
𝛼

𝑎
𝑅𝐸 ℏ(𝑥, 𝑡) = ∫ ℏ̇(𝑥, 𝜉)ℛ𝛼(−𝜒(𝑡 − 𝜉)𝛼)

𝑡

𝑎
𝑑𝜉. (2.12) 

The fractional Yang-Abdel-Aty-Cattani (YAC) derivative given by the Laplace transform takes 

the following form [4]: 

 ℒ[ 𝐷𝑡
𝛼

𝑎
𝑅𝐸 ℏ(𝑥, 𝑡)] =

1

s𝛼+1

1

1+𝜒s−(𝛼+1)
[𝑠ℒ[ℏ(𝑥, 𝑡)] − ℏ(𝑥, 0)]. (2.13) 

Rabotnov's fractional order operator application provides a robust method for understanding and 

examining the mechanics of structures with hereditary flexibility. Various fields have shown the 

advantages of this technology's implementation, enabling the simulation and prediction of material 

behavior in a wide range of situations. 

The following formula, which combines Eqs (2.5) and (2.7), may be used to obtain the modified 

version of the generalized DPL heat conduction theory with phase delays that contain fractional 

operators: 

 (1 +  𝜏𝑞
𝛼 𝐷𝑡

(𝛼)
) [𝜌𝐶𝐸

𝜕𝜃

𝜕𝑡
+ 𝑇0𝛾

𝜕 𝑘𝑘

𝜕𝑡
− 𝑄] = (1 + 𝜏𝜃

𝛼 𝐷𝑡
(𝛼)

)(∇. (𝐾 ∇𝜃)). (2.14) 

The combination of Maxwell's equations and the Lorentz force law provides a comprehensive 

mathematical foundation for understanding electromagnetic phenomena. These equations describe the 

characteristics of electromagnetic fields, the movement of electromagnetic waves, and the interaction 

between electromagnetic fields, charges, and currents. Experimental testing has extensively validated 

Maxwell's equations, confirming their accuracy and reliability. As a result, these equations have been 

crucial to the progress of technology in several domains, such as power production, transmission 

systems, telecommunications, optics, and others. Their fundamental importance in these fields 

underscores their tremendous influence on contemporary technology and scientific understanding. The 

equations formulated by Maxwell to represent the electromagnetic control system can be written 
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as [37,38]: 

 
∇ × ℎ⃗⃗ = 𝐽 ,    − 𝜇0

𝜕

𝜕𝑡
(ℎ⃗⃗) = ∇ × �⃗⃗�,    �⃗⃗� = −𝜇0 (

𝜕�⃗⃗⃗�

𝜕𝑡
× �⃗⃗�) ,

ℎ⃗⃗ = ∇ × (�⃗⃗� × �⃗⃗�), ∇ ∙ ℎ⃗⃗ = 0.
 (2.15) 

The following relationship can also be used to determine the Maxwell stress, 𝑀𝑖𝑗, [39,40] 

 𝑀𝑖𝑗 = 𝜇0[𝐵𝑖ℎ𝑗 + 𝐵𝑗ℎ𝑖 − 𝐵𝑘ℎ𝑘𝛿𝑖𝑗]. (2.16) 

The Lorentz force is a fundamental principle in classical electromagnetism that is essential for 

comprehending and forecasting the actions of charged particles in electromagnetic fields. It is widely 

regarded as one of the most pivotal notions in the field of physics. The Lorentz force has a wide range 

of applications, such as in electric motors, particle accelerators, and the movement of charged particles 

in electromagnetic waves. The Lorentz force can be determined by utilizing the relationship: 

 �⃗⃗� = 𝜇0(𝐽 × �⃗⃗�). (2.17) 

3. Applicable problem formulation 

This section will analyze the behavior of an infinite thermoelastic material with a spherical cavity 

when subjected to various heat fluxes. According to Figure 1, the thermoelastic material is assumed to 

occupy the area where 𝑅 ≤ 𝑟 ≤ ∞ and includes a spherical hollow with a radius 𝑅. This analysis 

directly applies to the suggested model. In order to analyze and address the issue, we will employ the 

spherical polar coordinate system (𝑟, Θ, 𝜙), with the coordinate origin situated in the middle of the 

cavity. At first 𝑇 = 𝑇0, the material is presumed to be unreactive, uniform, have the same properties 

in all directions, and be capable of conducting electricity. Furthermore, it is believed that the spherical 

cavity is constrained. Additionally, it is presumed that the cavity is submerged in a constant and axial 

external magnetic field represented by �⃗⃗� = (0,0, 𝐻0) . Given the symmetry of the issue, we will 

assume that the field variables are only dependent on the radial distance 𝑟 and the instantaneous time 

𝑡. Additionally, it is presumed that the field variables possess finite values and exhibit behavior that 

aligns with their physical characteristics as the radial distance 𝑟 approaches infinity (∞). This issue 

type finds several applications in fields such as engineering, geophysics, astronomy, airplanes, missiles, 

nuclear reactors, and power plants. These applications include intricate geometries and boundary 

conditions. 
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Figure 1. Configurational representation of an infinite elastic medium with a spherical hole. 

Due to the fact that the issue is one-dimensional, the displacement vector and temperature 𝜃 may 

be characterized as a function of the radial distance 𝑟 and the instantaneous time 𝑡. As a result, the 

governing formulas can be represented as follows: 

 𝑢𝑟 = 𝑢(𝑟, 𝑡), 𝑢Θ(𝑟, 𝑡) = 𝑢𝜙(𝑟, 𝑡) = 0, (3.1) 

 𝑒𝑟𝑟 =
𝜕𝑢

𝜕𝑟
, 𝑒ΘΘ = 𝑒𝜙𝜙 =

𝑢

𝑟
, (3.2) 

 𝑒 = ∇ ∙ 𝑢 =
𝜕𝑢

𝜕𝑟
+

2𝑢

𝑟
=

1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
, (3.3) 

 𝑆𝑟𝑟 =
𝜆

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
+ 2𝜇

𝜕𝑢

𝜕𝑟
− 𝛾𝜃, (3.4) 

 𝑆ΘΘ =
𝜆

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
+ 2𝜇

𝑢

𝑟
− 𝛾𝜃, (3.5) 

 
𝜕𝑆𝑟𝑟

𝜕𝑟
+

2

𝑟
𝑆𝑟𝑟 −

2

𝑟
𝑆ΘΘ + 𝐿𝑟 = 𝜌

𝜕2𝑢

𝜕𝑡2 . (3.6) 

When a fixed magnetic field vector �⃗⃗� = (0,0, 𝐻0) is present, the motion of the material points 

in the medium produces an induced magnetic field ℎ⃗⃗ in the 𝜙-axis direction. In terms of the fixed 

magnetic field �⃗⃗� and the displacement vector �⃗⃗�, the induced magnetic field ℎ⃗⃗ may be written as 

follows: 

 ℎ⃗⃗ = −𝐻0 (0,0,
1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
). (3.7) 

Next, along the direction of the Θ -axis, the induced magnetic field ℎ⃗⃗  produces an induced 

electric field �⃗⃗�, which may be written as follows: 
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 �⃗⃗� = 𝜇0𝐻0
2 (0,

𝜕𝑢

𝜕𝑡
, 0). (3.8) 

Additionally, the induced magnetic field ℎ⃗⃗ may be used to represent the electric current density 

𝐽 as follows: 

 𝐽 = −𝐻0 (0,
𝜕

𝜕𝑟
(

1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
) , 0). (3.9) 

When substituting Eqs (3.8) and (3.9) into Eqs (2.16) and (2.17), the radial Lorentz force 𝐿𝑟 and 

the Maxwell stress components 𝑀𝑟𝑟 can be expressed as follows: 

 𝐿𝑟 = 𝜇0(𝐽 × �⃗⃗�)
𝑟

= 𝜇0𝐻0
2 𝜕

𝜕𝑟
(

1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
),     𝑀𝑟𝑟 = 𝜇0𝐻0

2 1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
. (3.10) 

The modified formulation of the extended DPL heat transfer theory with phase delays that includes 

fractional operators can be expressed as follows: 

 (1 + 𝜏𝜃
𝛼 𝐷𝑡

(𝛼)
)∇2𝜃 = (1 + 𝜏𝑞

𝛼 𝐷𝑡
(𝛼)

) [
1

𝑘

𝜕𝜃

𝜕𝑡
+

𝛾𝑇0

𝐾

𝜕𝑒

𝜕𝑡
],        

𝐾

𝜌𝐶𝑒
= 𝑘. (3.11) 

Following the utilization of Eqs (3.4) and (3.5), the equation of motion (3.6) may be constructed 

as follows: 

 (
𝜆+2𝜇

𝜌
+

𝜇0𝐻0
2

𝜌
)

𝜕𝑒

𝜕𝑟
=

𝛾

𝜌

𝜕𝜃

𝜕𝑟
+

𝜕2𝑢

𝜕𝑡2 . (3.12) 

After applying the factor 𝜕/𝜕𝑟 + 2/𝑟  to both sides of the Eq (3.12), one concludes that the 

following equation is obtained: 

 𝜌(𝑐0
2 + 𝑎0

2)∇2𝑒 = 𝛾∇2𝜃 + 𝜌
𝜕2𝑒

𝜕𝑡2, (3.13) 

where ∇2=
1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕

𝜕𝑟
),  𝑐0

2 =
𝜆+2𝜇

𝜌
 and 𝑎0

2 =
𝜇0𝐻0

2

𝜌
. 

Dimensionless quantities are commonly employed to simplify and standardize the governing 

equations. Below are frequently used formulas for nondimensional variables. 

 
{𝑟′, 𝑢′} =

𝑐0

𝑘
{𝑟, 𝑢},   {𝑡′, 𝜏𝜃

′ , 𝜏𝑞
′ } =

𝑐0
2

𝑘
{𝑡, 𝜏𝜃, 𝜏𝑞},   𝜃′ =

𝛾

𝜌𝑐0
2 𝜃,

 {𝑆𝑖𝑗
′ , 𝑀𝑖𝑗

′ } =
1

𝜌𝑐0
2 {𝑆𝑖𝑗,𝑀𝑟𝑟}.

    (3.14) 

Neglecting the prime, we can express the formulas for the fundamental equations in 

nondimensional form as follows: 

 (1 + 𝜏𝜃
𝛼𝐷𝑡

(𝛼)
)∇2𝜃 −

𝜕

𝜕𝑡
(1 + 𝜏𝑞

𝛼𝐷𝑡
(𝛼)

)𝜃 = 휀
𝜕

𝜕𝑡
(1 + 𝜏𝑞

𝛼𝐷𝑡
(𝛼)

)𝑒, (3.15) 
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 𝑎1∇2𝜃 = (∇2 − 𝑎2
𝜕2

𝜕𝑡2) 𝑒, (3.16) 

 𝑆𝑟𝑟 =
1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
+

4𝛽2

𝑟
𝑢 − 𝜃, (3.17) 

 𝑆ΘΘ = (1 − 2𝛽2)
1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
−

2𝛽2

𝑟
𝑢 − 𝜃, (3.18) 

where 

 
𝛽2 = 𝜇/(𝜆 + 2𝜇), 휀 = 𝑇0𝛾2/(𝜌2𝑐0

2𝐶𝑒), 𝑎1 = 𝑔/(𝑐0
2 + 𝑎0

2),

𝑎2 = 𝜌𝑐0
2/(𝑐0

2 + 𝑎0
2),    𝑔 = 𝛾𝑇0/𝜌.

  (3.19) 

At the outset of the analysis, we will impose initial circumstances that are representative of the 

state of matter before applying any external perturbations. These conditions will include the following: 

 𝑢(𝑟, 0) = 0 =
𝜕𝑢(𝑟,0)

𝜕𝑡
, 𝑆𝑟𝑟(𝑟, 0) = 0 = 𝑆ΘΘ(𝑟, 0), 𝜃(𝑟, 0) = 0 =

𝜕𝜃(𝑟,0)

𝜕𝑡
. (3.20) 

These starting conditions, the boundary conditions established by the material's composition and 

unique qualities, and the external perturbations applied to it can all be used to solve the governing 

equations. In this instance, it is expected that the heat flow 𝐹  diminishes exponentially with 

instantaneous time 𝑡  and travels at a constant velocity 𝜗  in the direction of the cavity axis. The 

following relationship characterizes this behavior [41]: 

 𝐹 = 𝐹0 𝑒−𝜔𝑡 𝛿(𝑟 − 𝜐𝑡), , 𝑡 > 0,   at     𝑟 = 𝑎. (3.21) 

The variables in the equation are defined as follows: 𝐹0  represents the starting heat flow, 𝜔 

represents the exponential decay parameter, and 𝛿(𝑟 − 𝜐𝑡) represents the Dirac delta function, which 

indicates that the heat flow is concentrated at the position 𝑟 = 𝜐𝑡 . Taking into account the 

dimensionless quantities (31) and substituting from (38) into the modified Fourier law (7), we obtain 

the following boundary condition: 

 (1 + 𝜏𝜃𝐷𝑡
(𝛼)

)
𝜕𝜃(𝑟,𝑡)

𝜕𝑟
= −𝐹1 (1 + 𝜏𝑞𝐷𝑡

(𝛼)
) 𝑒−𝜔𝑡 𝛿(𝑟 − 𝜐𝑡),   𝐹1 =

𝐹0𝜌𝑘𝑐0

𝛾
. (3.22) 

It was considered that the material cannot move or deform on its surface, meaning that the surface 

displacement 𝑢(𝑟, 𝑡)  is restricted. Therefore, the spherical gap surface is subject to the following 

mechanical constraint: 

 𝑢(𝑟, 𝑡) = 0   at  𝑟 = 𝑎. (3.23) 

4. Solution of the problem 

In the study of thermoelastic materials, the Laplace transform is often used to move the governing 

equations from the space-time domain to the space domain, where they are easier to solve. The 

following is the definition of the Laplace transform of any function 𝑔(𝑟, 𝑡): 
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 �̅�(𝑟, 𝑠) = ∫ 𝑔(𝑟, 𝑡)𝑒−𝑠𝑡𝑑𝑡,
∞

0
  (4.1) 

where 𝑠  is a complex number with a positive real part ( 𝑅𝑒(𝑠) > 0 ) and �̅�(𝑟, 𝑠)  denotes the 

transformed function. We use the inverse Laplace transform to restore the changed fields to their 

original state in the time domain. This transform is defined as follows: 

 𝑔(𝑟, 𝑠) =
1

2𝜋𝑖
∫ �̅�(𝑟, 𝑡)𝑒𝑠𝑡𝑑𝑠,

Υ+∞

Υ−∞
  (4.2) 

where Υ is a real number greater than the real part of all the singularities of �̅�(𝑟, 𝑠). 

Using the Laplace transform on the fundamental equations, we are able to obtain the following: 

 (∇2 − 𝛼1)�̅� = 𝛼2∇2�̅�, (4.3) 

 𝑎1�̅� = (∇2 − 𝑎2𝑠2)�̅�, (4.4) 

 𝑆�̅�𝑟 = 4𝛽2 �̅�

𝑟
+ �̅� − �̅�, (4.5) 

 𝑆Θ̅Θ = −2𝛽2 �̅�

𝑟
+ (1 − 2𝛽2)�̅� − �̅�, (4.6) 

where 

 𝛼1 =
𝑠(1+𝛼0𝜏𝑞

𝛼 )

(1+𝛼0𝜏𝑞𝜃
𝛼  )

, 𝛼2 =
𝑠 (1+𝛼0𝜏𝑞

𝛼 )

(1+𝛼0𝜏𝑞𝜃
𝛼  )

, 𝛼0 =
𝑠

s𝛼+1

1

1+𝜒s−(𝛼+1). (4.7) 

Through the elimination method we can separate Eqs (4.3) and (4.4) and obtain the following 

independent equations: 

 
∇4�̅� − 𝛿1 ∇2�̅� + 𝛿2�̅� = 0,

∇4�̅� − 𝛿1 ∇
2�̅� + 𝛿2�̅� = 0,

 (4.8) 

where 

 𝛿1 = 𝛼1 + 𝑠2𝑎2 + 𝛼2𝑎1,     𝛿2 = 𝛼1𝑠2𝑎2. (4.9) 

Within Laplace transforms, the temperature and displacement can be obtained by solving these 

separate equations independently as follows: 

 �̅�(𝑟, 𝑠) =
𝛼2

√𝑟
[𝐴1𝜇1

2𝐾1/2(𝜇1𝑟) + 𝐴2𝜇2
2𝐾1/2(𝜇2𝑟)], (4.10) 

 �̅�(𝑟, 𝑠) =
1

√𝑟
[(𝜇1

2 − 𝛼1)𝐴1𝐾1/2(𝜇1𝑟) + (𝜇2
2 − 𝛼1)𝐴2𝐾1/2(𝜇2𝑟)]. (4.11) 

The boundary conditions give the integrative coefficients 𝐴𝑖 , where 𝑖 = 1 , 2, and 3 are the 

respective parameters. Also, 𝐾1/2(𝜇1𝑟) represents the second category of modified Bessel functions 

with an order of 1/2. Furthermore, the coefficients 𝜇1
2  and 𝜇2

2  are the characteristic roots of 

differential equations. The roots of this equation can be expressed as follows: 
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 𝜇1
2 =

𝛿1+√𝛿1
2−4𝛿2

2
,     𝜇2

2 =
𝛿1−√𝛿1

2−4𝛿2

2
. (4.12) 

It is possible to arrive at a solution for the dimensionless displacement function �̅�(𝑟, 𝑠) by taking 

into account the relationship between the Laplace transforms of the displacement component, �̅�(𝑟, 𝑠), 

and the function �̅�(𝑟, 𝑠) as follows: 

 �̅�(𝑟, 𝑠) = −
𝛼2

√𝑟
[𝐴1𝜇1𝐾3/2(𝜇1𝑟) + 𝐴2𝜇2𝐾3/2(𝜇2𝑟)]. (4.13) 

By substituting the previous solutions into Eqs (4.5) and (4.6), we can derive the following 

solutions for dimensionless thermal stresses: 

 
𝑆�̅�𝑟(𝑟, 𝑠) =

1

√𝑟
[(𝛼2𝜇1

2 − 𝜇1
2 + 𝛼1)𝐾1/2(𝜇1𝑟) −

4𝛽2𝜇1𝛼2

𝑟
𝐾3/2(𝜇1𝑟)] 𝐴1

                          +
1

√𝑟
[(𝛼2𝜇2

2 − 𝜇2
2 + 𝛼1)𝐾1/2(𝜇2𝑟) −

4𝛽2𝜇2𝛼2

𝑟
𝐾3/2(𝜇2𝑟)] 𝐴2,

 (4.14) 

 
𝑆Θ̅Θ(𝑟, 𝑠) = [(𝛼2𝜇1

2(1 − 2𝛽2) − 𝜇1
2 + 𝛼1)𝐾1/2(𝜇1𝑟) +

2𝛽2𝜇1𝛼2

𝑟
𝐾3/2(𝜇1𝑟)] 𝐴1

                            + [(𝛼2𝜇2
2(1 − 2𝛽2) − 𝜇2

2 + 𝛼1)𝐾1/2(𝜇2𝑟) +
2𝛽2𝜇2𝛼2

𝑟
𝐾3/2(𝜇2𝑟)] 𝐴2.

 (4.15) 

By inserting the solutions of the displacement component �̅�(𝑟, 𝑠) into expression (3.10) we can 

derive the solution to the Maxwell stress �̅�𝑟𝑟 in the Laplace transform field 

 �̅�𝑟𝑟(𝑟, 𝑠) =
𝑎0

2𝛼2

𝑐0
2√𝑟

[𝐴1𝜇1
2𝐾1/2(𝜇1𝑟) + 𝐴2𝜇2

2𝐾1/2(𝜇2𝑟)]. (4.16) 

In the field of Laplace transform, conditions (3.22) and (3.23) can be expressed as follows: 

 
𝜕�̅�(r,𝑠)

𝜕𝑟
= −

𝛼0𝐹1

𝜐
𝑒−Ω𝑟 ,     Ω =

𝜔+𝑠

𝜐
,     𝑟 = 𝑎, (4.17) 

 �̅�(𝑟, 𝑠) = 0,                               𝑟 = 𝑎. (4.18) 

We can obtain the parameters 𝐴𝑖, = 1, 2 by substituting Eqs (4.11) and (4.13) into the boundary 

conditions (4.17) and (4.18), and then solving the two equations. 

5. Laplace inversions 

The present investigation presents a resilient numerical technique for Laplace inversion in diverse 

domains, with a focus on dependability, practicality, and accuracy. This innovative approach uses a 

methodology based on the extension of Fourier series to estimate inverse Laplace transforms. This 

technique easily calculates inverse Laplace transforms by describing functions as combinations of 

Fourier series components, making it widely applicable in engineering and scientific fields [42]. This 
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approach offers several key advantages, such as its high level of precision, flexibility to adapt to 

different situations, and capacity to handle a wide range of jobs, including some that are difficult to 

compute using other methods. The approach's accuracy depends on the careful selection of Fourier 

series terms [43]. Validation and verification are critical for ensuring that the approach is accurate and 

reliable. This involves adhering to beginning and boundary conditions, as well as governing equations. 

When converting any field �̅�(𝑟, 𝑠) in a Laplace space field into a space-time field 𝐻(𝑟, 𝑡), the 

numerical method based on the following Fourier series extension will be used [44]: 

 𝐻(𝑟, 𝑡) =
𝑒𝜉𝑡

𝜏1
(

�̅�(𝜉)

2
+ 𝑅𝑒 ∑ 𝑒𝑖𝑘𝜋𝑡/𝜏1�̅�(𝜉 + 𝑖𝑘𝜋/𝜏1)

𝑁0

𝑘=1
) ,    0 ≤ 𝑡 ≤ 2𝜏1. (5.1) 

In order to implement this approach, a computer program was created using the high-level 

programming language mathematica, which was specifically designed for numerical computing 

purposes. 

6. Special cases 

This section presents a collection of unique theories of thermoelasticity. These theories may be 

obtained as particular instances of the existing model, either with or without the inclusion of fractional 

derivative operators or delay phase periods. This indicates that the existing model is a versatile and 

potent tool for explaining the behavior of thermoelastic materials across a broad spectrum of 

circumstances. 

6.1. Thermoelastic models 

By disregarding fractional differentiation and setting the fractional order 𝛼 = 1, we can generate 

several forms of thermoelastic models. This is done in the fundamental equations, and only the 

parameters 𝜏𝜃 and 𝜏𝑞 are taken into consideration. The different types of thermoelastic models can 

be obtained by considering different values of the phase lags 𝜏𝜃 and 𝜏𝑞, as follows: 

Coupled thermoelastic model (CTE): This model is achieved when both 𝜏𝜃 and 𝜏𝑞 are equal to 

zero. In this scenario, there is no time delay between the heat flux (�⃗�) and temperature gradient (∇𝜃). 

Single-phase-lag thermoelastic (SPL-TE) model: This model may be achieved when 𝜏𝜃 is equal 

to zero and 𝜏𝑞 is greater than zero. In this scenario, there is no delay in the timing of ∇𝜃, but there is 

a delay in the timing of �⃗� and the mechanical reaction. The alternative name for this concept is the 

Lord-Shulman theory of thermoelasticity. 

DPL thermoelastic (DPL-TE) model: This model is achieved when both 𝜏𝜃 and 𝜏𝑞 are greater 

than zero. In this scenario, there is a delay in time between �⃗� and ∇𝜃. This model incorporates the 

limited speed at which heat spreads. 

6.2. Fractional models of thermoelasticity  

By using the fractional differential operators 𝐷𝑡
(𝛼)

 , where 𝛼 ∈ (0,1) , one can derive the two 

fractional thermoelasticity models as follows: 
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SPL fractional thermoelastic (SPL-FTE) model: This model can be obtained if 𝜏𝜃 = 0 and 𝜏𝑞 > 0. 

In this case, the fractional differential operator 𝐷𝑡
(𝛼)

 is applied only to the �⃗� term, while ∇𝜃 is still 

described by the classical time derivative. This model considers memory and the historical impacts of 

the substance. 

DPL fractional thermoelastic (DPL-FTE) model: This model is achieved when both 𝜏𝜃 and 𝜏𝑞 

are greater than zero. In this particular instance, the fractional differential operator is applied to both 

the heat flux and ∇𝜃 components. This is done to represent the reality that the memory and historical 

impacts of the material have an impact on both �⃗�and ∇𝜃. 

7. Numerical results and discussions 

The previous sections have presented an innovative theoretical model for thermoelasticity, which 

includes the integration of several fractional operators. We used this framework to analyze the behavior 

of a thermoplastic solid with unlimited elasticity. The solid has a spherical cavity and is exposed to a 

magnetic field of constant intensity. This section will contain numerical analysis and findings about 

the material's displacement, temperature, and thermomechanical stress fields. We will consider the 

mechanical properties of copper in our numerical calculations and analysis. We aim to utilize these 

calculations to comprehend the impact of a spherical cavity and a constant-intensity magnetic field on 

the thermoelastic properties of copper. Our goal is to understand how the material reacts to these 

conditions by looking at how the displacement, temperature, and thermomechanical stress fields are 

arranged in space and to find any interesting patterns or phenomena. The following are the physical 

characteristics of the Cu material at 𝑇0 = 298 K [45,46]: 

 𝜌 = 8954 kg/m3 , {𝜆, 𝜇} = {7.76, 3.86} × 1010kg/ms2 , 𝐻0 = 107Am−1

𝐾 = 386 W/mK ,     𝐶𝐸 = 383.1 J kg/K ,    𝛼𝑡 = 5 × 10−7 1/K,

  𝑡 = 0.12s, 𝜇0 = 12.6 × 10−7 Hm−1,    𝐹0 = 1, 𝜔 = 0.1 .

 

The outcomes derived from the computational examination of physical phenomena will be 

showcased and assessed using graphical representations. The goal of these graphs is to validate the 

suggested model and enable a comparison between various fractional differentiation operators. 

7.1. Comparison of fractional derivative operators 

Various values of the fractional-order coefficient are considered in order to carry out the numerical 

computations. The suggested model is used to analyze the physical behavior of different physical fields. 

The figures show the difference in results between the nonlocal fractional operator (the new YAC) [6] 

and the standard Riemann-Liouville fractional model (RL). They also show what happens when there 

is no fractional differentiation (𝛼 = 1). The goal of comparing fractional parameters and conventional 

derivatives is to ascertain the relative efficacy of these operators in mitigating heat waves from a 

physical standpoint. We base the comparisons on the attributes of the operators, such as their precision, 

steadfastness, and efficacy. 

Figures 2–6 illustrate the changes in the distribution of radial displacement 𝑢, temperature change 
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𝜃, and stress components 𝑆𝑟𝑟 and 𝑆ΘΘ as the radial coordinate 𝑟 varies. The forms are displayed 

with fixed values of υ  𝜐 = 5 , 𝜔 = 15 , 𝜏𝑞 = 0.2 , and 𝜏θ = 0.1 , and with a single value of the 

fractional order, 𝛼 = 0.8. The study compared the outcomes of nonlocal fractional operators and non-

singular kernels, specifically the CF, AB, and YAC fractional models, with the traditional RL fractional 

model. Additionally, the scenario where fractional differentiation is absent (𝛼 = 1) was also examined. 

Fractional differential factors, which take different forms, have a significant impact on the studied 

thermophysical fields. The findings also revealed that the fractional order values and the specific type 

of fractional differential operator influence how thermal and mechanical waves reach their stable states. 

The literature has cited these results, including those listed in reference [47]. Furthermore, it was 

discovered that raising the value of the fractional parameter results in an increase in the transmission 

speed of the analyzed waves near the cavity surface. This is due to the fact that heat flow already exists 

at the beginning of the waves that are passing through the body, but it diminishes at a quicker rate as 

the waves penetrate deeper into the medium [48]. Because fractional operators are nonlocal, they 

depend on the values of the function at all locations in the interval [0, 𝑡], rather than simply at the 

point 𝑡. This causes the heat flow to drop more quickly than it would otherwise. 

Figures 2 through 6 demonstrate that only within a specific region can we obtain the nonzero 

values of dynamical temperature, radial displacement, and pressure after determining the instant in 

time. All the numerical values represent zero outside that zone. As a result, this provides an explanation 

for why generalized models of thermoelasticity predict that the rate of heat transmission in a thermal 

medium is restricted. The standard theories of heat transfer, on the other hand, predict that the velocity 

of thermal and mechanical waves is unbounded which is practically reported by [49]. The comparison 

results indicate that fractional coefficients are more efficient at mitigating heat waves than standard 

derivatives. The presence of fractional coefficients results in a dampening effect on the heat waves, 

leading to a decrease in both their amplitude and frequency [50]. The nonlocal characteristic of the 

fractional parameters, determined by the function values over the whole interval [0, 𝑡], rather than just 

at the point 𝑡, causes the damping effect. Conversely, the usual derivatives are localized and rely on 

the function's values at a specific point 𝑡 rather than considering all points throughout the interval 

[0, 𝑡]. The localized character of conventional derivatives renders them less useful in mitigating heat 

waves, as they lack the dampening effect seen by fractional indices. 

Figure 2 displays the variations in temperature patterns based on the distance variable for several 

fractional differential operators and two distinct values of the fractional order factor 𝛼 . Figure 2 

demonstrates that the fractional order coefficient exerts a substantial impact on the dynamics of 

temperature variation inside the elastic medium. One may also note that the temperature 𝜃 attains its 

maximum value near the surface of the spherical cavity as a result of the existence of a flowing heat 

flux and thereafter diminishes progressively as it advances away from the cavity until it approaches 

zero. These observations support the idea that a heat wave can only travel at limited speeds within 

elastic media.  
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Figure 2. Variation in the temperature 𝜃 for various fractional operator. 

An important observation that must be taken into account is that the results of the thermoelastic 

model without the fractional actuator (𝛼 = 1) give higher temperature values than in the case of the 

presence of the fractional differential actuator (RL, CF, AB, and YAC) as concluded in [51,52]. 

Furthermore, based on the data presented, it is evident that the conventional fractional derivative and 

the fractional derivatives associated with Caputo produce significantly larger physical fields in the 

vicinity of the disturbance region than CF, AB, the exponential Ratputnov kernel (YAC), and the latter, 

which yields the smallest values (see [18]). 

 

Figure 3. Variation in the displacement 𝑢 for various fractional operator. 
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Figure 4. Variation in the radial stress 𝑆𝑟𝑟 for various fractional operator. 

Figure 3 illustrates the variation in the displacement field 𝑢 as a function of the distance 𝑟 and 

the differential actuator. The presence of the fractional parameter 𝛼 has a dramatic impact on the 

curves of the displacement field. The displacement values 𝑢 show an upward trend as the distance 

increases, reaching their maximum points, then falling and gradually disappearing until they get closer 

to zero. It was discovered that all displacement curves seem to have zero values from the surface of 

the gap because the surface is constrained. This was done in order to comply with the criteria of 

mechanical constraints that were placed on the problem itself. The validity of the method that was 

applied and the validity of the numerical results obtained as a result are verified. Figure 3 demonstrates 

that the presence of the fractional differentiation operator leads to varying amounts of displacement 𝑢 

in different locations of the medium. As demonstrated in [18], the displacement in the YAC fractional 

differential actuator is much smaller than that of other fractional actuators. 

The impact of fractional operators (RL, CF, AB, and YAC) on the behavior of the radial stress 𝑆𝑟𝑟 

and hoop pressure 𝑆ΘΘ distributions with varying radial coordinates 𝑟 is depicted in Figures 4 and 5. 

According to the figures, the stresses (𝑆𝑟𝑟 and 𝑆ΘΘ) begin with negative values and progressively 

grow until they reach their maximum value at a distance from the intermediate gap's surface. After that, 

as the distance increases, the pressures progressively drop until they vanish outside of the turbulence 

zone. The findings indicate that the addition of fractional operators to the thermoelasticity model 

significantly affects the distributions of thermal stresses [53]. The curves show that the nonlocal 

fractional operators (CF, AB, and YAC) lead to smaller amounts of thermal stress than when the 

fractional differentiation disappears (𝛼 = 1) and when the standard fractional model is used (RL). 

The numerical results depicted in Figures 4 and 5 offer valuable insights into the impact of various 

fractal factors on thermal stresses. The findings indicate that the magnitudes of these thermal stresses 

might vary, either increasing or decreasing, depending on the specific fractional derivative factor 

employed. The contrast highlights the impact of the choice of the fractional operator on the sensitivity 

of thermal stress responses. The graphs show that these stresses increase dramatically near the 
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cylindrical cavity, before gradually decreasing within the infinite medium and eventually disappearing. 

It is crucial to emphasize that in the turbulent zone around the cavitation, the stresses primarily exhibit 

compressive behavior. This discovery aligns with the theoretical knowledge that compressive stresses 

are a characteristic of cavitation occurrences in turbulent flows. It is very important to use a fractional 

differential actuator instead of a regular differential actuator when changing how mechanical waves 

travel in the heat conduction equation. More precisely, it hinders the rapid propagation of these waves 

in the medium, resulting in a more accurate progression of the thermal and mechanical fields over time 

which is practically reported by [53]. As a result, this study highlights the importance of choosing the 

appropriate fractional operator to effectively capture the complex interaction between thermal and 

mechanical fields in such situations. 

 

Figure 5. Variation in the hoop stress 𝑆ΘΘ for various fractional operator. 

Figure 6 illustrates the impact of fractional differentiation variables on the distribution of Maxwell 

stress 𝑀𝑟𝑟. The shape curves demonstrate a quick decrease in the Maxwell stress as the distance from 

the cavity rises. This discovery suggests that the impact of the magnetic field is instantaneous and 

confined to a specific region. The results indicate that the inclusion or exclusion of fractional 

components has a little impact on the numerical values of the Maxwell stress, resulting in modest drops 

or increases. This shows that changes in the fractional parameter have a negligible impact on the 

Maxwell stress (𝑀𝑟𝑟) characteristics and dynamics. 

Traditional fractional derivatives have been thoroughly examined and utilized in several domains, 

however they may not consistently encompass the nonlocal impacts observed in intricate systems. 

Although the Caputo-related derivatives, CF, AB, and exponential Ratputnov kernel fractional 

derivatives (YAC) have common characteristics in terms of being nonlocal and capable of representing 

intricate systems, they vary in terms of their unique kernels and mathematical qualities. The selection 

of a suitable fractional derivative operator depends on the specific problem and the intended properties 

of the solution [54]. 
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Figure 6. Variation in the Maxwell's stress 𝑀𝑟𝑟 for various fractional operator. 

The comparisons indicate that YAC operators utilizing an exponential fractional Rabotnov kernel 

outperform both RL and integer-time derivative operators in some aspects. For instance, the YAC 

operators utilizing an exponential fractional Rabotnov kernel exhibit superior accuracy and stability 

compared to the RL, CF, and AB, and integer-time derivative operators. Additionally, they are more 

efficient than the RL and integer-time derivative operators [55]. The YAC operators, which have an 

exponential fractional Rabotnov kernel, are easier to understand and don't have as many parts as the 

RL and integer time derivative operators. Consequently, they are more convenient to use and 

comprehend [56]. The exponential Ratputnov kernel is notable in the field of fractional calculus due 

to its capacity to expand the domain using exponential kernels that do not have singularities. It is 

widely used for modeling complex systems and dynamical systems, and it is valuable for deriving 

significant inequalities for stability analysis. Novel time and spatial fractional derivatives have utilized 

the exponential Ratputnov kernel, demonstrating its extensive versatility in diverse domains that 

incorporate fractional calculus. 

The Ratputnov exponential kernel has shown effective in analyzing the fractional form of 

dynamical systems, such as the Lotka-Volterra model in mathematical biology. This use has facilitated 

a more profound comprehension of intricate dynamical behaviors. The exponential Ratputnov kernel, 

along with other fractional derivatives utilizing exponential kernels, can proficiently simulate intricate 

systems that demonstrate non-local effects, providing a more precise depiction of real-world events. 

The introduction of fractional derivatives is anticipated to have a crucial impact on investigating 

the overall behavior of different materials, particularly in relation to partial exchanges such as 

thermoelasticity, fluidity, and other related phenomena. The incorporation of phase delays into the 

modified heat transfer equation employed for constructing the frame demonstrates that heat waves 

propagate in a natural manner and maintain a consistent magnitude. This discovery is significant 

because it showcases the capacity of the novel fractional derivatives to effectively simulate and 

forecast the behavior of thermoelastic materials under varying circumstances. The theory presented in 
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this study is very relevant to contemporary aerodynamic engineering challenges involving 

thermoplastic cylinders. 

7.2. The influence of the speed of the heat flow 

Thermal energy continuously transmits through a material in movable heat flows, which are part 

of the heat transfer processes under investigation. The analysis of these mobile heat transfers is 

essential in the study of heat conduction due to its wide-ranging applications in both technical and non-

technological domains. Simulating and addressing the behavior of mobile heat fluxes is crucial for 

enhancing processes, guaranteeing even heat distribution, and controlling thermal effects on materials. 

This knowledge is extremely valuable for improving efficiency, quality, and reliability in a wide range 

of industrial and technological sectors. Heat can transfer in a mobile manner during various industrial 

operations such as heat treatment, metal forming, casting, smelting, welding, metal cutting, laser 

processing, metal plating, and plasma spraying. The interaction between heat flow and material 

qualities has a substantial impact on temperature variations, deformation, and thermal stresses in an 

elastic body. 

This section attempts to evaluate and describe the impacts of mobile thermal flux fluxes on heat 

transfer, deformation, and thermal stresses using the Rabotnov fractional-exponential kernel (YAC) in 

the fractional thermoelasticity model. The goal is to forecast the behavior of the thermoelastic system 

being examined. This subsection specifically examines the impact of the velocity (𝜐) of a flowing heat 

flow on different fields. The remaining physical parameters, namely, 𝜏𝑞 = 0.2, 𝜏𝜃 = 0.1, 𝜔 = 15, 

and 𝛼 = 0.8, are assumed to have a fixed value. Figures 7–11 display the changes in temperature, 

displacement, and stresses caused by varying velocities of the heat flux (𝜐) at speeds of 3, 5, and 8. 

Figures 7–11 demonstrate a significant impact of the moving heat flux's velocity on the 

fluctuations of the studied field variables. When the heat transfer speed increases, there is a clear 

increase in displacement and thermal stresses [57]. This suggests that heat flows cause more significant 

deformation and stress on the elastic body. Moreover, it is evident that the heat flux intensity decreases 

exponentially with time, with a time constant of 1/𝜔 . This suggests that the rate of heat transfer 

gradually diminishes with time. 

Figure 7 clearly demonstrates the significant impact of heat transfer velocity (𝜐) on temperature 

changes (𝜃). As the body is elongated considerably in the direction of movement, the temperature 

profile 𝜃 surrounding the heat flow eventually reaches a state where it does not change with time, as 

shown in the diagram. The graph curves unambiguously demonstrate that an escalation in heat flow 

velocity 𝜐  results in a reduction in temperature magnitude 𝜃 . This discovery emphasizes the 

significant relationship between the speeds of heat flows in motion and changes in temperature, 

demonstrating a positive impact on temperature patterns. Typically, the duration to reach the maximum 

temperature 𝜃 is shorter than the time needed to attain a quasi-steady state. This phenomenon occurs 

when the initial rate of heat transfer from the flow to the substance surpasses its capacity to dissipate 

the heat. Consequently, the temperature of the material, denoted as 𝜃, increases rapidly and reaches 
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its highest point before the heat flow condition can be characterized as quasi-steady, as stated in 

reference [58]. 

 

Figure 7. Temperature 𝜃 for different heat flow velocities 𝜐. 

 

Figure 8. The displacement 𝑢 for different heat flow velocities 𝜐. 

When the heat flow velocity increases, it delivers less energy per unit length, resulting in a 

narrower temperature range within the medium. Heat flowing at a higher speed spends less time in a 

particular region, leading to reduced heat transmission to the surrounding material, explaining this 

phenomenon. As a result, the temperature inside the material becomes more restricted, leading to a 

decrease in the maximum temperature and a reduction in the spatial range. Extensive research 

supporting this occurrence may be found in [58], which presents evidence that is consistent with the 

proposed explanation. The study demonstrates that when the rate of heat flow rises, the temperature 

distribution within the material becomes more limited, resulting in a lower maximum temperature and 
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a narrower geographical range. This discovery provides additional evidence for the accuracy of the 

model employed to elucidate the behavior of the system [59] since it corresponds with the anticipated 

behavior of a moving heat transfer. 

Figure 8 illustrates the influence of heat flow velocity (𝜐) on the change in displacement (𝑢). It is 

evident that an increase in heat flow velocity leads to a decrease in the displacement value. The 

decrease in thermal energy intensity per unit length at higher velocities explains this phenomenon. As 

a result, there is a lower temperature increase and, subsequently, a reduced displacement of the 

material [60]. The graph illustrates that the parameter 𝜐 has no major impact on the trajectory of the 

displacement pattern. Based on these results, we can conclude that the primary factor that determines 

the displacement of the material is the intensity of the heat source, not the speed of the source. 

 

Figure 9. The stress 𝑆𝑟𝑟 for different heat flow velocities 𝜐. 

 

Figure 10. The stress 𝑆ΘΘ for different heat flow velocities 𝜐. 
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Figures 9 and 10 illustrate the influence of the velocity parameter (𝜐) on the radial and annular 

pressures (𝑆𝑟𝑟 and 𝑆ΘΘ) in a material subjected to a heat source in motion. The stresses demonstrate a 

notable inclination to either escalate or diminish in magnitude based on the velocity parameter (𝜐) 

value. This pattern becomes apparent when the velocity parameter (𝜐 ) increases. As the velocity 

increases, the absolute pressures decline significantly. Consequently, the surrounding surfaces restrict 

the material, limiting its thermal expansion and deformation. This limitation causes the material to 

experience compressive thermal stresses, resulting in a decrease in the absolute pressures. Identifying 

the dynamics of radial and annular pressures in a material exposed to a mobile heat source is essential 

for a range of applications, such as heat treatment, metal forming, casting, and smelting, as well as the 

welding and cutting of certain metals. Examining the distribution of stress allows for process 

optimization, improves product quality, and ensures safe and efficient functioning in a variety of 

industrial developments. 

 

Figure 11. The Maxwell's stress 𝑀𝑟𝑟 for different heat flow velocities 𝜐. 

Figure 11 illustrates the correlation between Maxwell stress (𝑀𝑟𝑟) and the velocity coefficient (𝜐). 

The image demonstrates that the velocity parameter (υ) has a negligible influence on Maxwell's stress 

(𝑀𝑟𝑟), similar to its impact on displacement (𝑢). A plausible explanation for this phenomenon is that 

the heat flux being applied is traveling at a consistent velocity (𝜐), and the distance covered by the heat 

source can be calculated using the equation 𝑟 = 𝜐𝑡, which takes into consideration the amount of time 

that has passed since instant 𝑡. Therefore, the temperature increase can be attributed to a rise in the 

amount of heat emitted from the source when 𝑟 = 𝜐𝑡. These findings indicate that the fundamental 

determinant of the Maxwell stress within the system is the intensity of the heat source rather than its 

speed. During extended simulations, it is possible to build a nearly constant temperature field, and this 

field remains unchanged in the coordinate system that moves along with the heat source. This 

discovery is consistent with the findings reported in reference [61], which also suggest the presence of 
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a nearly constant temperature distribution in a material that is heated by a heat source in motion. 

The temperature distribution in a material subjected to a moving heat flow is affected by various 

elements, such as the material's qualities, heat source characteristics, and boundary conditions. 

Addressing the dynamics of temperature distribution in these situations is crucial for a range of 

practical uses, such as heat treatment, metal forming, casting, smelting, welding, and the cutting of 

certain metals. Through the analysis and understanding of temperature distribution, it is possible to 

improve industrial processes, enhance product quality, and guarantee safe and efficient operations. 

8. Conclusions 

Utilizing a two-phase delay fractional thermoelasticity model enables a more accurate depiction 

of the thermomechanical elastic interactions in materials. This work presents a novel thermoelastic 

model for thermal conductivity that integrates local fractional differential operators and non-

anomalous kernels. The paper presents a novel fractional derivative operator that utilizes a non-

singular kernel. This operator is based on the fractional exponential Rabotnov function, which was 

presented by YAC. The model was utilized to analyze the thermoelastic and mechanical responses of 

an infinite medium with a spherical cavity under the influence of a moving thermal flow. The model 

is regarded as adaptable and suitable to thermoelastic materials with intricate geometries and diverse 

boundary conditions, which are pertinent to fields such as geophysics, aerospace engineering, nuclear 

engineering, and biomedical engineering. This research enhances the comprehension of 

thermomechanical responses in materials and offers a helpful analytical tool for studying many 

practical scenarios by integrating the two-phase delay fractional thermoelasticity model and the 

innovative fractional derivative operator. The studies and discussions have resulted in some 

noteworthy conclusions: 

• The use of fractional differential operators in the heat conduction equation allows for a more 

precise comprehension of how a material responds to heat, taking into account aspects such as the 

duration of phase delays and the dynamic heat flow. 

• The order of fractional differentiation and the use of fractional differential operators significantly 

affect several physical domains, such as temperature distribution and thermal stresses. 

• In elastic media, the order of fractional derivatives is critical to reducing mechanical and thermal 

waves. Hence, the fractional order coefficient can be used as a new parameter to assess the heat 

transport and conductivity capacity of elastic materials, akin to thermal conductivity coefficients and 

other physical factors. Additionally, it offers valuable information on enhancing the effectiveness of 

thermoplastic materials. 

• In an elastic medium, a heat wave propagates at a measurable velocity that corresponds to 

empirical data. This suggests that the proposed fractional heat conduction model deviates greatly from 

the usual Fourier equation, which anticipates unlimited wave diffusion. 

• When used in thermoelastic simulations, the YAC fractional operator demonstrates its 

superiority over conventional fractional operators. It can be efficiently utilized to address 

interconnected physical issues, such as biothermia and viscoelasticity. 

• As the velocity of the heat flow rises, the temperature pattern in the material becomes more 
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restricted, with lower maximum temperature values and a smaller spatial range. This can be attributed 

to the heightened restriction on the temperature distribution of the material. At greater speeds, the 

amount of thermal energy per unit length reduces, leading to reduced temperature increases and smaller 

movements of the material. 

• The study findings have practical implications for optimizing industrial operations, promoting 

product quality, and ensuring process safety and efficiency, particularly in situations involving heat 

transfer and exposure to intricate thermal and mechanical pressures. 
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