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Abstract: Soft set has limitation for the consideration of disjoint attribute-valued sets corresponding
to distinct attributes whereas hypersoft set, an extension of soft set, fully addresses this scarcity by
replacing the approximate function of soft sets with multi-argument approximate function. Some
structures (i.e., possibility fuzzy soft set, possibility intuitionistic fuzzy soft set) exist in literature in
which a possibility of each element in the universe is attached with the parameterization of fuzzy sets
and intuitionistic fuzzy sets while defining fuzzy soft set and intuitionistic fuzzy soft set respectively.
This study aims to generalize the existing structure (i.e., possibility intuitionistic fuzzy soft set) and to
make it adequate for multi-argument approximate function. Therefore, firstly, the elementary notion
of possibility intuitionistic fuzzy hypersoft set is developed and some of its elementary properties i.e.,
subset, null set, absolute set and complement, are discussed with numerical examples. Secondly, its
set-theoretic operations i.e., union, intersection, AND, OR and relevant laws are investigated with
the help of numerical examples, matrix and graphical representations. Moreover, algorithms based
on AND/OR operations are proposed and are elaborated with illustrative examples. Lastly, similarity
measure between two possibility intuitionistic fuzzy hypersoft sets is characterized with the help of
example. This concept of similarity measure is successfully applied in decision making to judge the
eligibility of a candidate for an appropriate job. The proposed similarity formulation is compared with
the relevant existing models and validity of the generalization of the proposed structure is discussed.
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1. Introduction

Fuzzy sets theory (FST) [1] and intuitionistic fuzzy set theory (IFST) [2] are considered apt
mathematical modes to tackle many intricate problems involving various uncertainties, in different
mathematical disciplines. The former one emphasizes on the degree of true belongingness of a certain
object from the initial sample space whereas the later one accentuates on degree of true membership
and degree of non-membership with condition of their dependency on each other. FST and IFST have
some sort of complexities which bound them to tackle issue including uncertainty efficiently. The
main cause of these hurdles is potentially, the deficiency of the parametrization tool. It requests a
mathematical tool free from all such obstacles to handle such issues. This inadequacy is settled down
with the introduction of soft set theory (SS-Theory) [3] which is another defined class of subsets of the
universe of discourse. The researchers [4–13] examined and explored some rudimentary properties,
operations, laws of SS-Theory with applications in decision making.

The existing studies based on fuzzy soft sets (FS-sets), intuitionistic fuzzy soft sets (IFS-sets), etc.,
are widely used in different environments to solve decision-making problems. However, under certain
cases, these existing approaches fail to classify the objects based on their possibility degrees. In other
words, the existing studies have treated the possibility degree of each element as one. However, in
many practical applications, different persons may have their possibility degrees which differ from
one related to each object. To address this issue in decision-making process, Alkhazaleh et al. [14]
introduced the concept of possibility of FS-sets by assigning a possibility degree to each number of
FS-set. However, in this set, there is a complete lack of degree of non-membership during the analysis.
To tackle it and address more appropriately, a concept of possibility intuitionistic fuzzy soft set (PIFS-
set) was introduced by Bashir et al. [15]. PIFS-set is more generalized than the existing FS-sets,
IFS-sets, and other sets. In PIFS-set, a degree of possibility of each component is assigned to degrees
of intuitionistic fuzzy soft numbers (IFS-Ns) during evaluating the object. In numerous daily-life
problems, parametric values are additionally subdivided into disjoint attribute-values sets. The existing
SS-Theory is deficient for managing such sort of attributive-valued sets. Hypersoft set theory (HS-
Theory) [16] is developed to make SS-Theory in accordance with attributive-valued sets to handle real
life situations. Certain rudimentary properties, operations, laws, relations and points of HS-Theory
are explored in [17–19] for appropriate indulgent and further use in various fields. The utilizations of
HS-Theory in decision making are premeditated in [20–24] and the gluing investigations of HS-Theory
with concave, convex, complex sets and parameterization are discussed in [25–27]. Kamacı [28] made
very valuable research on hybrid structures of hypersoft sets and rough sets. Recently Kamacı et
al. [29] investigated some new hybridized structures i.e., n-ary fuzzy hypersoft expert sets which are
the extensions of existing structures (i.e., n-ary fuzzy soft expert sets).

1.1. Research gap and motivation

The following points may lead to motivation of proposed study.

1) The possibility fuzzy soft set (PFS-set), introduced by Alkhazaleh et al., is a gluing concept of
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FS-Theory and SS-theory with attachment of a possibility degree to each approximate element of
fuzzy soft set. They also calculated similarity measures between two PFS-sets and applied PFS-
set to decision-making problem for clinical diagnosis. In 2012, Bashir et al. [30] extended the
concept of PFS-set with introduction of possibility fuzzy soft expert set (PFSE-set) to adequate
it with the consideration of multi-expert opinions. In 2014, Zhang et al. [31] characterized
possibility multi-fuzzy soft set (PMFS-set) by assigning a possibility grade to each approximate
member of multi-fuzzy soft set. In 2017, Kalaiselvi et al. [32] presented decision-making
approach in sports via PFS-set. In 2018, Ponnalagu et al. [33] investigated more on PFSE-set
with applications. In 2019, Garg et al. [34] and Khalil et al. [35] discussed decision-making
algorithms based on PIFS-set and possibility m-polar fuzzy soft sets (PMPFS-set) respectively.

2) In certain real world scenarios, distinct parameters are further classified into disjoint sets having
sub-parametric values (Figure 1 depicts the vivid comparison of soft set model and hypersoft
set model. It presents the optimal selection of a mobile with the help of suitable parameters
in case of soft set and suitable sub-parametric values in case of hypersoft set). In decision-
making, the jury may endure some sort of tendency and proclivity while paying no attention
to such parametric categorization during the decision. Soft set theory and its hybridized models
have constraints regarding the consideration of such parametric categorization. Along these lines
another construction requests its place in writing for tending to such obstacle, so hypersoft set is
conceptualized to handle such situations. It has made the whole decision-making process more
flexible and reliable. Also, it not only fulfills the requirements of existing soft-like literature for
multi-attributive approximate functions but also supports the decision makers to make decisions
with deep inspection.

3) Inspiring from above literature, new notions of possibility intuitionistic fuzzy hypersoft set
(PIFHS-set) are conceptualized along with some elementary essential properties, aggregation
operations and generalized typical results. Moreover, decision-making algorithmic approaches
based on aggregation operators and similarity measures of PIFHS-sets are proposed to solve real
life problems.

Figure 1. Comparison of soft set and hypersoft set models.
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1.2. Main contributions

The following are the main contributions of this proposed study:

1) The existing relevant models are made adequate with the consideration of multi-argument
approximate function through the development of the theory of PIFHS-sets.

2) The scenario where parameters are further partitioned into sub-parametric values in the form of
sets, is tackled by using PIFHS-sets.

3) Some fundamentals like elementary properties and operations of PIFHS-sets are characterized.
4) Decision-making applications are discussed based on the proposal of aggregation operations-

based algorithms for optimal product selection.
5) Similarity measures between PIFHS-sets are determined and authenticated with real-life

application for recruitment process.
6) The results of proposed similarity are compared with relevant existing models.
7) The proposed structure is compared with relevant models under suitable evaluating indicators.
8) The advantageous aspects of the proposed structure are discussed.
9) The generalization of proposed structure is presented.

1.3. Paper organization

The remaining paper is systemized as: Section 2 presents some basic definitions and terminologies.
Section 3 discusses the notions of possibility intuitionistic fuzzy hypersoft set (PIFHS-set) with
properties and results. Section 4 characterizes set theoretic operations of PIFHS-set. Section 5 proposes
decision making algorithms based on aggregation operations of PIFHS-set with applications. Section
6 presents similarity between two PIFHS-sets and application. Section 7 discusses the generalization
and merits of proposed structure. Section 8 summarizes the paper with future directions.

2. Preliminaries

In this section, certain essential terminologies and terms like fuzzy set, intuitionistic fuzzy set, soft
set, fuzzy soft set, intuitionistic fuzzy soft set, hypersoft set, fuzzy hypersoft set and intuitionistic fuzzy
hypersoft set are recalled from existing literature for proper understanding of main results. Throughout
the paper,Z will denote universe of discourse.

In 1965, Zadeh [1] initiated the concept of fuzzy sets as a generalization of classical set (crisp set) to
deal with uncertain nature of data. This set employs a membership function which maps set of objects
(alternatives) to unit closed interval.

Definition 2.1. (fuzzy set) [1] A fuzzy set F defined as F = {(â, AF (â))|â ∈ Z} such that AF : Z → I
where AF (â) denotes the belonging value of â ∈ F .

Definition 2.2. (properties of fuzzy set) [1] If F and G are two fuzzy sets then for all â ∈ Z, we have

(i) F ∪ G = {(â,max{AF (â), AG(â)})}
(ii) F ∩ G = {(â,min{AF (â), AG(â)})}

(iii) F c = {(â, 1 − AF (â))|â ∈ Z}

Fuzzy set emphasizes on degree of membership only for dealing with uncertain scenarios but there
are many situations where non-membership degree is necessary to be considered therefore to adequate
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fuzzy set with such situation Atanassov [2] introduced intuitionistic fuzzy set as a generalization of
fuzzy set. It provides due status to both membership and non-membership degrees of an alternative.

Definition 2.3. (intuitionistic fuzzy set) [2] An intuitionistic fuzzy set Y defined as Y = {(b̂, <
AY(b̂), BY(b̂) >)|b̂ ∈ Z} such that AY : Z → I and BY : Z → I, where AY(b̂) and BY(b̂) denote
the belonging value and not-belonging value of b̂ ∈ Y with condition of 0 ≤ AY(b̂) + BY(b̂) ≤ 1 and
degree of hesitancyHY(b̂) = 1 − AY(b̂) − BY(b̂).

Definition 2.4. (properties of intuitionistic fuzzy set) [2] If Y1 and Y2 are two intuitionistic fuzzy
sets then for all b̂ ∈ Z, we have

(i) Y1 ∪ Y2 =
{ (

b̂, < max{AY1(b̂), AY2(b̂)},min{BY1(b̂), BY2(b̂)} >
) }

(ii) Y1 ∩ Y2 =
{ (

b̂, < min{AY1(b̂), AY2(b̂)},max{BY1(b̂), BY2(b̂)} >
) }

(iii) Y1
c

= {(b̂, < BY1(b̂), AY1(b̂) >)}

Fuzzy set and intuitionistic fuzzy set depict some kind of insufficiency regarding the consideration
of parameterization tool. In order to manage this limitation, Molodtsov [3] developed soft set as a new
mathematical tool to tackle uncertainties and vagueness in the data.

Definition 2.5. (soft set) [3] A pair (ΨS̆,W) is said to be soft set S̆ overZ, where ΨM :W→ P(Z)
andW is a subset of set of attributes X.

Example 2.6. Lat Z = {ẑ1, ẑ2, ẑ3, ẑ4, ẑ5, ẑ6}, X = { p̂1, p̂2, ..., p̂9} and W = { p̂1, p̂2, p̂3, p̂4} then
approximate elements of soft set S̆ = (ΨS̆,W) are given as
ΨS̆( p̂1) = {ẑ1, ẑ3, ẑ6}

ΨS̆( p̂2) = {ẑ2, ẑ3, ẑ5}

ΨS̆( p̂3) = {ẑ4, ẑ5, ẑ6}

ΨS̆( p̂4) = {ẑ1, ẑ2, ẑ5}

and soft set S̆ is stated as S̆ = {ΨS̆( p̂1),ΨS̆( p̂3),ΨS̆( p̂3),ΨS̆(p̂4)} or

S̆ =
{ (

p̂1, {ẑ1, ẑ3, ẑ6}
)
,
(

p̂2, {ẑ2, ẑ3, ẑ5}
)
,
(

p̂3, {ẑ4, ẑ5, ẑ6}
)
,
(

p̂4, {ẑ1, ẑ2, ẑ5}
) }

Definition 2.7. (fuzzy soft set) [5] A pair (ΨF ,V) is said to be fuzzy soft set overZ, where ΨF : V →
P(F ) and P(F ) is a collection of all fuzzy subsets overZ,V ⊆ X.

Definition 2.8. (intuitionistic fuzzy soft set) [13] A pair (ΨIF ,V) is said to be fuzzy soft set over Z,
where ΨIF : V → P(IF ) and P(IF ) is a collection of all intuitionistic fuzzy subsets overZ,V ⊆ X.

In many real-world scenarios the classification of attributes into sub-attributive values in the form of
sets is necessary. The existing concept of soft set is not sufficient and incompatible with such scenarios
so Smarandache [16] introduced hypersoft sets to address the insufficiency of soft set and to handle the
situations with multi-argument approximate function (MAAF).

Definition 2.9. (hypersoft set) [16] LetZ = {ẑ1, ẑ2, ..., ẑn} be an initial universe andX = { p̂1, p̂2, ..., p̂n}

be a set of parameters. The respective attribute-valued non-overlapping sets of each element of X are
Q1 = {q̂11, q̂12, ..., q̂1n}

Q2 = {q̂21, q̂22, ..., q̂2n}

Q3 = {q̂31, q̂32, ..., q̂3n}
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.................................

.................................

.................................
Qn = {q̂n1, q̂n2, ..., q̂nn}

and Q = Q1 ×Q2 ×Q3 × ....×Qn = {q̂1, q̂2, q̂3, ...., q̂r} where each q̂i (i = 1, 2, ...., r) is a n-tuple element

of Q and r =
n∏

i=1
|Qi|, | • | denotes set cardinality then a MAAF is a mapping

ξH : V → P(Z) (2.1)

and defined as
ξH({q̂1, q̂2, ..., q̂k}) = P({ẑ1, ẑ2, ..., ẑn})

where P(Z) denotes the power set of Z, V ⊆ Q with k ≤ r. The pair (ξH,V) is known as hypersoft
set.

Definition 2.10. (fuzzy and intuitionistic fuzzy hypersoft set) [16] Fuzzy hypersoft set and
intuitionistic fuzzy hypersoft set are hypersoft sets defined over fuzzy universe and intuitionistic fuzzy
universes respectively i.e., in Eq (2.1) P(Z) is replaced with P(F ) and P(IF ).

3. Possibility intuitionistic fuzzy hypersoft set (PIFHS-set)

Consider the daily life scenario of clinical study to diagnose heart diseases in patients, doctors
(decision-makers) usually prefer chest pain type, resting blood pressure, serum cholesterol etc., as
diagnostic parameters. After keen analysis, it is vivid that these parameters are required to be further
partitioning into their sub-parametric values i.e., chest pain type (typical angina, atypical angina,
etc.), resting blood pressure (110 mmHg, 150 mmHg, 180 mmHg, etc.) and serum cholesterol (210
mg/dl, 320 mg/dl, 430 mg/dl, etc.). Patients are advised to visit medical laboratories for test reports
regarding indicated parameters. As the efficiency of medical instruments in laboratories varies which
leads different observations (data) for each patient. It is quite ambiguous for any decision-maker (i.e.,
medical practitioner) to assess the exact role of each parameter in diagnosis. Again this assessment
is judged by relevant medical field specialist on the basis of standard values of each sub-attribute in
accordance with WHO or some local medical body by considering a possibility degree within [0,1].
The literature has no suitable model to deal (i) sub-attribute values in the form of disjoint sets, and
(ii) possibilitic data collectively. In order to meet the demand of literature, the novel model PIFHS-set
is being characterized. The case (i) is addressed by considering multi-argument approximate function
which considers the cartesian product of attribute-valued disjoint sets as its domain and then maps it
to power set of initial universe (collection of intuitionistic fuzzy sets) and the case (ii) is tackled by
assigning a possibility degree with each intuitionistic fuzzy number attached with each sub-parameter.

Now in this section definition and elementary properties of possibility intuitionistic fuzzy hypersoft
set are conceptualized with appropriate examples.

Definition 3.1. (possibility intuitionistic fuzzy hypersoft set) The pair (Fµ,A) is said to be possibility
intuitionistic fuzzy hypersoft set (PIFHS-set) over hypersoft universe (Z,A) if

Fµ : A → (I × I)Z × IZ
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defined by
Fµ(α) = (F(α)(u), µ(α)(u)),

with
F(α)(u) =< ψ1(u), ψ2(u) > ∀ u ∈ Z

where

(i) A = A1 ×A2 × .... ×An,Ai are disjoint attribute-valued sets corresponding to distinct attributes
ai, i = 1, 2, ..., n respectively,

(ii) F : A → (I×I)Z and µ : A → IZ, IZ and (I×I)Z are the collections of all fuzzy and intuitionistic
fuzzy subsets ofZ respectively,

(iii) (F(α)(u) is the degree of membership of u ∈ Z in F(α),
(iv) µ(α)(u) is the degree of possibility of membership of u ∈ Z in F(α).

so Fµ(αi) can be written as:

Fµ(αi) =
{ (

u1
F(αi)(u1) , µ(αi)(u1)

)
,
(

u2
F(αi)(u2) , µ(αi)(u2)

)
, .......,

(
un

F(αi)(un) , µ(αi)(un)
) }

.

For convenience, PIFHS-set is denoted by Fµ and collection of all PIFHS-sets is denoted by Ωpi f hss.
The pictorial representations of existing structure PIFS-set (possibility intuitionistic fuzzy soft set) and
proposed structure PIFHS-set are presented in Figure 2.

Figure 2. Pictorial representations and comparison of PIFS-set and PIFHS-set.

Example 3.2. Assume that Mr. Smith wants to purchase a mobile tablet from a mobile market. There
are four kinds of mobile tablets (options) which form the set of discourse Z = {m1,m2,m3,m4}. The
best selection may be evaluated by observing the attributes i.e., a1 = Camera Resolution (Mega pixels),
a2 = storage (Giga Bytes), and a3 = Battery power (mAh). The attribute-valued sets corresponding to
these attributes are:
A1 = {a11 = 8, a12 = 16}
A2 = {a21 = 32, a22 = 64}
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A3 = {a31 = 3400}
thenA = A1 ×A2 ×A3

A = {α1, α2, α3, α4} where each αi, i = 1, 2, 3, 4, is a 3-tuple element.
Now

Fµ(α1) =
{ (

m1
<0.3,0.1> , 0.2

)
,
(

m2
<0.4,0.2> , 0.3

)
,
(

m3
<0.5,0.3> , 0.4

)
,
(

m4
<0.6,0.4> , 0.5

) }
Fµ(α2) =

{ (
m1

<0.7,0.2> , 0.8
)
,
(

m2
<0.6,0.3> , 0.8

)
,
(

m3
<0.6,0.4> , 0.7

)
,
(

m4
<0.5,0.5> , 0.6

) }
Fµ(α3) =

{ (
m1

<0.5,0.1> , 0.1
)
,
(

m2
<0.4,0.1> , 0.2

)
,
(

m3
<0.5,0.1> , 0.3

)
,
(

m4
<0.6,0.2> , 0.4

) }
Fµ(α4) =

{ (
m1

<0.7,0.1> , 0.2
)
,
(

m2
<0.5,0.1> , 0.3

)
,
(

m3
<0.6,0.4> , 0.4

)
,
(

m4
<0.7,0.2> , 0.5

) }
Then Fµ is a PIFHS-set over (Z,A). Its matrix representation is

Fµ =



(
(0.3, 0.1), 0.2

) (
(0.4, 0.2), 0.3

) (
(0.5, 0.3), 0.4

) (
(0.6, 0.4), 0.5

)(
(0.7, 0.2), 0.8

) (
(0.6, 0.3), 0.8

) (
(0.6, 0.4), 0.7

) (
(0.5, 0.5), 0.6

)(
(0.5, 0.1), 0.1

) (
(0.4, 0.1), 0.2

) (
(0.5, 0.1), 0.3

) (
(0.6, 0.2), 0.4

)(
(0.7, 0.1), 0.2

) (
(0.5, 0.1), 0.3

) (
(0.6, 0.4), 0.4

) (
(0.7, 0.2), 0.5

)
 .

Definition 3.3. (PIFHS-subset) Let Fµ,Gη ∈ Ωpi f hss, then Fµ is said to be a possibility intuitionistic
fuzzy hypersoft subset (PIFHS-subset) of Gη, denoted by Fµ ⊆ Gη, if

(i) µ(α) is a intuitionistic fuzzy subset of η(α), for all α ∈ A
(ii) F(α) is a intuitionistic fuzzy subset of G(α), for all α ∈ A.

Example 3.4. Consider Fµ from Example 3.2 and let

Gη(α1) =
{ (

m1
<0.4,0.2> , 0.3

)
,
(

m2
<0.5,0.3> , 0.4

)
,
(

m3
<0.6,0.4> , 0.5

)
,
(

m4
<0.6,0.4> , 0.6

) }
Gη(α2) =

{ (
m1

<0.8,0.2> , 0.9
)
,
(

m2
<0.6,0.4> , 0.9

)
,
(

m3
<0.6,0.4> , 0.8

)
,
(

m4
<0.5,0.5> , 0.7

) }
Gη(α3) =

{ (
m1

<0.6,0.2> , 0.2
)
,
(

m2
<0.5,0.2> , 0.3

)
,
(

m3
<0.6,0.2> , 0.4

)
,
(

m4
<0.7,0.3> , 0.5

) }
Gη(α4) =

{ (
m1

<0.8,0.2> , 0.3
)
,
(

m2
<0.7,0.2> , 0.4

)
,
(

m3
<0.6,0.4> , 0.5

)
,
(

m4
<0.7,0.3> , 0.6

) }
then

Fµ ⊆ Gη.

Definition 3.5. (equality of PIFHS-sets) Let Fµ,Gη ∈ Ωpi f hss, then Fµ is said to be equal to Gη if
Fµ ⊆ Gη and Gη ⊆ Fµ.

Example 3.6. Considering data in example 3.2, we have

F =



(
(0.1, 0.3), 0.8

) (
(0.2, 0.4), 0.7

) (
(0.3, 0.5), 0.6

) (
(0.4, 0.6), 0.5

)(
(0.2, 0.7), 0.2

) (
(0.3, 0.6), 0.2

) (
(0.4, 0.6), 0.3

) (
(0.5, 0.5), 0.4

)(
(0.1, 0.5), 0.9

) (
(0.1, 0.4), 0.8

) (
(0.1, 0.5), 0.7

) (
(0.2, 0.6), 0.6

)(
(0.1, 0.7), 0.8

) (
(0.1, 0.5), 0.7

) (
(0.4, 0.6), 0.6

) (
(0.2, 0.7), 0.5

)
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and

Gη =



(
(0.1, 0.3), 0.8

) (
(0.2, 0.4), 0.7

) (
(0.3, 0.5), 0.6

) (
(0.4, 0.6), 0.5

)(
(0.2, 0.7), 0.2

) (
(0.3, 0.6), 0.2

) (
(0.4, 0.6), 0.3

) (
(0.5, 0.5), 0.4

)(
(0.1, 0.5), 0.9

) (
(0.1, 0.4), 0.8

) (
(0.1, 0.5), 0.7

) (
(0.2, 0.6), 0.6

)(
(0.1, 0.7), 0.8

) (
(0.1, 0.5), 0.7

) (
(0.4, 0.6), 0.6

) (
(0.2, 0.7), 0.5

)


then Fµ = Gη.

Definition 3.7. (possibility null IFH-set) A PIFHS-set Fµ is said to be a possibility null intuitionistic
fuzzy hypersoft set, denoted by Φ(0), if F(α) =< 0, 0 >, and µ(α) = 0, for all α ∈ A.

Example 3.8. Considering matrix notation of Fµ given in example 3.2, we have

Φ(0) =



(
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

)(
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

)(
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

)(
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

) (
(0.0, 0.0), 0.0

)


Definition 3.9. (possibility absolute IFH-set) A PIFHS-set Fµ is said to be a possibility absolute
intuitionistic fuzzy hypersoft set, denoted by A(1), if F(α) =< 1, 0 >, and µ(α) = 1, for all α ∈ A.

Example 3.10. Considering matrix notation of Fµ given in example 3.2, we have

A(1) =



(
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

)(
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

)(
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

)(
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

) (
(1.0, 0.0), 1.0

)


Definition 3.11. (complement of PIFHS-set) The complement of a PIFHS-set Fµ, denoted by Fc
µ, is

defined by Fc
µ = Gη such that η(α) = µc(α) and G(α) = Fc(α),∀α ∈ A, where c is a intuitionistic fuzzy

complement.

Example 3.12. Considering matrix notation of Fµ given in example 3.2, we have

F
c
µ = Gη =



(
(0.1, 0.3), 0.8

) (
(0.2, 0.4), 0.7

) (
(0.3, 0.5), 0.6

) (
(0.4, 0.6), 0.5

)(
(0.2, 0.7), 0.2

) (
(0.3, 0.6), 0.2

) (
(0.4, 0.6), 0.3

) (
(0.5, 0.5), 0.4

)(
(0.1, 0.5), 0.9

) (
(0.1, 0.4), 0.8

) (
(0.1, 0.5), 0.7

) (
(0.2, 0.6), 0.6

)(
(0.1, 0.7), 0.8

) (
(0.1, 0.5), 0.7

) (
(0.4, 0.6), 0.6

) (
(0.2, 0.7), 0.5

)


4. Set theoretic operations of PIFHS-sets

In this section, definitions and properties of set theoretic operations like union, intersection, AND-
operation and OR-operation of PFS-sets are developed and are explained with the help of suitable
examples.

Definition 4.1. (union and intersection of PIFHS-sets) Let Aµ,Bη ∈ Ωpi f hss then
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(i) their union, denoted by Aµ ∪Bη, is a PIFHS-set Cν such that
C(α) =

∐
{A(α),B(α)} and

ν(α) = max{µ(α), η(α)}
where

∐
denotes intuitionistic union.

(ii) their intersection, denoted by Aµ ∩Bη, is a PIFHS-set Dω such that
D(α) =

∏
{A(α),B(α)} and

ω(α) = min{µ(α), η(α)}
where

∏
denotes intuitionistic intersection.

Example 4.2. Let Aµ,Bη ∈ Ωpi f hss with matrix notations as Aµ =

(
(0.1, 0.2), 0.2

) (
(0.2, 0.3), 0.3

) (
(0.3, 0.4), 0.4

) (
(0.4, 0.5), 0.5

)(
(0.5, 0.5), 0.8

) (
(0.6, 0.4), 0.8

) (
(0.7, 0.3), 0.7

) (
(0.9, 0.1), 0.6

)(
(0.4, 0.3), 0.1

) (
(0.6, 0.4), 0.2

) (
(0.7, 0.2), 0.3

) (
(0.4, 0.1), 0.4

)(
(0.6, 0.2), 0.2

) (
(0.7, 0.3), 0.3

) (
(0.5, 0.2), 0.4

) (
(0.7, 0.2), 0.5

)


and Bη = 

(
(0.2, 0.1), 0.3

) (
(0.3, 0.2), 0.4

) (
(0.4, 0.3), 0.5

) (
(0.5, 0.4), 0.6

)(
(0.6, 0.4), 0.9

) (
(0.7, 0.3), 0.9

) (
(0.8, 0.2), 0.8

) (
(1.0, 0.0), 0.7

)(
(0.5, 0.2), 0.2

) (
(0.7, 0.3), 0.3

) (
(0.8, 0.1), 0.4

) (
(0.5, 0.0), 0.5

)(
(0.7, 0.1), 0.3

) (
(0.8, 0.2), 0.4

) (
(0.6, 0.1), 0.5

) (
(0.8, 0.1), 0.6

)


then
Cν = Aµ ∪Bη = Bη

and
Dω = Aµ ∩Bη = Aµ

Proposition 4.3. Let Aµ,Bη,Eψ ∈ Ωpi f hss. Then the following properties hold:

(i) Aµ ∪Bη = Bη ∪ Aµ
(ii) Aµ ∩Bη = Bη ∩ Aµ

(iii) Aµ ∪ (Bη ∪ Eψ) = (Aµ ∪Bη) ∪ Eψ
(iv) Aµ ∩ (Bη ∩ Eψ) = (Aµ ∩Bη) ∩ Eψ

Proposition 4.4. Let Eψ ∈ Ωpi f hss. Then the following properties hold:

(i) Eψ ∪ Eψ = Eψ
(ii) Eψ ∩ Eψ = Eψ

(iii) Eψ ∪ Φ(0) = Eψ
(iv) Eψ ∩ Φ(0) = Φ(0)

(v) Eψ ∪A(1) = A(1)

(vi) Eψ ∩A(1) = Eψ

Proposition 4.5. Let Aµ,Bη,Eψ ∈ Ωpi f hss. Then the following properties hold:

(i) Aµ ∪ (Bη ∩ Eψ) = (Aµ ∪Bη) ∩ (Aµ ∪ Eψ)
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(ii) Aµ ∩ (Bη ∪ Eψ) = (Aµ ∩Bη) ∪ (Aµ ∩ Eψ)

Proof. (i) For all α ∈ A,
λA(α)∪̃(B(α)∩̃E(α))(α) = ∪̃

{
λA(α)(α), λ(B(α)∩̃E(α))(α)

}
= ∪̃

{
λA(α)(α), ∩̃(λB(α)(α), λE(α)(α))

}
=

{
< α, max(TA(α)(α),min(TB(α)(α),TE(α)(α))),

min(FA(α)(α),max(FB(α)(α), FE(α)(α))) >

}
=

{
< α, min

(
max(TA(α)(α),TB(α)(α)),
max(TA(α)(α),TE(α)(α))

)
, max

(
min(FA(α)(α), FB(α)(α)),
min(FA(α)(α), FE(α)(α))

)
>

}
= ∩̃(∪̃(λA(α)∪̃B(α)(α), λA(α)∪̃E(α)(α))
= λ(A(α)∪̃B(α))∩̃(A(α)∪̃E(α))(α)
and
γµ(α)∪̃(η(α)∩̃ψ(α))(α)
= max

{
γµ(α)(α), γ(η(α)∩̃ψ(α))(α)

}
= max

{
γµ(α)(α),min(γη(α)(α), γψ(α)(α))

}
= min

{
max(γµ(α)(α), γη(α)(α)),max(γµ(α)(α), γψ(α)(α))

}
= min

{
γ(µ(α)∪̃η(α))(α), γ(µ(α)∪̃ψ(α))(α)

}
= γ(µ(α)∪̃η(α))∩̃(µ(α)∪̃ψ(α))(α)
(ii) can be proved in a similarly way as in (i). �

Definition 4.6. (AND & OR operations of PIFHS-sets) Let (Pµ,C), (Qη,D) ∈ Ωpi f hss, then

(i) their AND-operation, denoted by (Pµ,C) ∧ (Qη,D), is a PIFHS-set (Rν,G) defined by

(Rν,G) = (Rν,C ×D)

where Rν (c, d) = (R (c, d) (u) , ν (c, d) (u)) , for all (c, d) ∈ C × D , such that
R (c, d) = ∇ {P (c) ,Q (d)} and ν (c, d) = min {µ (c) , η (d)} , for all (c, d) ∈ C × D and u ∈ Z. Here
∇ denotes intuitionistic fuzzy intersection.

(ii) their OR-operation, denoted by (Pµ,C) ∨ (Qη,D), is a PIFHS-set (Sκ,H) defined by

(Sκ,H) = (Sκ,C ×D)

where Sκ (c, d) = (S (c, d) (u) , ν (c, d) (u)) , for all (c, d) ∈ C × D , such that
S (c, d) = 4 {P (c) ,Q (d)} and κ (c, d) = max {µ (c) , η (d)} , for all (c, d) ∈ C ×D and u ∈ Z. Here
4 denotes intuitionistic fuzzy intersection.

Example 4.7. Let Aµ,Bη ∈ Ωpi f hss with matrix notations as

Aµ =



(
(0.1, 0.2), 0.2

) (
(0.2, 0.3), 0.3

) (
(0.3, 0.4), 0.4

) (
(0.4, 0.5), 0.5

)(
(0.5, 0.5), 0.8

) (
(0.6, 0.4), 0.8

) (
(0.7, 0.3), 0.7

) (
(0.9, 0.1), 0.6

)(
(0.4, 0.3), 0.1

) (
(0.6, 0.4), 0.2

) (
(0.7, 0.2), 0.3

) (
(0.4, 0.1), 0.4

)(
(0.6, 0.2), 0.2

) (
(0.7, 0.3), 0.3

) (
(0.5, 0.2), 0.4

) (
(0.7, 0.2), 0.5

)
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and

Bη =



(
(0.2, 0.1), 0.3

) (
(0.3, 0.2), 0.4

) (
(0.4, 0.3), 0.5

) (
(0.5, 0.4), 0.6

)(
(0.6, 0.4), 0.9

) (
(0.7, 0.3), 0.9

) (
(0.8, 0.2), 0.8

) (
(1.0, 0.0), 0.7

)(
(0.5, 0.2), 0.2

) (
(0.7, 0.3), 0.3

) (
(0.8, 0.1), 0.4

) (
(0.5, 0.0), 0.5

)(
(0.7, 0.1), 0.3

) (
(0.8, 0.2), 0.4

) (
(0.6, 0.1), 0.5

) (
(0.8, 0.1), 0.6

)
 ,

we have

(Rν,G) =



((0.1, 0.2), 0.2) ((0.2, 0.3), 0.3) ((0.3, 0.4), 0.4) ((0.4, 0.5), 0.5)
((0.1, 0.4), 0.2) ((0.2, 0.3), 0.3) ((0.3, 0.4), 0.4) ((0.4, 0.5), 0.5)
((0.1, 0.2), 0.2) ((0.2, 0.3), 0.3) ((0.3, 0.4), 0.4) ((0.4, 0.5), 0.5)
((0.1, 0.2), 0.2) ((0.2, 0.3), 0.3) ((0.3, 0.4), 0.4) ((0.4, 0.5), 0.5)
((0.2, 0.5), 0.3) ((0.3, 0.4), 0.4) ((0.4, 0.3), 0.5) ((0.5, 0.4), 0.6)
((0.5, 0.5), 0.8) ((0.6, 0.4), 0.8) ((0.7, 0.3), 0.7) ((0.9, 0.1), 0.6)
((0.5, 0.5), 0.2) ((0.6, 0.4), 0.3) ((0.7, 0.3), 0.4) ((0.5, 0.1), 0.5)
((0.5, 0.5), 0.3) ((0.6, 0.4), 0.4) ((0.6, 0.3), 0.5) ((0.8, 0.1), 0.6)
((0.2, 0.3), 0.1) ((0.3, 0.4), 0.2) ((0.4, 0.3), 0.3) ((0.4, 0.4), 0.4)
((0.4, 0.4), 0.1) ((0.6, 0.4), 0.2) ((0.7, 0.2), 0.3) ((0.4, 0.1), 0.4)
((0.4, 0.3), 0.1) ((0.6, 0.4), 0.2) ((0.7, 0.2), 0.3) ((0.4, 0.1), 0.4)
((0.4, 0.3), 0.1) ((0.6, 0.4), 0.2) ((0.6, 0.2), 0.3) ((0.4, 0.1), 0.4)
((0.2, 0.2), 0.2) ((0.3, 0.3), 0.3) ((0.4, 0.3), 0.4) ((0.5, 0.4), 0.5)
((0.6, 0.4), 0.2) ((0.7, 0.3), 0.3) ((0.5, 0.2), 0.4) ((0.7, 0.2), 0.5)
((0.5, 0.2), 0.2) ((0.7, 0.3), 0.3) ((0.5, 0.2), 0.4) ((0.5, 0.2), 0.5)
((0.6, 0.2), 0.2) ((0.7, 0.3), 0.3) ((0.5, 0.2), 0.4) ((0.7, 0.2), 0.5)


and

(Sκ,H) =



((0.2, 0.1), 0.3) ((0.3, 0.2), 0.4) ((0.4, 0.3), 0.5) ((0.5, 0.4), 0.6)
((0.6, 0.2), 0.9) ((0.7, 0.3), 0.9) ((0.8, 0.2), 0.8) ((1.0, 0.0), 0.7)
((0.5, 0.2), 0.2) ((0.7, 0.3), 0.3) ((0.8, 0.1), 0.4) ((0.5, 0.0), 0.5)
((0.7, 0.1), 0.3) ((0.8, 0.2), 0.4) ((0.6, 0.1), 0.5) ((0.8, 0.1), 0.6)
((0.5, 0.1), 0.8) ((0.6, 0.2), 0.8) ((0.7, 0.3), 0.7) ((0.9, 0.1), 0.6)
((0.6, 0.4), 0.9) ((0.7, 0.3), 0.9) ((0.8, 0.2), 0.8) ((1.0, 0.0), 0.7)
((0.5, 0.2), 0.8) ((0.7, 0.3), 0.8) ((0.8, 0.1), 0.7) ((0.9, 0.0), 0.6)
((0.7, 0.1), 0.8) ((0.8, 0.2), 0.8) ((0.7, 0.1), 0.7) ((0.9, 0.1), 0.6)
((0.4, 0.1), 0.3) ((0.6, 0.2), 0.4) ((0.7, 0.2), 0.5) ((0.5, 0.1), 0.6)
((0.6, 0.3), 0.9) ((0.7, 0.3), 0.9) ((0.8, 0.2), 0.8) ((1.0, 0.0), 0.7)
((0.5, 0.2), 0.2) ((0.7, 0.3), 0.3) ((0.8, 0.1), 0.4) ((0.5, 0.0), 0.5)
((0.7, 0.1), 0.3) ((0.8, 0.2), 0.4) ((0.7, 0.1), 0.5) ((0.8, 0.1), 0.6)
((0.6, 0.1), 0.3) ((0.7, 0.2), 0.4) ((0.5, 0.2), 0.5) ((0.7, 0.2), 0.6)
((0.6, 0.2), 0.9) ((0.7, 0.3), 0.9) ((0.8, 0.2), 0.8) ((1.0, 0.0), 0.7)
((0.6, 0.2), 0.2) ((0.7, 0.3), 0.3) ((0.8, 0.1), 0.4) ((0.7, 0.0), 0.5)
((0.7, 0.1), 0.3) ((0.8, 0.2), 0.4) ((0.6, 0.1), 0.5) ((0.8, 0.1), 0.6)
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5. Application of AND-operation and OR-operation of PIFHS-sets

In this section, two algorithms are proposed for decision making to have right decision regarding
best selection of certain material/product using AND-operation and OR-operation of PIFHS-sets.
Moreover, proposed algorithms are explained with illustrated examples.

Example 5.1. Suppose John wants to buy a washing machine from the market. There are five kinds
of washing machines w1,w2,w3 that form the universe of discourse Z = {w1,w2,w3,w4,w5}. Such
selection is made on the basis of three parameters y1 = power (watts), y2 = voltage, y3 = capacity in
kg, which depict their performances. The attribute-valued sets corresponding to these parameters are
Ÿ1, Ÿ2, Ÿ3, such that Ÿ1 = {y11 = 400, y12 = 500}, Ÿ2 = {y21 = 220, y22 = 240}, Ÿ3 = {y31 = 10},
therefore, P = Ÿ1 × Ÿ2 × Ÿ3 = {p1, p2, p3, p4} where each pi is a 3-tuple element of P.

Now we propose two algorithms (i.e., one for AND-operation and other for OR-operation) of
PIFHS-sets to have right selection.
————————————————————————————————————————-
Algorithm 1: optimal product selection based on AND-operation of PIFHS-sets
————————————————————————————————————————-

Step 1 Construct PIFHS-setsWζ ,Lξ according to Experts.

Step 2 Calculate AND-operationVδ of PIFHS-sets constructed in step 1.

Step 3 Present Vδ in matrix notation with reduced fuzzy numerical grades ρr f = |Tρ(p) − Fρ(p)| of
ρ(p) =< Tρ(p), Fρ(p) >.

Step 4 Mark the highest numerical grade ρr f in each row of matrix.

Step 5 Calculate score S = Sum of the products of ρr f i with the corresponding possibility σi.

Step 6 Decision = Max{S}.

————————————————————————————————————————-
The flow chart of Algorithm 1 is presented in Figure 3.

Figure 3. AND-algorithm.
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Step 1 Consider we have two experts whose observationsWζ and Lξ are as follows:

Wζ (p1) =
{ (

w1
<0.51,0.31> , 0.2

)
,
(

w2
<0.31,0.21> , 0.3

)
,
(

w3
<0.32,0.22> , 0.4

)
,
(

w4
<0.41,0.31> , 0.5

)
,
(

w5
<0.51,0.41> , 0.6

) }
,

Wζ (p2) =
{ (

w1
<0.32,0.22> , 0.9

)
,
(

w2
<0.42,0.32> , 0.8

)
,
(

w3
<0.52,0.42> , 0.7

)
,
(

w4
<0.62,0.32> , 0.6

)
,
(

w5
<0.52,0.42> , 0.5

) }
,

Wζ (p3) =
{ (

w1
<0.43,0.33> , 0.8

)
,
(

w2
<0.53,0.43> , 0.7

)
,
(

w3
<0.63,0.33> , 0.6

)
,
(

w4
<0.73,0.13 , 0.7

)
,
(

w5
<0.83,0.13> , 0.8

) }
,

Wζ (p4) =
{ (

w1
<0.54,0.44> , 0.4

)
,
(

w2
<0.64,0.14> , 0.5

)
,
(

w3
<0.74,0.24> , 0.6

)
,
(

w4
<0.34,0.24> , 0.7

)
,
(

w5
<0.54,0.14> , 0.8

) }
,

Lξ (p1) =
{ (

w1
<0.29,0.19> , 0.1

)
,
(

w2
<0.28,0.18> , 0.2

)
,
(

w3
<0.27,0.17> , 0.3

)
,
(

w4
<0.26,0.16> , 0.4

)
,
(

w5
<0.25,0.15> , 0.5

) }
,

Lξ (p2) =
{ (

w1
<0.38,0.28> , 0.3

)
,
(

w2
<0.37,0.27> , 0.4

)
,
(

w3
<0.35,0.25> , 0.5

)
,
(

w4
<0.35,0.15> , 0.6

)
,
(

w5
<0.36,0.26> , 0.7

) }
,

Lξ (p3) =
{ (

w1
<0.44,0.34> , 0.9

)
,
(

w2
<0.45,0.35> , 0.8

)
,
(

w3
<0.46,0.36> , 0.7

)
,
(

w4
<0.47,0.37> , 0.6

)
,
(

w5
<0.48,0.38> , 0.5

) }
,

Lξ (p4) =
{ (

w1
<0.54,0.44> , 0.1

)
,
(

w2
<0.55,0.45> , 0.2

)
,
(

w3
<0.56,0.36> , 0.3

)
,
(

w4
<0.57,0.37> , 0.4

)
,
(

w5
<0.58,0.38> , 0.5

) }
,

Step 2 NowWζ ∧ Lξ = Vδ where

Vδ (p1, p1) =
{ (

w1
<0.29,0.31> , 0.1

)
,
(

w2
<0.28,0.21> , 0.2

)
,
(

w3
<0.27,0.22> , 0.3

)
,
(

w4
<0.26,0.31> , 0.4

)
,
(

w5
<0.25,0.41> , 0.5

) }
,

Vδ (p1, p2) =
{ (

w1
<0.38,0.31> , 0.2

)
,
(

w2
<0.31,0.27> , 0.3

)
,
(

w3
<0.32,0.25> , 0.4

)
,
(

w4
<0.35,0.31> , 0.5

)
,
(

w5
<0.36,0.41> , 0.6

) }
,

Vδ (p1, p3) =
{ (

w1
<0.44,0.34> , 0.2

)
,
(

w2
<0.31,0.35> , 0.3

)
,
(

w3
<0.32,0.36> , 0.4

)
,
(

w4
<0.41,0.37> , 0.5

)
,
(

w5
<0.48,0.41> , 0.5

) }
,

Vδ (p1, p4) =
{ (

w1
<0.51,0.44> , 0.1

)
,
(

w2
<0.31,0.45> , 0.2

)
,
(

w3
<0.32,0.36> , 0.3

)
,
(

w4
<0.41,0.37> , 0.4

)
,
(

w5
<0.51,0.41> , 0.5

) }
,

Vδ (p2, p1) =
{ (

w1
<0.29,0.22> , 0.1

)
,
(

w2
<0.28,0.32> , 0.2

)
,
(

w3
<0.27,0.42> , 0.3

)
,
(

w4
<0.26,0.32> , 0.4

)
,
(

w5
<0.25,0.42> , 0.5

) }
,

Vδ (p2, p2) =
{ (

w1
<0.32,0.28> , 0.3

)
,
(

w2
<0.37,0.32> , 0.4

)
,
(

w3
<0.35,0.42> , 0.5

)
,
(

w4
<0.35,0.32> , 0.6

)
,
(

w5
<0.36,0.42> , 0.5

) }
,

Vδ (p2, p3) =
{ (

w1
<0.32,0.34> , 0.9

)
,
(

w2
<0.42,0.35> , 0.8

)
,
(

w3
<0.46,0.42> , 0.7

)
,
(

w4
<0.47,0.37> , 0.6

)
,
(

w5
<0.48,0.42> , 0.5

) }
,

Vδ (p2, p4) =
{ (

w1
<0.32,0.44> , 0.1

)
,
(

w2
<0.42,0.45> , 0.2

)
,
(

w3
<0.52,0.42> , 0.3

)
,
(

w4
<0.57,0.37> , 0.4

)
,
(

w5
<0.52,0.42> , 0.5

) }
,

Vδ (p3, p1) =
{ (

w1
<0.29,0.33> , 0.1

)
,
(

w2
<0.28,0.43> , 0.2

)
,
(

w3
<0.27,0.33> , 0.3

)
,
(

w4
<0.26,0.16> , 0.4

)
,
(

w5
<0.25,0.15> , 0.5

) }
,

Vδ (p3, p2) =
{ (

w1
<0.38,0.33> , 0.3

)
,
(

w2
<0.37,0.43> , 0.4

)
,
(

w3
<0.35,0.33> , 0.5

)
,
(

w4
<0.35,0.15> , 0.6

)
,
(

w5
<0.36,0.26> , 0.7

) }
,

Vδ (p3, p3) =
{ (

w1
<0.43,0.34> , 0.8

)
,
(

w2
<0.45,0.43> , 0.7

)
,
(

w3
<0.46,0.36> , 0.6

)
,
(

w4
<0.47,0.37> , 0.6

)
,
(

w5
<0.48,0.38> , 0.5

) }
,

Vδ (p3, p4) =
{ (

w1
<0.43,0.44> , 0.1

)
,
(

w2
<0.53,0.45> , 0.2

)
,
(

w3
<0.56,0.36> , 0.3

)
,
(

w4
<0.57,0.37> , 0.4

)
,
(

w5
<0.58,0.38> , 0.5

) }
,

Vδ (p4, p1) =
{ (

w1
<0.29,0.44> , 0.1

)
,
(

w2
<0.28,0.18> , 0.2

)
,
(

w3
<0.27,0.24> , 0.3

)
,
(

w4
<0.26,0.24> , 0.4

)
,
(

w5
<0.25,0.15> , 0.5

) }
,

Vδ (p4, p2) =
{ (

w1
<0.38,0.44> , 0.3

)
,
(

w2
<0.37,0.27> , 0.4

)
,
(

w3
<0.35,0.25> , 0.5

)
,
(

w4
<0.35,0.24> , 0.6

)
,
(

w5
<0.36,0.26> , 0.7

) }
,

Vδ (p4, p3) =
{ (

w1
<0.44,0.44> , 0.4

)
,
(

w2
<0.45,0.35> , 0.5

)
,
(

w3
<0.46,0.36> , 0.6

)
,
(

w4
<0.34,0.37> , 0.6

)
,
(

w5
<0.48,0.38> , 0.5

) }
,

Vδ (p4, p4) =
{ (

w1
<0.54,0.44> , 0.1

)
,
(

w2
<0.55,0.45> , 0.2

)
,
(

w3
<0.56,0.36> , 0.3

)
,
(

w4
<0.34,0.37> , 0.4

)
,
(

w5
<0.54,0.38> , 0.5

) }
,
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Step 3 Matrix notation ofVδ is given as

Vδ =



(0.02, 0.1) (0.07, 0.2) (0.05, 0.3) (0.05, 0.4) (0.16, 0.5)
(0.07, 0.2) (0.04, 0.3) (0.07, 0.4) (0.04, 0.5) (0.05, 0.6)
(0.10, 0.2) (0.04, 0.3) (0.04, 0.4) (0.04, 0.5) (0.07, 0.5)
(0.07, 0.1) (0.14, 0.2) (0.04, 0.3) (0.04, 0.4) (0.10, 0.5)
(0.07, 0.1) (0.04, 0.2) (0.15, 0.3) (0.06, 0.4) (0.17, 0.5)
(0.04, 0.3) (0.05, 0.4) (0.07, 0.5) (0.03, 0.6) (0.06, 0.5)
(0.02, 0.9) (0.07, 0.8) (0.04, 0.7) (0.10, 0.6) (0.06, 0.5)
(0.12, 0.1) (0.03, 0.2) (0.10, 0.3) (0.20, 0.4) (0.10, 0.5)
(0.04, 0.1) (0.15, 0.2) (0.06, 0.3) (0.10, 0.4) (0.10, 0.5)
(0.05, 0.3) (0.06, 0.4) (0.02, 0.5) (0.20, 0.6) (0.10, 0.7)
(0.09, 0.8) (0.02, 0.7) (0.10, 0.6) (0.10, 0.6) (0.10, 0.5)
(0.01, 0.1) (0.08, 0.2) (0.20, 0.3) (0.20, 0.4) (0.20, 0.5)
(0.15, 0.1) (0.10, 0.2) (0.03, 0.3) (0.02, 0.4) (0.10, 0.5)
(0.06, 0.3) (0.10, 0.4) (0.10, 0.5) (0.11, 0.6) (0.10, 0.7)
(0.00, 0.4) (0.10, 0.5) (0.10, 0.6) (0.03, 0.6) (0.10, 0.5)
(0.10, 0.1) (0.10, 0.2) (0.20, 0.3) (0.03, 0.4) (0.16, 0.5)


Step 4 Reduced fuzzy numerical grades ρr f (see Figure 4) and possibilities σ are given in Table 1.
The value of ρr f and σ against the pairs (pi, pi), i = 1, 2, 3 are considered as 0 as both the parameters
are the same.
S core(w1) = S(w1) = (0.07 × 0.2) + (0.10 × 0.2) + (0.15 × 0.1) = 0.049
S core(w2) = S(w2) = (0.14 × 0.2) + (0.10 × 0.5) = 0.078
S core(w3) = S(w3) = (0.07 × 0.4) + 0 + (0.15 × 0.2) + 0 + (0.20 × 0.3) + (0.10 × 0.6) + 0 = 0.178
S core(w4) = S(w4) = (0.10× 0.6) + (0.20× 0.4) + (0.20× 0.6) + 0 + (0.20× 0.4) + (0.11× 0.6) = 0.406
S core(w5) = S(w5) = 0 + (0.17 × 0.5) + 0 + (0.20 × 0.5) + (0.10 × 0.5) = 0.235

Figure 4. Reduced fuzzy values inVδ under AND-algorithm.
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Table 1. AND-operation based grade table.

Vδ wi Highest ρr f σi

(p1, p1) w5 0 0
(p1, p2) w1,w3 0.07, 0.07 0.2,0.4
(p1, p3) w1 0.10 0.2
(p1, p4) w2 0.14 0.2
(p2, p1) w5 0.17 0.5
(p2, p2) w3 0 0
(p2, p3) w4 0.10 0.6
(p2, p4) w4 0.20 0.4
(p3, p1) w3 0.15 0.2
(p3, p2) w4 0.20 0.6
(p3, p3) w3,w4,w5 0 0
(p3, p4) w3,w4,w5 0.20, 0.20, 0.20 0.3, 0.4, 0.5
(p4, p1) w1 0.15 0.1
(p4, p2) w4 0.11 0.6
(p4, p3) w2,w3,w5 0.10, 0.10, 0.10 0.5, 0.6, 0.5
(p4, p4) w3 0 0

Step 5 and Step 6 Score of w4 is maximum (as depicted in Figure 5), therefore it is selected.

Figure 5. Score values under AND-algorithm.

Example 5.2. Considering the Example 5.1 for purchasing of dryer with same sub-attributive sets, an
alternate algorithm is proposed which is based on OR-operation of PIFHS-sets.
————————————————————————————————————————-
Algorithm 2: optimal product selection based on OR-operation of PIFHS-sets
————————————————————————————————————————-

Step 1 Construct PIFHS-setsWζ ,Lξ according to Experts.

Step 2 Calculate OR-operation X% of PIFHS-sets constructed in step 1.
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Step 3 Present X% in matrix notation with reduced fuzzy numerical grades ρr f = |Tρ(p) − Fρ(p)| of
ρ(p) =< Tρ(p), Fρ(p) >.

Step 4 Mark the highest numerical grade ρr f in each row of matrix.

Step 5 Calculate score S = Sum of the products of ρr f i with the corresponding possibility σi.

Step 6 Decision = Max{S}.

————————————————————————————————————————-
The flow chart of Algorithm 2 is presented in Figure 6.

Figure 6. OR-algorithm.

Step 1 This step is same as in step 1 of algorithm 1.
Step 2 NowWζ ∨ Lξ = X% where

X% (p1, p1) =
{ (

d1
<0.51,0.19> , 0.2

)
,
(

d2
<0.31,0.18> , 0.3

)
,
(

d3
<0.32,0.17> , 0.4

)
,
(

d4
<0.41,0.16> , 0.5

)
,
(

d5
<0.51,0.15> , 0.6

) }
,

X% (p1, p2) =
{ (

d1
<0.51,0.28> , 0.3

)
,
(

d2
<0.37,0.21> , 0.4

)
,
(

d3
<0.35,0.22> , 0.5

)
,
(

d4
<0.41,0.15> , 0.6

)
,
(

d5
<0.51,0.26> , 0.7

) }
,

X% (p1, p3) =
{ (

d1
<0.51,0.31> , 0.9

)
,
(

d2
<0.45,0.21> , 0.8

)
,
(

d3
<0.46,0.22> , 0.7

)
,
(

d4
<0.47,0.31> , 0.6

)
,
(

d5
<0.51,0.38> , 0.6

) }
,

X% (p1, p4) =
{ (

d1
<0.54,0.31> , 0.2

)
,
(

d2
<0.55,0.21> , 0.3

)
,
(

d3
<0.56,0.22> , 0.4

)
,
(

d4
<0.57,0.31> , 0.5

)
,
(

d5
<0.58,0.38> , 0.6

) }
,

X% (p2, p1) =
{ (

d1
<0.32,0.19> , 0.9

)
,
(

d2
<0.42,0.18> , 0.8

)
,
(

d3
<0.52,0.17> , 0.7

)
,
(

d4
<0.62,0.16> , 0.6

)
,
(

d5
<0.52,0.15> , 0.5

) }
,

X% (p2, p2) =
{ (

d1
<0.38,0.22> , 0.9

)
,
(

d2
<0.42,0.27> , 0.8

)
,
(

d3
<0.52,0.25> , 0.7

)
,
(

d4
<0.62,0.15> , 0.6

)
,
(

d5
<0.52,0.26> , 0.7

) }
,

X% (p2, p3) =
{ (

d1
<0.44,0.22> , 0.9

)
,
(

d2
<0.45,0.32> , 0.8

)
,
(

d3
<0.52,0.36> , 0.7

)
,
(

d4
<0.62,0.32> , 0.6

)
,
(

d5
<0.52,0.38> , 0.5

) }
,

X% (p2, p4) =
{ (

d1
<0.52,0.22> , 0.9

)
,
(

d2
<0.55,0.32> , 0.8

)
,
(

d3
<0.56,0.36> , 0.7

)
,
(

d4
<0.62,0.32> , 0.6

)
,
(

d5
<0.58,0.38> , 0.5

) }
,

X% (p3, p1) =
{ (

d1
<0.43,0.19> , 0.8

)
,
(

d2
<0.53,0.18> , 0.7

)
,
(

d3
<0.63,0.17> , 0.6

)
,
(

d4
<0.73,0.13> , 0.7

)
,
(

d5
<0.83,0.13> , 0.8

) }
,

X% (p3, p2) =
{ (

d1
<0.43,0.28> , 0.8

)
,
(

d2
<0.53,0.27> , 0.7

)
,
(

d3
<0.63,0.25> , 0.6

)
,
(

d4
<0.73,0.13> , 0.7

)
,
(

d5
<0.83,0.13> , 0.8

) }
,
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X% (p3, p3) =
{ (

d1
<0.44,0.33> , 0.9

)
,
(

d2
<0.53,0.35> , 0.8

)
,
(

d3
<0.63,0.33> , 0.7

)
,
(

d4
<0.73,0.13> , 0.7

)
,
(

d5
<0.83,0.13> , 0.8

) }
,

X% (p3, p4) =
{ (

d1
<0.54,0.33> , 0.8

)
,
(

d2
<0.55,0.43> , 0.7

)
,
(

d3
<0.63,0.33> , 0.6

)
,
(

d4
<0.73,0.13> , 0.7

)
,
(

d5
<0.83,0.13> , 0.8

) }
,

X% (p4, p1) =
{ (

d1
<0.54,0.19> , 0.4

)
,
(

d2
<0.64,0.14> , 0.5

)
,
(

d3
<0.74,0.17> , 0.6

)
,
(

d4
<0.34,0.16> , 0.7

)
,
(

d5
<0.54,0.14> , 0.8

) }
,

X% (p4, p2) =
{ (

d1
<0.54,0.28> , 0.4

)
,
(

d2
<0.64,0.14> , 0.5

)
,
(

d3
<0.74,0.24> , 0.6

)
,
(

d4
<0.35,0.15> , 0.7

)
,
(

d5
<0.54,0.14> , 0.8

) }
,

X% (p4, p3) =
{ (

d1
<0.54,0.34> , 0.9

)
,
(

d2
<0.64,0.14> , 0.8

)
,
(

d3
<0.74,0.24> , 0.7

)
,
(

d4
<0.47,0.24> , 0.7

)
,
(

d5
<0.54,0.14> , 0.8

) }
,

X% (p4, p4) =
{ (

d1
<0.54,0.44> , 0.4

)
,
(

d2
<0.64,0.14> , 0.5

)
,
(

d3
<0.74,0.24> , 0.6

)
,
(

d4
<0.57,0.24> , 0.7

)
,
(

d5
<0.58,0.14> , 0.8

) }
,

Step 3 Matrix notation of X% is given as

Vδ =



(0.32, 0.2) (0.13, 0.3) (0.15, 0.4) (0.25, 0.5) (0.36, 0.6)
(0.23, 0.3) (0.16, 0.4) (0.13, 0.5) (0.26, 0.6) (0.25, 0.7)
(0.20, 0.9) (0.24, 0.8) (0.24, 0.7) (0.16, 0.6) (0.13, 0.6)
(0.23, 0.2) (0.34, 0.3) (0.34, 0.4) (0.26, 0.5) (0.20, 0.6)
(0.13, 0.9) (0.24, 0.8) (0.35, 0.7) (0.46, 0.6) (0.37, 0.5)
(0.16, 0.9) (0.15, 0.8) (0.27, 0.7) (0.47, 0.6) (0.26, 0.7)
(0.22, 0.9) (0.13, 0.8) (0.16, 0.7) (0.30, 0.6) (0.14, 0.5)
(0.30, 0.9) (0.23, 0.8) (0.20, 0.7) (0.30, 0.6) (0.20, 0.5)
(0.24, 0.8) (0.35, 0.7) (0.46, 0.6) (0.60, 0.7) (0.70, 0.8)
(0.15, 0.8) (0.26, 0.7) (0.38, 0.6) (0.60, 0.7) (0.70, 0.8)
(0.11, 0.9) (0.18, 0.8) (0.30, 0.7) (0.60, 0.7) (0.70, 0.8)
(0.21, 0.8) (0.12, 0.7) (0.30, 0.6) (0.60, 0.7) (0.70, 0.8)
(0.35, 0.4) (0.50, 0.5) (0.57, 0.6) (0.18, 0.7) (0.40, 0.8)
(0.26, 0.4) (0.50, 0.5) (0.50, 0.6) (0.20, 0.7) (0.40, 0.8)
(0.20, 0.9) (0.50, 0.8) (0.50, 0.7) (0.23, 0.7) (0.40, 0.8)
(0.10, 0.4) (0.50, 0.5) (0.50, 0.6) (0.33, 0.7) (0.44, 0.8)


Step 4 Reduced fuzzy numerical grades ρr f (see Figure 7) and possibilities σ are given in Table 2. The
value of ρ and σ against the pairs (pi, pi), i = 1, 2, 3 are considered as 0 as both the parameters are the
same.
S core(d1) = S(d1) = (0.30 × 0.9) = 0.27
S core(d2) = S(d2) = (0.24 × 0.8) + (0.34 × 0.3) + (0.50 × 0.5) + (0.50 × 0.8) + 0 = 0.944
S core(d3) = S(d3) = (0.24× 0.7) + (0.34× 0.4) + (0.57× 0.6) + (0.50× 0.6) + (0.50× 0.7) + 0 = 1.296
S core(d4) = S(d4) = (0.26 × 0.6) + (0.46 × 0.6) + 0 + (0.30 × 0.6) + (0.30 × 0.6) = 0.792
S core(d5) = S(d5) = 0 + (0.70 × 0.8) + (0.70 × 0.8) + 0 + (0.70 × 0.8) = 1.68
Step 5 and Step 6 As score of d5 is maximum (as depicted in Figure 8), therefore it is selected.
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Figure 7. Reduced fuzzy values inVδ under OR-algorithm.

Table 2. OR-operation based grade table.

Vδ di Highest ρr f σi

(p1, p1) d5 0 0
(p1, p2) d4 0.26 0.6
(p1, p3) d2, d3 0.24, 0.24 0.8, 0.7
(p1, p4) d2, d3 0.34, 0.34 0.3, 0.4
(p2, p1) d4 0.46 0.6
(p2, p2) d4 0 0
(p2, p3) d4 0.30 0.6
(p2, p4) d1, d4 0.30, 0.30 0.9, 0.6
(p3, p1) d5 0.70 0.8
(p3, p2) d5 0.70 0.8
(p3, p3) d5 0 0
(p3, p4) d5 0.70 0.8
(p4, p1) d3 0.57 0.6
(p4, p2) d2, d3 0.50, 0.50 0.5, 0.6
(p4, p3) d2, d3 0.50, 0.50 0.8, 0.7
(p4, p4) d2, d3 0 0

Figure 8. Score values under OR-algorithm.
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The comparison of ranking of Dryers by both methods has been presented in Table 3 and Figure
9. It can be observed that mean score of AND-operation is 0.1892 and of OR-operation is 0.9964.
Since 0.1892 & 0.9964 ∈ [0, 1] but the value 0.1892 is more reliable and precise as compared to
0.9964 therefore it can be concluded that OR-operation is not consistent and requires some weight
to be applied.

Table 3. Comparison between the score values of AND and OR-operations.

Aggregation
Operation

d1 d2 d3 d4 d5 Mean
Score

Ranking

AND-
Operation

0.049 0.078 0.178 0.406 0.235 0.1892 d4 � d5 � d3 � d2 � d1

OR-Operation 0.270 0.944 1.296 0.792 1.68 0.9964 d5 � d3 � d2 � d4 � d1

Figure 9. Comparison analysis of score values for AND-operation and OR-operation.

6. Similarity measures between PIFHS-sets

Similarity measures have broad applications in many fields like pattern recognition, image
processing, region extraction, coding theory, etc. We are frequently intrigued to know whether two
examples or pictures are alike or nearly alike or possibly how much they are alike. Many researchers
have discussed the similarity measures between fuzzy sets, fuzzy numbers, and vague sets. Majumdar
and Samanta [38–40] have employed the concept of similarity measures to soft sets, fuzzy soft sets,
and generalised fuzzy soft sets. In this section, we introduce a measure of similarity between two
PFSSs with partial modification in similarity methods adopted by Majumdar and Samanta [38–40].
The set theoretic approach has been employed in this regard because it is very popular and easier for
computations.

Definition 6.1. (similarity measures b/w PIFHS-sets) Similarity measure between two PIFHS-sets
Wζ and Lξ, denoted by S(Wζ ,Lξ), is defined as follows:

S(Wζ ,Lξ) = M(W(ε),L(ε)) ×M(ζ(ε), ξ(ε)) (6.1)
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Such that
M(W(ε),L(ε)) = max Mi(W(ε),L(ε)) (6.2)

and
M(ζ(ε), ξ(ε)) = max Mi(ζ(ε), ξ(ε)) (6.3)

where

Mi(W(ε),L(ε)) = 1 −

∑n
j=1

∣∣∣Wi j(ε) − Li j(ε)
∣∣∣∑n

j=1

∣∣∣Wi j(ε) +Li j(ε)
∣∣∣ (6.4)

here Wi j(ε) and Li j(ε) are reduced fuzzy numerical grades with Wi j(ε) = |TWi j(ε) − FWi j(ε)| and
Li j(ε) = |TLi j(ε) − FLi j(ε)| and

Mi(ζ(ε), ξ(ε)) = 1 −

∑n
j=1

∣∣∣ζi j(ε) − ξi j(ε)
∣∣∣∑n

j=1

∣∣∣ζi j(ε) + ξi j(ε)
∣∣∣ (6.5)

Definition 6.2. (Radical similarity b/w PIFHS-sets) LetWζ ,Lξ ∈ Ωpi f hss thenWζ and Lξ are said
to be radically similar if S(Wζ ,Lξ) ≥ 1

2 .

Proposition 6.3. LetWζ ,Lξ,Hλ ∈ Ωpi f hss then the following holds:

(i) S(Wζ ,Lξ) = S(Lξ,Wζ).
(ii) 0 ≤ S(Wζ ,Lξ) ≤ 1.

(iii) IfWζ = Lξ then S(Wζ ,Lξ) = 1.
(iv) IfWζ ⊆ Lξ ⊆ Hλ then S(Wζ ,Hλ) ≤ S(Lξ,Hλ).
(v) Wζ ∩ Lξ = ∅ then S(Wζ ,Lξ) = 0.

Proof. The proofs of (i)–(v) are straightforward and follow from Definition 6.1. �

Example 6.4. Consider PIFHS-sets from Example 5.1, we have

M1(ζ(p1), ξ(p1)) = 1 −

∑5
j=1

∣∣∣ζ1 j(p1) − ξ1 j(p1)
∣∣∣∑5

j=1

∣∣∣ζ1 j(p1) + ξ1 j(p1)
∣∣∣

= 1 −

{
|(0.2 − 0.1)| + |(0.3 − 0.2)| + |(0.4 − 0.3)|
+ |(0.5 − 0.4)| + |(0.6 − 0.5)|

}
{
|(0.2 + 0.1)| + |(0.3 + 0.2)| + |(0.4 + 0.3)|
+ |(0.5 + 0.4)| + |(0.6 + 0.5)|

}
= 0.86.
Similarly
M2(ζ(p2), ξ(p2)) = 0.77,
M3(ζ(p3), ξ(p3)) = 0.90,
M4(ζ(p4), ξ(p4)) = 0.67, therefore
M(ζ(p), ξ(p)) = 0.90.
Now

M1(W(p1),L(p1)) = 1 −

∑5
j=1

∣∣∣W1 j(p1) − L1 j(p1)
∣∣∣∑5

j=1

∣∣∣W1 j(p1) +L1 j(p1)
∣∣∣
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= 1 −

 |(0.20 − 0.10)| + |(0.10 − 0.10)| + |(0.10 − 0.10)|
+ |(0.10 − 0.10)| + |(0.10 − 0.10)|

 |(0.20 + 0.10)| + |(0.10 + 0.10)| + |(0.10 + 0.10)|
+ |(0.10 + 0.10)| + |(0.10 + 0.10)|


= 0.909.

Similarly
M2(W(p2),L(p2)) = 0.9231,
M3(W(p3),L(p3)) = 0.4348,
M4(W(p4),L(p4)) = 0.6667, therefore
M(W(p),L(p)) = 0.9231.
Hence, the similarity between the two PIFHS-setsWζ andLξ is given byS(Wζ ,Lξ) = 0.90×0.9231 �
0.831 which meansWζ and Lξ are radically similar.

6.1. Application of similarity between PIFHS-sets in recruitment pattern recognition

In this subsection, we will try to estimate the possibility that a candidate having some qualification
and experience, is suitable for a job in a company or not. For this we first propose an algorithm
based on the concept of similarity measures b/w PIFHS-sets. The methodology is that a model
PIFHS-set for Standard recruitment is constructed and ordinary PIFHS-sets are designed for the
candidate. Then we calculate the similarity measure of this set with model PIFHS-set to observe
pattern recognition. If PIFHs-set of a candidate is significantly similar to model PIFHS-set then that
candidate is recommended for selection. The input variables are sub-parameters with PIFHS-numbers
as approximate elements with hypothetical observation.
————————————————————————————————————————-
Algorithm 3: recruitment pattern recognition based on similarity measures b/w PIFHS-sets
————————————————————————————————————————-

Step 1 Construct PIFHS-setWζ according to Company Experts Team.

Step 2 Construct PIFHS-set Lξ according to External Experts.

Step 3 Represent PIFHS-setsWζ &Lξ in matrix notations having reduced fuzzy numerical grades as
entries.

Step 4 DetermineMi(W(ε),L(ε)) andMi(ζ(ε), ξ(ε)) by using Equations 6.4 and 6.5.

Step 5 DetermineM(W(ε),L(ε)) andM(ζ(ε), ξ(ε)) by using Equations 6.2 and 6.3.

Step 6 Calculate S(Wζ ,Lξ) according to Equation 6.1.

Step 7 Check the nature of similarity in accordance with Definition 6.2.

————————————————————————————————————————-
The pictorial representation of algorithm 3 is given in Figure 10.
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Figure 10. Pictorial representation of algorithm 3.

Example 6.5. Let there are only two elements “recommended= z1” and “not-recommended= z2”, i.e.,
Z = {z1, z2}. The selection of candidate is evaluated on the basis of certain distinct parameters. Let
these parameters are p1 = qualification, p2 = age and p3 = experience. These parameters are further
partitioned into disjoint attribute-valued sets that are given as
P1 = {p11 = BachelorDegree, p12 = MasterDegree}
P2 = {p21 = 25years, p22 = 30years}
P2 = {p21 = 5years, p22 = 10years}
then
Q = P1 × P2 × P3 = {q1, q2, q3, q4, q5, q6, q7, q8} where each qi is a 3-tupple element of Q. Let Q1 =

{q3, q4, q7, q8} is a subset of Q.
Step 1–Step 3 Consider a model PIFHS-set for Standard recruitment isWζ which is constructed by
experts team deputed for general recruitment in Company.

Wζ (q3) =
{ (

z1
<1,0> , 1

)
,
(

z2
<0,1> , 1

) }
,

Wζ (q4) =
{ (

z1
<0,1> , 1

)
,
(

z2
<1,0> , 1

) }
,

Wζ (q7) =
{ (

z1
<0,1> , 1

)
,
(

z2
<0,1> , 1

) }
,

Wζ (q8) =
{ (

z1
<1,0> , 1

)
,
(

z2
<0,1> , 1

) }
,

and its matrix representation is given as

Wζ =



(
< 1, 0 >, 1

) (
< 0, 1 >, 1

)(
< 0, 1 >, 1

) (
< 1, 0 >, 1

)(
< 0, 1 >, 1

) (
< 0, 1 >, 1

)(
< 1, 0 >, 1

) (
< 1, 0 >, 1

)


Now we present matrix representation ofWζ with reduced fuzzy numerical grades as

(
1, 1

) (
1, 1

)(
1, 1

) (
1, 1

)(
1, 1

) (
1, 1

)(
1, 1

) (
1, 1

)


and Lξ is a PIFHS-set for the candidate which is constructed by an expert outside the experts team of
the company.

Lξ (q3) =
{ (

z1
<0.4,0.6> , 0.3

)
,
(

z2
<0.1,0.8> , 0.4

) }
,

AIMS Mathematics Volume 7, Issue 3, 3866–3895.



3889

Lξ (q4) =
{ (

z1
<0.3,0.7> , 0.4

)
,
(

z2
<0.2,0.5> , 0.5

) }
,

Lξ (q7) =
{ (

z1
<0.2,0.5> , 0.7

)
,
(

z2
<0.3,0.6> , 0.8

) }
,

Lξ (q8) =
{ (

z1
<0.6,0.4> , 0.8

)
,
(

z2
<0.5,0.2> , 0.9

) }
,

and its matrix representation is given as

Lξ =



(
< 0.4, 0.6 >, 0.3

) (
< 0.1, 0.8 >, 0.4

)(
< 0.3, 0.7 >, 0.4

) (
< 0.2, 0.5 >, 0.5

)(
< 0.2, 0.5 >, 0.7

) (
< 0.3, 0.6 >, 0.8

)(
< 0.6, 0.4 >, 0.8

) (
< 0.5, 0.2 >, 0.9

)


Now we present matrix representation of Lξ with reduced fuzzy numerical grades as

Lξ =



(
0.2, 0.3

) (
0.7, 0.4

)(
0.4, 0.4

) (
0.3, 0.5

)(
0.3, 0.7

) (
0.3, 0.8

)(
0.2, 0.8

) (
0.3, 0.9

)


Step 4 and Step 5 Now we calculate similarity betweenWζ and Lξ according to Definition 6.1

M1(ζ(q3), ξ(q3)) = 1 −
|(1 − 0.3)| + |(1 − 0.4)|
|(1 + 0.3)| + |(1 + 0.4)|

= 0.5185.
Similarly
M2(ζ(q4), ξ(q4)) = 0.6207,
M3(ζ(q7), ξ(q7)) = 0.8571,
M4(ζ(q8), ξ(q8)) = 0.9189, therefore
M(ζ(q), ξ(q)) = 0.9189.
Now

M1(W(q3),L(q3)) = 1 −
|(1 − 0.2)| + |(1 − 0.7)|
|(1 + 0.2)| + |(1 + 0.7)|

= 0.6207.
Similarly
M2(W(q2),L(q2)) = 0.5185,
M3(W(q3),L(q3)) = 0.4615,
M4(W(q4),L(q4)) = 0.4000, therefore
M(W(q),L(q)) = 0.6207.
Step 6 and Step 7 Hence, the similarity between the two PIFHS-sets Wζ and Lξ is given by
S(Wζ ,Lξ) = 0.9189× 0.6207 � 0.5704 > 1

2 which meansWζ and Lξ are radically similar. Therefore
candidate is recommended for the job in the company.
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6.2. Comparison analysis

In literature, certain decision-making algorithmic approaches have already been discussed by [14,
15, 30–34] that based on fuzzy-like and intuitionistic fuzzy-like soft set theories. Decision making is
badly affected due to omission of some features. For example, in recruitment process, it is insufficient
to consider qualification, experience, age as only attributes because candidates may have different
qualifications, experiences and ages so it is much appropriate to further classify these attributes into
their disjoint attributive sets as we have done in Example 6.5. All existing decision making models
have used single set of attributes but in proposed model, distinct attributes are further partitioned into
disjoint attributive sets. The consideration of such sets will make the decision making process more
reliable and trust-worthy. We present a comparison analysis of our proposed structure with the relevant
existing structures [14, 15] in Table 4.

Table 4. Comparison analysis.

Authors Structure Nature of
Similarity/Value

Reduced Fuzzy
Grade Method

Focus
on Sub-
attributes

Alkhazaleh et al. [14] Possibility FS-set Radical/0.74 Not Applicable Ignored
Bashir et al. [15] Possibility IFS-

set
Non-
Radical/0.26

Reduced Fuzzy
Grade = T+F

2

Ignored

Majumdar & Samanta
[38]

Generalised FS-
set

Radical/0.60 Not Applicable Ignored

Majumdar & Samanta
[39]

Fuzzy soft set Radical/0.71 Not Applicable Ignored

Majumdar & Samanta
[40]

Soft set Radical/0.5 Not Applicable Ignored

Proposed Structure Possibility IFHS-
set

Radical/0.831 Reduced Fuzzy
Grade = |T − F|

Considered

7. Discussion

Here we discuss that our proposed structure i.e., possibility intuitionistic fuzzy hypersoft set is the
most generalized and flexible structure as

(i) It reduces to possibility fuzzy hypersoft set (PFHS-set) if non-membership degree is ignored.
(ii) If membership and non-membership degrees are ignored and only disjoint attribute-valued sets

corresponding to distinct attributes are considered with possibility degree, then it becomes
possibility hypersoft set (PHS-set).

(iii) It reduces to fuzzy hypersoft set (FHS-set) if possibility and non-membership degrees are ignored.
(iv) If possibility degree along with membership and non-membership degrees, is omitted then it

reduces to hypersoft set (HS-set).
(v) If only single set of parameters is considered then it becomes possibility intuitionistic fuzzy soft

set (PIFS-set).
(vi) It reduces to possibility fuzzy soft set (PFS-set) if non-membership degree is ignored and only
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single set of parameters is considered.
(vii) It reduces to possibility soft set (PS-set) if membership and non-membership degrees are ignored

and only single set of parameters is considered.
(viii) It reduces to fuzzy soft set (FS-set) if possibility and non-membership degrees are ignored and

only single set of parameters is considered.
(ix) If possibility, membership and non-membership degrees are ignored and only single set of

parameters is considered then it becomes soft set (S-set).

The Figure 11 depicts the generalization of proposed structure.

Figure 11. Generalization of proposed structure i.e., PIFHS-set.

7.1. Merits of proposed structure

In this subsection, some merits of the proposed structure (i.e., PIFHS-set) are highlighted, which
are given below:

(i) The introduced approach took the significance of the idea of possibility alongside the IFHS-
set to deal with current decision-making issues. The considered possibility degree mirrors the
possibility of the existence of the level of acknowledgment and excusal; along these lines, this
association has tremendous potential in the genuine depiction inside the space of computational
incursions.

(ii) As the proposed structure emphasizes on in-depth study of attributes (i.e., further partitioning
of attributes) rather than focussing on attributes merely therefore it makes the decision-making
process better, flexible and more reliable.

(iii) It contains all the characteristics and properties of the existing structures i.e., PFHS-set, PHS-set,
FHS-set, HS-set, PIFS-set, PFS-set, PS-set, FS-set and S-set so it is not unreasonable to call it the
generalized form of all these structures.
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The advantage of the proposed structure can easily be judged from the Table 5. The comparison
is evaluated with features: MG (Membership Grade), NMG (Non Membership Grade), DOP
(Degree of Possibility), SAAF (Single Argument Approximate function) and MAAF (Multi Argument
Approximate function).

Table 5. Comparison with existing models under appropriate features.

Authors Structure MD NMD DOP SAAF MAAF
Maji et al. [5] Fuzzy soft sets X × × X ×

Maji et al. [13] Intuitionistic FS-sets X X × X ×

Alkhazaleh et al. [14] Possibility fuzzy soft set X × X X ×

Bashir et al. [15] Possibility intuitionistic FS-set X X X X ×

Smarandache [16] Hypersoft set × × × X X
Bashir et al. [30] Possibility fuzzy soft expert set X × X X ×

Zhang et al. [31] Possibility multi-fuzzy soft se X × X X ×

Kalaiselvi et al. [32] Possibility fuzzy soft set X × X X ×

Ponnalagu et al. [33] Possibility fuzzy soft expert set X × X X ×

Garg et al. [34] Possibility intuitionistic FS-set X X X X ×

Khalil et al. [35] Possibility m-polar fuzzy soft set X × X X ×

Debnath [36] Fuzzy hypersoft set X × × X X
Jafar et al. [37] Intuitionistic fuzzy HS-set X X × X X
Proposed Structure Possibility intuitionistic FHS-set X X X X X

8. Conclusions

The key features of this work can be summarized as follows:

(i) The novel notion of possibility intuitionistic fuzzy hypersoft set (PIFHS-set) is characterized
and some elementary properties i.e., PIFHS-subset, possibility null IFHS-set, possibility absolute
IFHS-set, and complement of PIFHS-set are discussed with illustrated numerical examples.

(ii) The set theoretic operations of PIFHS-sets i.e., union, intersection, AND, OR, are characterized
with the help of elaborated examples. Their fundamental laws and properties are also discussed.

(iii) Two decision-making algorithms based on AND and OR operations are proposed and explained
with the help of daily life problems.

(iv) Similarity between PIFHS-sets is formulated and successfully applied to real world decision
making problem. A comparison of similarity for proposed model is made with some existing
models.

(v) Authors have carve out a conceptual framework for a generalized model i.e., PIFHS-set to deal
decision-making real life problems by considering hypothetical data. The authors are devoted
to discuss some case studies based on PIFHS-set by using real data. Moreover, other types of
similarity measures, entropies and aggregation operators will be investigated for studying multi-
criteria decision-making problems.

(vi) The proposed study may also be extended for developing the following hybridized models:

– Possibility Interval-valued Intuitionistic fuzzy hypersoft set
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– Possibility Neutrosophic hypersoft set
– Possibility Interval-valued Neutrosophic hypersoft set
– Possibility Interval-valued fuzzy hypersoft set
– Possibility fuzzy hypersoft expert set etc.

with applications in decision-making.
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