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1. Introduction

The models of the differential and integral equations have been appeared in different applications
(see [1-4,6,7,9,12-20]).

Boundary value problems involving fractional differential equations arise in physical sciences and
applied mathematics. In some of these problems, subsidiary conditions are imposed locally. In some
other cases, nonlocal conditions are imposed. It is sometimes better to impose nonlocal conditions
since the measurements needed by a nonlocal condition may be more precise than the measurement
given by a local condition. Consequently, a variety of excellent results on fractional boundary value
problems (abbreviated BVPs) with resonant conditions have been achieved. For instance, Bai [4]
studied a type of fractional differential equations with m-points boundary conditions. The existence of
nontrivial solutions was established by using coincidence degree theory. Applying the same method,
Kosmatov [17] investigated the fractional order three points BVP with resonant case.

Although the study of fractional BVPs at resonance has acquired fruitful achievements, it should
be noted that such problems with Riemann-Stieltjes integrals are very scarce, so it is worthy of further
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explorations. Riemann-Stieltjes integral has been considered as both multipoint and integral in a single
framework, which is more common, see the relevant works due to Ahmad et al. [1].

The boundary value problems with nonlocal, integral and infinite points boundary conditions have
been studied by some authors (see, for example [8, 10—-12]).

Here, we discuss the boundary value problem of the nonlinear differential inclusions of arbitrary
(fractional) orders

dx

dt

with the nonlocal boundary condition

e Fi(t, x(t), I f>(t, D*x(1))), a,y € (0,1] te(0,1) (1.1)

m

D ax(m) = xo, a >0 T € [0, 1], (1.2)
k=1
the integral condition 1
fo x(5)dg(s) = xo (1.3)
and the infinite point boundary condition
i apx(ty) = xo, a; > 0and 7, € [0, 1]. (1.4)
k=1

We study the existence of solutions x € C[0, 1] of the problems (1.1) and (1.2), and deduce the
existence of solutions of the problem of (1.1) with the conditions (1.3) and (1.4). Then the existence
of the maximal and minimal solutions will be proved. The sufficient condition for the uniqueness and
continuous dependence of the solution will be studied.

This paper is organised as: In Section 2, we prove the existence of continuous solutions of the
problems (1.1) and (1.2), and deduce the existence of solutions of the problem of (1.1) with the
conditions (1.3) and (1.4). In Section 3, the existence of the maximal and minimal solutions is proved.
In Section 4, the sufficient condition for the uniqueness and continuous dependence of the solution are
studied. Next, in Section 5, we extend our results to the nonlocal problems (1.3) and (2.1). Finally,
some existence results is proved for the nonlocal problems (1.4) and (2.1) in Section 6.

2. Main results

Consider the following assumptions:

(D (i) The set F(t, x,y) is nonempty, closed and convex for all (¢, x,y) € [0, 1] X R X R.
(i1) F(t, x,y) is measurable in ¢ € [0, 1] for every x,y € R.
(i11) F(t, x, y) is upper semicontinuous in x and y for every ¢ € [0, 1].
(iv) There exist a bounded measurable function a; : [0, 1] — R and a positive constant K, such
that

1F1(t, x, )l sup{lfil : fi € F1(t, %, y)}

< lar® + Ki(|x] + [yD.

A
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Remark 2.1. From the assumptions (i)—(iv) we can deduce that (see [3, 6, 7, 13]) there exists f; €
F\(t, x,y), such that

(v) f1 : [0, 1]1XRXR — R is measurable in t for every x,y € R and continuous in x,y fort € [0, 1], and
there exist a bounded measurable function a, : [0, 1] — R and a positive constant K, > 0 such that

/i@ %, I < lar (O + Ki(|x] + [yD,
and the functional fi satisfies the differential equation

% = fi(t, (O, P f(t, D°x(t))), @,y € (0,1]and t € (0,1]. 2.1)

(II) £, : [0,1] X R — R is measurable in t for any x € R and continuous in x for t € [0, 1], and there
exist a bounded measurable function a, : [0,1] — R and a positive constant K, > 0 such that

122, 0| < lax (0] + K>|xl, Y1 € [0,1] and x € R

and

sup |a;(1)| < a;,i=1,2.
t€[0,1]

(I1l) 2Ky + K1 Kya < ayI'2 — @), a,y € (0, 1].

Remark 2.2. From (I) and (v) we can deduce that every solution of (1.1) is a solution of (2.1). Now,
we shall prove the following lemma.

Lemma 2.1. If the solution of the problems (1.2)—(2.1) exists then it can be expressed by the integral

equation
(=9 L f -0
w0 = [t ) > O yodo
f (s = )(“ ¥(6)d6, f GO 4 y(O)doyds. 22)
T , TG

Proof. Consider the boundary value problems (1.2)—(2.1) be satisfied. Operating by I'~ on both sides
of (2.1) we can obtain

Dx(t)=1' “‘; = I""f,(t, x(t), I f>(t, D x(1))). (2.3)
Taking
D x(t) = y(1), (2.4)
then we obtain
x(1) = x(0) + I¥(¢). (2.5)

Putting # = 7 and multiplying (2.5) by Z7" a;, then we get
i arx(ty) = 2L arx(0) + XL ardy(Ty), (2.6)
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X0 = 2L axx(0) + 270 ap I y(Ty) 2.7
and
x(0) = [xo — Z ard*y(Ti)]. (2.8)
k=19
Then
x(1) = " [xo = Zplyarl* y(ti)] + I7y(0). 2.9)

Substituting (2.8) and (2.9) in (2.5), which completes the proof.

Theorem 2.1. Let assumptions (I)—(1ll) be satisfied. Then the integral equation (2.2) has at least one
continuous solution.

Proof. Define a set Q, as
Q,={yeCl0, 1] : Iyl < r},

_ Iy + Dlai + KiAlxoll + kia, e _
- ’ (Z ak)
ayl'2 — a) — [2K a + K Kyy]

and the operator F by
A N (-0
Fy() = f—m £ z“ | Z]afo O oo
0y~
)

T f(
6)do,
f F() ()

f2(9, v(6))do)ds.

Fory € Q,, then

Tt 1 S (1 - 6)!
F = (s, =——[xo — T 6)de
ol = 1 | rrm g st ;ak Ty O]
S (S _ 9)&—1 S (S _ e)y—l
+ fo Wy(e)dé’, f T)fz(&y(H))dH)dSI
§ a—9 bl T ey g)lde
B o Tl —a) X0, ar ket Gk
_ pye-1 —_ A\l
fo (s I )) Iy(@)Ido + f (s ) ——— (K y(O)| + lax()DAO] + |ai(D))ds
Kilyll ||y|| K K[yl Kia,
= F(2—a/)[K1A|x0|+F(a/+l)+K1F(a+1)+r(y+l)+F(y+1)+a1]
< KAl + — 4 g, Kikor o K
S Ir2-a) " e+ T+ ) Ty+1) T+
2K r K\ K>r Kia,
= Te-o M re D fTo e T e TN ST

Thus, the class of functions {Fy} is uniformly bounded on Q, and F : Q, — Q,. Lety € Q, and #,1, €
[0, 1] such that |t, — #;] < 0, then
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[Fy(t2) = Fy(t))

= | Otz (;2(1_ 2 a(fl(s x(s), I fols. y(s)))ds - Otl (;‘(1_ 2 a(fl(s x(s), I fo(s, y(s)dls]
= Otz (fa_ —S)d(fl(s X(8), Il y(s))ds = Otl (f(l_ _S)a<f1(s X(s), P fo(s, y(s)))ds
st Pty = [ 20,50
< | end ”|<f1<s X(9). P (5. y(5))lds
= S)r(al__(a) DN x50, P s, (s
< e GICEONGAESTENE

" (trp — ) = (1 — 9)”
+jo‘ (1 - a)(t, - $)*(t; - s)f"l(fl(s’ x(8), I fo(s, y(s)lds.

Thus, the class of functions {Fy} is equicontinuous on Q, and {Fy} is compact operator by the Arzela-
Ascoli Theorem [5].

Now we prove that F' is continuous operator. Let y, C Q, be convergent sequence such thaty, — y,
then

m

(=5 (= )"
) T —a)" zklk kZ“o T T@

(s—6)"! f (s—6y!
n(6)do, 0, y,(0)))dss.
+f0 T@ (©) T TO) 120, yu(0)))d's

Using Lebesgue dominated convergence Theorem [5] and assumptions (iv)—(II) we have

Fy (1) = yn(0)do]

m

. (-8 T (m -0
fim Fn) = tim | F i gt Y | R0

6&1 _ yl
f Al ) w@do, [ S £, y.@ds

0

)
B (t—s)“ S f @=O0"" v
= Jra-a” Z“ ! kZ Ta) @4

a—1 s N 1
f 2 I( )) lim y,(6)de, fo Sr( )) f(8, lim y,(6)))ds

S)a/ e)a/l
= 6)do
r(l—a) Zkl ! Z“ 0 r() Y6)de]

—0)* 1
f (s ) Y(0)d6, f O 6.5O)ds = Fyo).
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Then F : Q, — Q, is continuous, and by Schauder Fixed Point Theorem [5] there exists at least one
solution y € C[0, 1] of (2.2). Now

dx

d a
T = E[X(O)"‘I ()]

d
= Elall_afl(l‘, X(t), [ny(t’ y(t)))

d
= N x@). [t y(0)
= filt,x(0), I /(1. y(1))).

Putting # = 7 and using (2.9), we obtain

x(1) =

- [xo — Zim and “y(Ti)] + 17y(1),
k=1

1
i arx(Ty) = 1ak—[ 0 — Zpmarl“y(T)l + 2 ard “y (),
k=1

then
2 arx(ty) = Xo, ax > 0and 1 € [0, 1].
This proves the equivalence between the problems (1.2)—(2.1) and the integral equation (2.2). Then
there exists at least one solution y € C[0, 1] of the problems (1.2)—(2.1).

3. Maximal and minimal solutions

Here, we shall study the maximal and minimal solutions for the problems (1.2) and (2.1). Let y(¢)
be any solution of (2.2), let u(t) be a solution of (2.2), then u(¢) is said to be a maximal solution of (2.2)
if it satisfies the inequality

y(t) <u(t), tel0,1].

A minimal solution can be defined by similar way by reversing the above inequality.

Lemma 3.1. Let the assumptions of Theorem 2.1 be satisfied. Assume that x(t) and y(t) are two
continuous functions on [0, 1] satisfying

-9 1 =0
O R T LG k[xo—Zak f Ty VO]

a—1 _ 1
f (s O y(0)db, f (—)yfz(e,y(e)))ds t€10,1],
0

I(a)
(=5 1 -0

x(t) > f foa ﬁ(&m1 k[Xo > f @)
f( @) (H)dﬁf( )) (0, x(0)))ds t €0,1],

where one of them is strict.
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Let functions f; and f, be monotonic nondecreasing in y, then
y(t) < x(t), t>0. 3.1
Proof. Let the conclusion (3.1) be not true, then there exists #; with
y(t) < x(ty), t1>0 andy@®) <x(r), 0<t<t.

Since f; and f, are monotonic functions in y, then we have

(t —9)° (-0
oy < [T Zklk[o—Zakf (@)

(G 9)“1 (s — Q)
f T 4, f —fz(e,y(e)))ds

"(t= ) S f (=6
0)do
fom_afl( ol kZ Ty KOde)

(S g)a ! (S— )y 1
f T x(6)do, T ——— (6, x(0)))ds

< x(t1), 1, € [0, 1].

This contradicts the fact that y(¢;) = x(#1), then y(¢) < x(¢). This completes the proof.
For the existence of the continuous maximal and minimal solutions for (2.1), we have the following
theorem.

Theorem 3.1. Let the assumptions of Theorem 2.1 be hold. Moreover, if fi and f, are monotonic
nondecreasing functions in y for each t € [0, 1], then Eq (2.1) has maximal and minimal solutions.

Proof. First, we should demonstrate the existence of the maximal solution of (2.1). Let € > 0 be given.
Now consider the integral equation

-9 : [ror
o = | =P 0)do
ye(®) o T(I—-a f(zklk[xo ,Z T @ O
(s —0) C(s—-oy!
al OO s gy ey ag)s, re10.1),

where

fl,e(s7 xe($), ye(s)) = fl(sa Xe(s), ye(s)) + €,
Jr.e(8, xe(8)) = fals, xe(5)) + €.

For € > €, we have

(=9 " (- 0!
Yall) = fm_ il 5 k[xo—Zakf T Ye0)ds)

_ pya-1 _ nyw-1
SO e, [ E=

T 3 waz,q(&qu))de)ds, re 0,11,
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m

— ' (t - S)_(l Tk (T )(1 1
Vo) = o T(1 - [fl( Zk a k[xo kZa ; F( ) Ve, (6)dO]
s(s_g)a 1 (S—9)7 1
R0, | S (0.0 + e)d6) + e |ds, 1< 0,11,
Also
_ (t —5)¢ (T4 — 9)&—1
Ve () = , T = fl 51( Zk 1 k kZ:ak ; Wyﬂ (0)do]
+f (SFTyel (e)dG, . ( ( ) f2 € (9 Ye (9))d9)
(t—S) “ S Tk(Tk_ )a]

T Ve, (6)dO

( 9)(1 1 (S _ )y 1
f a6, | Tw(ﬁ(e,yaw»+el>d0)+e1]ds

(-9 1 N ™ (1 — 0)*!

o L S AP ILY M sl

S _ ma-1 -0 y—1
+ fo %yq(g)dg, fo %( f(0,y,(1)) + ez)de) + ez]ds.

Applying Lemma 3.1, we obtain

Ve < Ve, t€[0,1].

As shown before, the family of function y.(¢) is equi-continuous and uniformly bounded, then
by Arzela Theorem, there exist decreasing sequence €,, such that ¢, — 0 as n — oo, and u(t) =
lim, e, (t) exists uniformly in [0, 1] and denote this limit by u(f). From the continuity of the

functions, fo (f,y, (1)), we get fo . (t,y,(t)) — fo(t,y(t)) as n — oo and

i G N " (-0
“0=mye0= | e [fl( Zklak kz_;“ . I‘() Ya (O]

s —g)>! : —_g)y!
.l .0 f %(fz(ga)’en(e)ﬂ‘fn))+€n]ds’ relo,1l
0 O

Now we prove that u(¢) is the maximal solution of (2.1). To do this, let y(#) be any solution of (2.1), then

(-9 1 O
0 = | e gt e ), S o
(5= ‘-0
6)de, ————£2(0,¥(0))d0|ds,
R N e ST 2
_ [a=9 1 S
0 = | s Al 5 k[xo—;ak e

N ! (s-0r" 71
S f - f2(0,y6(9))+e)d9)+e]ds
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and

-9 1 N (1 — )"
ye(t) > T fl( 3 ak[xo—;ak ; Wye(O)dH]

( _ )al (S
+fo ) O, f f2(9,y5(0)))ds.

Applying Lemma 3.1, we obtain
y(@) <ye(n),r €0, 1].

From the uniqueness of the maximal solution it clear that y.(¢) tends to u(¢) uniformly in [0, 1] as € — O.
By a similar way as done above, we can prove the existence of the minimal solution.

4. Uniqueness of the solution

Here, we study the sufficient condition for the uniqueness of the solution y € CJ[0,1] of
problems (1.2) and (2.1). Consider the following assumptions:

(I") (1) The set F(t, x,y) is nonempty, closed and convex for all (¢, x,y) € [0, 1] X R X R.
(i1) F(t, x,y) is measurable in ¢ € [0, 1] for every x,y € R.
(111) F; satisfies the Lipschitz condition with a positive constant K; such that

H(F (1, x1,y1), F1(t, x2, y2)| < Ki(|x1 — x,| + [y1 = y2l),
where H(A, B) is the Hausdorff metric between the two subsets A, B € [0, 1] X E.

Remark 4.1. From this assumptions we can deduce that there exists a function f, € F\(t, x,y), such that
(iv) f1 : [0, 1]XRXR — Ris measurableint € [0, 1] for every x,y € R and satisfies Lipschitz condition
with a positive constant K, such that (see [3,7])

|fi(t, x1,y1) = fi(t, x2, y2)| < Ki(Ix1 = x2| + |[y1 = y2D).

(UI") f> : [0,1] X R — R is measurable in t € [0, T] and satisfies Lipschitz condition with positive
constant K,, such that
|/2(1, %) = fa(t, V)| < Ka|x = yl.

From the assumption (I*), we have

A1t x, )| = 112, 0,00l < [fi(7, x,y) = f1(2, 0, 0) < Ky(|x] + [y]).

Then

IA

Ifi(2. x, y)| Ki(x[ + [yD +1£1(2.0,0)|

Ki(|x| + [yD+ | a1(9) |,

IA

where |a;(1)] = sup|fi(z,0,0)|.

tel
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From the assumption (/7*), we have
12 = 1A 0) < 4@, y) = f(5,0)] < Kalyl.
Then

|f2(2, %)

IA

K> |x| + 1 £2(2, 0)]
Kslx|+ | ax (1) |,

IA

where |ay(1)| = sup |f1(z, 0)].

tel

Theorem 4.1. Let the assumptions (I") and (II*) be satisfied. Then the solution of the problems (1.2)
and (2.1) is unique.
Proof. Let y|(t) and y,(t) be solutions of the problems (1.2) and (2.1), then

m

_ [a=9 1 " (1 = 0)!
pi®) =yl = | m_ G Z?_lak[xo—;ak T el

a—1 _gy- 1

(t - S) “ (1 — 0)*!
T fl(S " ak[xo - ;ak ; W)’z(e)de]

s (o _ pya-l S (s — @)1

. fo %yz(e)de, f %fz(&h(@))d@)dﬂ
SO T i oy
o T-0 T Y

IA

lly1 = y2lld6lds

(-0 C(s—op!
+K; f Tllyl—yzlldmlﬁ ——— 120, y1(0)) — f2(6, y2(0)|d6]d s
0 @)

o Ty
L KZcia o K Kk
TC-a) 3 all+a) 2 Ta+a™ ' T+
2K1 K1K2
lly1 = yall +
Td+a)l2—a) T+ 2 -a)
2K, KK,

[F(l T T2 -a)  TA+9TC-a)

llyr = yalll

IA

IA

lyr = yall

IA

lly1 = yall.

Then
llyr = y2llayI' (2 — @) — 2K a + K Kyy)] < 0.

Since (aryI'2—a)— (2K a+ K Kyy)) < 1, then y(t) = y2(t) and the solution of (1.2) and (2.1) is unique.

4.1. Continuous dependence of the solution

Definition 4.1. The unique solution of the problems (1.2) and (2.1) depends continuously on initial
data xy, if € > 0, 6 > 0, such that

Xo=xl <6 =|y-yll<e

AIMS Mathematics Volume 7, Issue 3, 3896-3911.
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where y* is the unique solution of the integral equation

m

i} B ! (t _ s)—(y 1 X Tk (Tk _ 9)(1—1 i
U BT LS v R IL My v GG

-0 )"1 f(s 0! ‘
6)db, 6,y"(6))d0)ds].
T T@) y'(0) F()fz(y()))SI

Theorem 4.2. Let the assumptions (I*) and (II*) be satisfied, then the unique solution of (1.2) and (2.1)
depends continuously on x.

Proof. Let y(¢) and y*(¢) be the solutions of problems (1.2) and (2.1), then

byl = t(rt(:) S 2;311 k[xo_,;mlak OTk %ﬂ@)d@]
f (s F(e);’1 (6)do, fo % Prr—
(Ft(:)af ! Zkl a0 Z"k OTk %y"(@d@]
f (sr(e))“' e, | %fz(@, S @dards
ok [ GO 10) - v (@de + [ SO 4 0,360 — 0.y O)ldolds
) T@ T

1 K llxo — xgl N 2t aKilly =yl N Killy — "l N K K|ly — vl
TC-a) Y a SToal(@+1) | T(a+1) Ty + 1)
KiAs_ 2K, N K\K>
T2—-a) T+ DI2-a) Ty+1DIQ2-a)

IA

]

IA

Ty = y"Il,

then we obtain
(@ — ¥ (Ol < (AK16)(ayT' 2 — @) — 2K 1a + K1 Koy)) ' < €

and

Iy(@® =y Ol < e
Definition 4.2. The unique solution of the problems (1.2) and (2.1) depends continuously on initial
data ay, if € > 0, 46 > 0, such that

m

DYla-al<s =ly-yl<e
k=1

where y* is the unique solution of the integral equation

I AN (e 1 N e
y (t) - o F(l _ CY .fl(sa Z;(n_l a [XO ; ak 0 F(Q)

(s=0"" | f (s — )" .
; fo Fay Y @do. [ TS 0.y @)dods.

¥ (0)d6]
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Theorem 4.3. Let the assumptions (I*) and (1I") be satisfied, then the unique solution of problems (1.2)
and (2.1) depends continuously on ay.

Proof. Let y(t) and y*(¢) be the solutions of problems (1.2) and (2.1) and (}};", a,’;)‘1 =

‘(-8 I S Gt
— v - 0)do
DO =Y O = || gy s - kZ e A
v [ )“1 voro, [ C=2" 16, opaoras
[(e) 0o T
NN 1 N ™ (1 — )
— . ——y"(6)db
T ;ak T el
(s - )‘“ f =o'
0)do, —F— (6,y%(0))do)d
f Ty YO0 | S 0. ©)d0)ds]
Tt =) |xol(XCps; ap — Xty ak)

IA

o I'l —a) hyy 1%2211%
Y [ s O bl S g @O ()] do
+

) b " I
k1 Gk i a
a—1 s 3 9 -1
1K, f (s — - >) ) -’ @)de + KiK; | %Iy«p)—y*(en d61ds

[K1|x0| Zk 1 |ak -
F(2 —@) Xl ak Mgy gy
K Eh eG4 IOy @)lde — iy ai ) 2 |y(0)ld6)
Dkt Ak Djey Gy
R O e —y(OId0 - B, @ [ 1y (©)ldo)

m m
kel Gk 2pe a

IA

S (s—o)! . S (s—0)! .

wk [ ELE b -y @0 KiKe [ S0 -y @ldonds

o T(a) o Ty

1 Ki|xolo N Ki (2 ak(sr(arn) + Dt alt(sr(arn))
IFQ2-a) XL a2 a 2kt Gk 2o a
+K1||y -yl + K1 Ks|ly =yl
I'a+1) I'ty+1)
K 16]xo N KXt ad gy + ket G0t07m5)
FQ2-a) 20l ar 2, & FQ-aol(a+1) XL a 20k, a;
Killy =yl N K Kslly — 'l
TC—al@+1) T+ DIQ2—-a)

IA

IA

then we obtain

(®) = 3" (O] < (AAKSTIxo| + (Y a+ ) apD). (@yT(2 - a) - Kia + KiKay)) ' < e
k=1 k=1
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and
Iy(®) =y @Il < €.
5. Riemann-Stieltjes integral condition
Let y € C[0,1] be the solution of the nonlocal boundary value problems (1.2) and (2.1). Let

a, = (g(ty) — g(t,—1), g is increasing function, 7, € (41 — 1), 0 = tH) < t; < tp,... < t,, = 1, then, as
m — oo the nonlocal condition (1.2) will be

> (@) - g1y = xo.
k=1
As the limit m — oo, we obtain
m 1
lim " (g(t) — gti1)y(re) = f ¥()dg(s) = xo.
m—00 =l 0

Theorem 5.1. Let the assumptions (I)—(I111) be satisfied. If Y;_, ax be convergent, then the nonlocal
boundary value problems of (1.3) and (2.1) have at least one solution given by

(-9 1 LS (s—0)!
o = L T _a)fl(S, o) —g(O)[xo —j; fo‘ Wy(@)d@dg(s)]
s(s_e)a—l S(S_H)y—l
——y(6)do, ——f2(¢h, ¥(0))dO)ds.
+f0 @) y(0) T TO) f2(¢, y(6))db)d.s
Proof. As m — oo, the solution of the nonlocal boundary value problem (2.1) will be
im0 = [ s it (D = 20) o
~(a(1) - gO)" Tim > g(h) - g1 [0 oo
oo £~ ) T@
S(s_g)(tfl S(S_Q)yfl
———y(6)do, —— f2(¢h, ¥(0))dO)d
+f0 () y(6) . T f2(¢, y(0))db)ds

T(t—s)" 1 _ f f (s — 6)! dod
s Ta-a" S e )y Jy T YOI

S -0 a—1 S -0 y-1
. fo %y@d@, fo %fz(tﬁ,y(@))d@)d&

6. Infinite-point boundary condition

Theorem 6.1. Let the assumptions (I)—(111) be satisfied, then the nonlocal boundary value problems
of (1.4) and (2.1) have at least one solution given by
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[e0)

B Tt 1 (1 = O)*!
¥ = L T —a/)fl(s’ o k[xo—kz;ak 5 Wy(Q)dé’]

S _9 a—1 _ y 1
« [ e, [ ST pyendods

Proof. Let the assumptions of Theorem 2.1 be satisfied. Let ) ;_, a; be convergent, then take the limit
to (1.4), we have

(1 — 0)*!

) B "(t—-s)? B (="
limy(0) = | /it lim Zk - lxo - lim Zak T Yedel
(s 9)“1 f (s —6)"
, 0))do)d
f @) — @ T ———— /¢, (6))db)ds.
Now
™ (1 — 6)! ™ (1 — 0)! lalllyll lax|r
la . T Y(O)dO| < lag . T W(O)|do < T+ D < Fat 1)
and by the comparison test (3 ;_; ax j(;Tk (Tkr_(?; 71y(9)d0) is convergent,
(s S A
= — ———y(0)do
0 = | T hie: Zkl Lo ;ak Ty 0l

(s 0)“‘ *(s -6y
0)do, 0))d6)d
f T YO0, | o 6. 5(O)d0s.

Furthermore, from (2.9) we have

(o)

Z ax(Ty)

k=1

[ee)

3 (1 - )"
Z Zk a (xo — Z ax W)’(S)ds)]

k=1 0
™ (1 — )

0 I'(a)
= Xp.

y(s)ds)]

Example 6.1. Consider the following nonlinear integro-differential equation

dx 4 _, x(1) 1 I s . 1 ey

e e’ + N + 3I (cos(5t+ 1) + 9[t sin D3 x(t) + e ' x(1)]) (6.1)
with boundary condition

[ ]x(rk) = Xxg, a; >0 7, €[0,1]. (6.2)
; k k+1
Let
1 1
fi(t, x(0), I" fo(t, D°x(1))) = *e™" + \/)% + §mcos(St +1)+ §[r5 sin D3 x(f) + e ' x(1)]),
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then
Lf1(t, x(t), I” f>(t, D x(1))) = |t4e_’ + il + l(L—tl“/(cos(St +1)+ 1[t5 sin D%x(t) + e‘3tx(t)]))|
Vai+d 43 9

and also
o 14 L5 nt -3t
|7 f>(¢, D x(1))| < Z(§m cos(S5t+ 1)+ §[t sin D3 x(1) + e x(1)]|.

It is clear that the assumptions (I) and (II) of Theorem 2.1 are satisfied with a;(¢) = t*e™ € L'[0, 1],
ay(t) = $I|(cos(5t + 1) € L'[0,1], and let @ = , ¥ = 3, then 2K,y + KjKya = 3 < apT (2 — @) =
%F(Z —a). Therefore, by applying Theorem 2.1, the nonlocal problems (6.1) and (6.2) has a continuous

solution.
7. Conclusions

In this paper, we have studied a boundary value problem of fractional order differential inclusion
with nonlocal, integral and infinite points boundary conditions. We have prove some existence results
for that a single nonlocal boundary value problem, in of proving some existence results for a boundary
value problem of fractional order differential inclusion with nonlocal, integral and infinite points
boundary conditions. Next, we have proved the existence of maximal and minimal solutions. Then we
have established the sufficient conditions for the uniqueness of solutions and continuous dependence
of solution on some initial data and on the coefficients a; are studied. Finally, we have proved the
existence of a nonlocal boundary value problem with Riemann-Stieltjes integral condition and with
infinite-point boundary condition. An example is given to illustrate our results.
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