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Abstract: In this paper, we explore the dynamic properties of discrete predator-prey models with
diffusion on a coupled mapping lattice. We conducted a stability analysis of the equilibrium points,
provided the normal form of the Neimark-Sacker and Flip bifurcations, and explored a range of Turing
instabilities that emerged in the system upon the introduction of diffusion. Our numerical simulations
aligned with the theoretical derivations, incorporating the computation of the maximum Lyapunov
exponent to validate obtained bifurcation diagrams and elucidated the system’s progression from
bifurcations to chaos. By adjusting the self-diffusion and cross-diffusion coefficients, we simulated the
shifts between different Turing instabilities. These findings highlight the complex dynamic behavior
of discrete predator-prey models and provide valuable insights for biological population conservation
strategies.

Keywords: predator-prey model; coupled map lattices; Neimark-Sacker bifurcation; Flip bifurcation;
Turing instability; chaos
Mathematics Subject Classification: 34C23, 37N25

1. Introduction

In recent years, research in the field of biological modeling has flourished, leading to distinctive
research outcomes by adopting diverse methods to address the characteristics of biological
populations [1, 2]. Different biological populations impose distinct requirements on the selection of
research methods due to their unique life cycles, reproduction patterns, and ecological adaptations. For
populations with short life cycles, well-defined reproductive cycles, or non-overlapping generations,
discrete biological models exhibit higher accuracy in describing dynamic changes. In scientific
research, biological data are often recorded and collected at a series of discrete time points. Discrete

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025059


1249

biological models, leveraging their advantages, are more effective in handling nonlinear relationships
based on discrete time points. By flexibly adjusting the model parameters, discrete biological models
can simulate the interactions between biological populations in different contexts.

Furthermore, discrete models exhibit a wide range of dynamic properties. Apart from the common
phenomena of convergence, oscillation, and chaos, discrete models can also unveil more intricate
dynamic behaviors, such as period-doubling bifurcations and strange attractors. These complex
dynamic phenomena are often challenging to directly observe and analyze in continuous models, but
they can be clearly and intuitively demonstrated and thoroughly analyzed in discrete models. An
increasing number of scholars have delved into the study of discrete biological models [3–7], which
enable a more comprehensive description of the behaviors and characteristics of biological populations
by incorporating additional biological parameters and more intricate interactions. This advancement
not only propels theoretical development in the field of biology but also offers robust support for
practical applications.

A discretized reaction-diffusion system in both space and time can be interpreted as a coupled
map lattice (CML) model. Through the utilization of the coupled map lattice model, researchers
have extensively explored the dynamic variations of biological populations within ecosystems [8–10],
encompassing crucial processes like species migration, competition, and coexistence. This exploration
not only enhances our understanding of ecosystem stability and sustainability but also establishes a
robust scientific foundation for ecological conservation and management. In comparison to traditional
continuous models, the coupled map lattice model demonstrates notable advantages in addressing
intricate spatio-temporal dynamics and nonlinear interactions. By segmenting the system into discrete
patches and meticulously considering inter-patch interactions, we can intuitively and clearly unveil the
spatial structure and dynamics of the predation system.

The predator-prey model, as a significant tool in the realms of ecology and mathematics, has
undergone continuous refinement and advancement since the introduction of the Lotka-Volterra model
in the early 20th century [11, 12]. It has evolved into a crucial instrument for studying species
relationships and dynamics within ecosystems. Researchers have developed diverse forms of predator-
prey models based on varying assumptions and conditions. These models consider factors such as
species growth rate, predation rate, and mortality rate, among others, to depict interactions among
biological populations. To better capture the complexity of ecosystems, nonlinear relationships
and different functional response functions have been incorporated into the models [13–17].
The comprehensive exploration of predator-prey modeling has unveiled the intricacies of species
interactions and showcased diverse interdisciplinary applications in fields such as economics and
sociology.

In the predator-prey model of ecology, herd behavior is characterized by the tendency of prey or
predators to gather and form groups in response to imminent predation threats. For example, on the
African savannah, antelope herds migrate collectively to safer areas when confronted with predators
like lions. This migratory behavior serves to safeguard the herd from predators. Moreover, during
migration, antelope herds cooperate to address environmental challenges. Consequently, a more
sophisticated social model was proposed in reference [18] to depict the behavior of large herbivore
populations on the savannah,  du

dt = ru (1 − u) −
√

uv,
dv
dt = βv

(
−α +

√
u
)
,
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where u (t) and v (t) denote the prey and predator densities at time t, respectively. α is the mortality rate
of the predator in the absence of prey, and β is the rate at which prey is converted to predators.

In this model, individuals within a population exhibit a tendency to aggregate and form large groups,
with stronger individuals positioned at the periphery of the group and weaker individuals clustered
towards the center. This spatial differentiation leads to successful predation by predators primarily
occurring at the boundaries of the group, affecting individuals at the outermost part of the group.
When examining this concept through a mathematical lens, the number of individuals at the population
boundary is proportional to the perimeter of the occupied area, which, in turn, is proportional to the
square root of the area. Given that individuals in the population are distributed in two dimensions,
the estimation of the number of individuals at the edge can be derived from the square root of the
area. Consequently, when modeling predator attacks on populations, the functional response can be
formulated based on the square root of the prey population density.

Indirect effects of predators, such as fear effects, can significantly impact the dynamics of
ecosystems. Research indicates that the mere presence of a predation threat can compel prey to alter
their behavior and exhibit antipredator responses, such as selecting new habitats, adjusting foraging
times, and seeking safer foraging sites. These behavioral changes may result in reduced prey growth,
survival, and reproductive rates. To investigate this phenomenon, Wang et al. [19] introduced an
expression f (k, y) = 1

1+ky to quantify the impact of fear on prey populations, with the level of fear
represented by the parameter k. In 2019, Zhang et al. [20] studied a predator-prey system incorporating
the fear effect and refuge,  du

dt =
αu

1+kv − bu2 −
β(1−m)uv

1+a(1−m)u ,
dv
dt = −rv + cβ(1−m)uv

1+a(1−m)u ,

analyzing and numerically exploring the influence of fear effects on the model. Fakhry [21] proposed
a predator-prey model with fear effects and population effects. du

dt = ru (1 − u)
(

1
1+kv

)
−
√

uv,
dv
dt = −αv + β

√
uv.

In natural ecosystems, interactions and dispersal among biological populations are widespread,
with the spatial distribution and dynamics between predators and prey being influenced by various
factors. The introduction of spatial diffusion terms into the predator-prey model, as discussed
in [22–27], enables a more precise description of the spatial distribution and dynamic changes
of biological populations. This approach reveals intricate patterns of population size fluctuations,
alterations in distribution patterns, and adjustments in competitive relationships, enhancing our
understanding of ecosystem structure and function. Furthermore, spatial dispersal can give rise to
Turing’s patch diagrams [28–31], which play a crucial role in elucidating biodiversity maintenance,
species distribution patterns, spatial heterogeneity, and ecosystem response and adaptation. The
studies on spatial dispersal within predator-prey models have yielded significant outcomes in wildlife
conservation, agriculture, fisheries management, ecology education, scientific research, and the
popularization of science.

Since Alan Turing’s [32] groundbreaking paper, the phenomenon of self-diffusion triggering self-
organized patterning in reaction-diffusion systems has been extensively researched [33–35]. In the
predator-prey model, self-diffusion vividly captures the migratory behaviors of individuals within
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a population as they search for food or avoid overcrowding, significantly influencing the spatial
arrangement and intrinsic mechanisms of population dynamics. On the other hand, the introduction
of cross-diffusion portrays the complex dynamic interplay between predators and prey in a more
detailed manner. The effects of cross-diffusion on various predator-prey models have been analyzed
by researchers in references [36–42]. By simulating the predator’s pursuit of prey and their mutual
influence on spatial distribution and abundance, the cross-diffusion model provides a more realistic
depiction of ecosystems. This model delves into the underlying mechanisms of predator-prey
interactions and explores their impact on ecosystem stability, offering a comprehensive understanding
of ecosystem complexity and diversity. Moreover, it enhances the accuracy and predictive capability
of the model, providing valuable theoretical insights for the development of ecological conservation
and management strategies.

In reference [43], a class of predator-prey models incorporating herd behavior and cross-diffusion
was examined. Through calculations and analysis of the paradigm on the central manifold linked to
the Turing-Hopf bifurcation, it was discovered that, under specific conditions, there is a diverse range
of spatio-temporal dynamics near the Turing-Hopf bifurcation point.

Based on the available research data, it is evident that there are fewer studies on discrete predator-
prey models, particularly those that incorporate herd behavior and diffusion. Therefore, our primary
goal of this paper is to enhance models by introducing a cellular automaton (CML) model approach
and diffusion factors. The predator-prey model that is discrete in both time and space can more
accurately describe the spatial distribution of biological populations and the dynamics of quantitative
changes. This model effectively addresses complex factors such as environmental resources, prey
relationships, and competitive interactions, enabling greater flexibility in analysis. As a result,
it enhances predictability and provides valuable insights for formulating ecological conservation
strategies and managing biological resources. This innovative approach is designed to provide a more
precise representation of real-world biological scenarios.

Here, we delve into the analysis of a CML model approach with the integration of diffusion
factors to enhance predator-prey models. The discussion is structured into various sections: In
Section 2, we examine the proposed model, while in Section 3, we analyze system behavior
without diffusion, covering stability analysis, Neimark-Sacker bifurcation, and Flip bifurcation with
normal forms provided. In Section 4, we explore Turing bifurcations under spatial inhomogeneities,
and in Section 5, we present numerical simulations on asymptotic stabilization, Flip bifurcation,
Neimark-Sacker bifurcation diagrams, and various Turing instabilities. These include pure Turing
instability, Neimark-Sacker-Turing instability, Flip-Turing instability, spatially homogeneous stable
state, spatially homogeneous periodic oscillation state, and spatially homogeneous period-doubling
oscillatory state. Finally, we summarize our key findings in Section 6.

2. Model analysis

In [21], mathematical models are introduced and explored to examine the interplay between
predators influenced by fear and the effects of group behavior. du

dt = ru (1 − u)
(

1
1+kv

)
−
√

uv,
dv
dt = −αv + β

√
uv.

(2.1)
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Considering cross-diffusion in two dimensions, we obtain the following model: du
dt = ru (1 − u)

(
1

1+kv

)
−
√

uv + d11

(
∂2u
∂x2 +

∂2u
∂y2

)
+ d12

(
∂2v
∂x2 +

∂2v
∂y2

)
,

dv
dt = −αv + β

√
uv + d21

(
∂2u
∂x2 +

∂2u
∂y2

)
+ d22

(
∂2v
∂x2 +

∂2v
∂y2

)
.

(2.2)

The establishment of a coupled mapping lattice involves defining the (m + 2)×(m + 2) , m ∈ N+ grid in
a two-dimensional matrix region and discretizing time using the forward Euler method. The quantities
of predators and prey on the (i, j) grid at time t are denoted by un (i, j) and vn (i, j), respectively.
This lattice functions to illustrate the population distribution of predators and prey across the grid.
By incorporating spatial diffusion, the model (2.3) enables dynamic variations in biomass over time,
reflecting the spatial dynamics of the predator-prey system.{

un+1 (i, j) = f (un (i, j) , vn (i, j)) + d11τ
h2 ∇

2un (i, j) + d12τ
h2 ∇

2vn (i, j) ,
vn+1 (i, j) = g (un (i, j) , vn (i, j)) + d21τ

h2 ∇
2un (i, j) + d22τ

h2 ∇
2vn (i, j) ,

(2.3)

where f (un (i, j) , vn (i, j)) = un (i, j) + τrun (i, j) (1 − un (i, j))
(

1
1+kvn(i, j)

)
− τ

√
un (i, j)vn (i, j) ,

g (un (i, j) , vn (i, j)) = vn (i, j) − ταvn (i, j) + τβ
√

un (i, j)vn (i, j) .
(2.4)

The variables i and j range from 0 to m + 1, where i and j are integers. Here, τ denotes the time step,
and h represents the spatial step. The cross-diffusion coefficients are denoted by d11, d12, d21, and d22,
all of which are positive.

The discrete Laplacian can be defined in the following manner:{
∇2un (i, j) = un (i + 1, j) + un (i − 1, j) + un (i, j + 1) + un (i, j − 1) − 4un (i, j) ,
∇2vn (i, j) = vn (i + 1, j) + vn (i − 1, j) + vn (i, j + 1) + vn (i, j − 1) − 4vn (i, j) .

(2.5)

The diffusion and response processes in the predator-prey model are inextricably linked, yet they
can be interpreted to indicate a certain degree of “diffusion to find or avoid each other, followed by
interaction within a given area”. Accordingly, the model can be enhanced as follows:

First, diffusion occurs:{
ũn (i, j) = un (i, j) + d11τ

h2 ∇
2un (i, j) + d12τ

h2 ∇
2vn (i, j) ,

ṽn (i, j) = vn (i, j) + d21τ
h2 ∇

2un (i, j) + d22τ
h2 ∇

2vn (i, j) .
(2.6)

Second, reaction occurs:

un+1 (i, j) = ũn (i, j) + τrũn (i, j) (1 − ũn (i, j))
(

1
1+k̃vn(i, j)

)
− τ

√
ũn (i, j)̃vn (i, j) ,

vn+1 (i, j) = ṽn (i, j) − τα̃vn (i, j) + τβ
√

ũn (i, j)̃vn (i, j) ,
(2.7)

and satisfy the periodic boundary conditions

un (i, 0) = un (i,m) , un (i, 1) = un (i,m + 1) , un (0, j) = un (m, j) , un (1, j) = un (m + 1, j) ,

vn (i, 0) = vn (i,m) , vn (i, 1) = vn (i,m + 1) , vn (0, j) = vn (m, j) , vn (1, j) = vn (m + 1, j) .
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Remark 2.1. In natural ecosystems, predators and prey occupy distinct habitats and have defined
activity ranges. They engage in continuous movement and dispersion to seek out food, mates, or evade
natural threats, a phase known as the “spreading” stage. When predators and prey encounter each
other spatially, and the predator is poised to capture the prey, predatory behavior ensues promptly,
marking the “reaction” stage. Consequently, the interaction between predators and prey adheres to
a “diffusion followed by reaction” framework in a generalized sense. This conceptualization leads to
the formulation of a model that captures the dynamic interplay between predators and prey.

3. Analysis of kinetic properties without diffusion conditions

Without considering diffusion, the system can be described as follows: un+1 (i, j) = un (i, j) + τrun (i, j) (1 − un (i, j))
(

1
1+kvn(i, j)

)
− τ

√
un (i, j)vn (i, j) ,

vn+1 (i, j) = vn (i, j) − ταvn (i, j) + τβ
√

un (i, j)vn (i, j) .
(3.1)

Since the concentration remains uniform across all locations on the plane when diffusion is not
considered, the model can be simplified as follows: un+1 = un + τrun (1 − un)

(
1

1+kvn

)
− τ
√

unvn,

vn+1 = vn − ταvn + τβ
√

unvn.
(3.2)

3.1. Stability analysis of equilibrium points

By calculation, it can be determined that the model has trivial equilibrium points E0 (0, 0) and
boundary equilibrium points E1 (1, 0).

(H) β3 + 4krαβ2 − 4krα3 > 0.
If condition (H) holds, then there exists a positive equilibrium point E∗ (u∗, v∗) of the system (3.2)

at this point, where u∗ = α
2

β2 , v∗ = − 1
2k +

1
2k

√
1 + 4k rα

β3

(
β2 − α2).

The Jacobi matrix for model (3.2) is

J =

 1 + τ
(

r−2ru
1+kv −

v
2
√

u

)
−
τrku(1−u)

(1+kv)2 − τ
√

u
τβv
2
√

u 1 + τ
(
β
√

u − α
)  . (3.3)

Substituting the trivial equilibrium point E0 (0, 0) into the Jacobi matrix yields the corresponding
characteristic equation, which in turn provides the eigenvalues λ01 = 1 + τr and λ02 = 1 − τα,
respectively.

Theorem 3.1. For trivial equilibrium point E0 (0, 0):
(i) E0 (0, 0) is a source if 0 < α < 2

τ
.

(ii) E0 (0, 0) is a saddle point if α > 2
τ
.

Similarly, the eigenvalues λ11 = 1 − τr, λ12 = 1 + τ (β − α) can be obtained by substituting the
boundary equilibrium point E1 (1, 0).

Theorem 3.2. For boundary equilibrium point E1 (1, 0):
(i) E1 (1, 0) is a sink, if β < α, 0 < r < 2

τ
, 0 < τ < 2

α−β
.

(ii) E1 (1, 0) is a source, if α < β, r > 2
τ
, or α > β + 2

τ
, r > 2

τ
.

(iii) E1 (1, 0) is a saddle point, if α < β, 0 < r < 2
τ
, or α > β + 2

τ
, 0 < r < 2

τ
.
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For the positive equilibrium point E∗ (u∗, v∗), substituting it into the Jacobi matrix yields the
corresponding characteristic equation as follows:

λ2 − tr (τ) λ + det (τ) = 0, (3.4)

where tr (τ) = 2 + τ
(

r−2ru∗
1+kv∗ −

v∗

2
√

u∗

)
, det (τ) = 1 + 1

2

(
βτ2v∗ − τv∗

√
u∗
−

krβτ2(−1+u∗)
√

u∗v∗

(1+kv∗)2 +
2τ(r−2ru∗)

1+kv∗

)
.

According to the Routh-Hurwitz criterion, the sufficient condition for local asymptotic stabilization
at the positive equilibrium point is that the modulus of all eigenvalues at the equilibrium point is less
than 1, i.e., 

1 − tr (τ) + det (τ) > 0,
1 + tr (τ) + det (τ) > 0,
1 − det (τ) > 0.

(3.5)

Theorem 3.3. If Eq (3.5) holds, then the system is locally asymptotically stable at the positive
equilibrium point.

Remark 3.1. A comprehensive examination of progressive stabilization in the predator-prey model is
essential for advancing our understanding of the dynamic equilibrium mechanism between predators
and prey within an ecosystem. This analysis not only demonstrates the capacity of ecosystems to
restore equilibrium in the face of internal and external disturbances, but also provides indispensable
theoretical support and a scientific foundation for the implementation of ecological conservation
practices.

3.2. Neimark-Sacker bifurcation analysis

Given that we are working with a predator-prey model, we analyze the positive equilibrium point
E∗ (u∗, v∗) in all subsequent discussions to ensure its biological significance.

A Neimark-Sacker bifurcation occurs when characteristic equation (3.4) has a pair of complex
conjugate roots of modulus 1. By treating the time step as a parameter, it is possible to determine
the two eigenvalues of characteristic equation (3.4) as follows:

λ1,2 (τ) =
tr (τ) ±

√
tr(τ)2

− 4 det (τ)
2

. (3.6)

The time step at which Neimark-Sacker bifurcations occur is designated as τ = τ∗1. Considering the
conditions for Neimark-Sacker bifurcations, we can ascertain the following: det

(
τ∗1

)
= 1,∣∣∣∣tr (

τ∗1

)∣∣∣∣ < 2.
(3.7)

By calculation, we have  τ
∗
1 =

(1+kv∗)(−2r
√

u∗+4r(u∗)3/2+v∗+k(v∗)2)
β
√

u∗v∗(kr
√

u∗−kr(u∗)3/2+(1+kv∗)2) ,∣∣∣∣2 + τ∗1 (
r−2ru∗
1+kv∗ −

v∗

2
√

u∗

)∣∣∣∣ < 2.
(3.8)

Furthermore, the following conditions must be satisfied:(
λ
(
τ∗1

))k , 1, 2, 3, 4. (3.9)
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For condition (3.9), it is equivalent that

tr
(
τ∗1

)
, −2, 0, 1, 2. (3.10)

Since
∣∣∣∣tr (
τ∗1

)∣∣∣∣ < 2, so the condition changes to tr
(
τ∗1

)
, 0, 1, i.e.,

(
−2r
√

u∗ + 4r(u∗)3/2 + v∗ + k(v∗)2
)2

2βu∗v∗
(
kr
√

u∗ − kr(u∗)3/2 + (1 + kv∗)2
) , 1, 2. (3.11)

It is important to emphasize that, in addition to the previously mentioned conditions, a Neimark-
Sacker bifurcation can only occur if crosscut condition (3.12) is satisfied, i.e.,

d =
∂
∣∣∣λ1,2 (τ)

∣∣∣2
∂τ

∣∣∣τ=τ∗1 = ∂ det (τ)
∂τ

∣∣∣τ=τ∗1 = −2r
√

u∗ + 4r(u∗)3/2 + v∗ + k(v∗)2

2
√

u∗ (1 + kv∗)
, 0. (3.12)

The normal form of the Neimark-Sacker bifurcation is examined in the following section.
The initial step involves translating the system (3.2) from the positive equilibrium to the origin using

the transformations: u1,n = un − u∗ and v1,n = vn − v∗, u1,n+1 = u1,n + τr
(
u1,n + u∗

) (
1 −

(
u1,n + u∗

)) ( 1
1+k(v1,n+v∗)

)
− τ

√(
u1,n + u∗

) (
v1,n + v∗

)
,

v1,n+1 = v1,n − τα
(
v1,n + v∗

)
+ τβ

√(
u1,n + u∗

) (
v1,n + v∗

)
.

(3.13)

By performing a Taylor expansion of the system at the origin
(
u1,n, v1,n

)
= (0, 0), we obtain the

following result: 
u1,n+1 = a10u1,n + a01v1,n + f11

(
u1,n, v1,n

)
+ O

((∣∣∣u1,n

∣∣∣ + ∣∣∣v1,n

∣∣∣)4
)
,

v1,n+1 = b10u2,n + b01v1,n + g21
(
u1,n, v1,n

)
+ O

((∣∣∣v1,n

∣∣∣ + ∣∣∣v1,n

∣∣∣)4
)
,

(3.14)

where

f11
(
u1,n, v1,n

)
= a20

(
u1,n

)2
+ a11u1,nv1,n + a02

(
v1,n

)2
+ a30

(
u1,n

)3
+ a21

(
u2,n

)2v1,n + a12u1,n
(
v1,n

)2
+ a03

(
v1,n

)3,

g11
(
u1,n, v1,n

)
= b20

(
u1,n

)2
+ b11u1,nv1,n + b02

(
v1,n

)2
+ b30

(
u1,n

)3
+ b21

(
u2,n

)2v1,n + b12u1,n
(
v1,n

)2
+ b03

(
v1,n

)3,

a10 = 1 −
τv∗

2
√

u∗
+

rτ (1 − 2u∗)
1 + kv∗

, a01 = −τ
√

u∗ +
krτ (−1 + u∗) u∗

(1 + kv∗)2 , a20 =
τv∗

8(u∗)3/2 −
rτ

1 + kv∗
,

a11 = −
τ

2
√

u∗
+

krτ (−1 + 2u∗)
(1 + kv∗)2 , a02 = −

k2rτ (−1 + u∗) u∗

(1 + kv∗)3 , a30 = −
τv∗

16(u∗)5/2 ,

a21 =
τ

8(u∗)3/2 +
krτ

(1 + kv∗)2 , a12 =
k2rτ (1 − 2u∗)

(1 + kv∗)3 , a03 =
k3rτ (−1 + u∗) u∗

(1 + kv∗)4 ,

b10 =
βτv∗

2
√

u∗
, b10 =

βτv∗

2
√

u∗
, b01 = 1 − ατ + βτ

√
u∗, b20 = −

βτv∗

8(u∗)3/2 ,
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b11 =
βτ

2
√

u∗
, b30 =

βτv∗

16(u∗)5/2 , b21 = −
βτ

8(u∗)3/2 , b02 = b12 = b03 = 0.

Ignoring the quadratic term O
((∣∣∣u1,n

∣∣∣ + ∣∣∣v1,n

∣∣∣)4
)
, the system can be reformulated as follows:(

u1,n+1

v1,n+1

)
=

 1 − τv∗

2
√

u∗
+

rτ(1−2u∗)
1+kv∗ −τ

√
u∗ + krτ(−1+u∗)u∗

(1+kv∗)2

βτv∗

2
√

u∗
1 − ατ + βτ

√
u∗

 ( u1,n

v1,n

)
+

(
f11

(
u1,n, v1,n

)
g11

(
u1,n, v1,n

) )
. (3.15)

In the event that the Neimark-Sacker bifurcation condition is satisfied, the eigenvalues can be
expressed as complex numbers.

λ1,2
(
τ∗1

)
=

tr
(
τ∗1

)
± i

√
4 det

(
τ∗1

)
− tr

(
τ∗1

)2

2
= ω1 ± iω2. (3.16)

The following transformation is applied:(
u1,n

v1,n

)
=

(
a01 0

ω1 − a10 −ω2

) (
U1,n

V1,n

)
. (3.17)

The model (3.15) becomes(
U1,n+1

V1,n+1

)
=

(
ω1 −ω2

ω2 ω1

) (
U1,n

V1,n

)
+

(
f12

(
U1,n,V1,n

)
g12

(
U1,n,V1,n

) )
, (3.18)

where(
f12

(
U1,n,V1,n

)
g12

(
U1,n,V1,n

) )
=

(
a01 0

ω1 − a10 −ω2

)−1 (
f11

(
a01U1,n, (ω1 − a10) U1,n − ω2V1,n

)
g11

(
a01U1,n, (ω1 − a10) U1,n − ω2V1,n

) )
. (3.19)

Based on reference [43], system (3.2) undergoes a Neimark-Sacker bifurcation at E∗ (u∗, v∗) and
needs to meet the following criteria:

ρ = −Re
(
(1 − 2λ1) λ2

2

1 − λ1
ξ11ξ20

)
−

1
2
|ξ11|

2
− |ξ02|

2 + Re (λ2ξ21) , 0, (3.20)

where the corresponding coefficients are provided in Appendix A.

Theorem 3.4. If conditions (3.8), (3.11), (3.12), and (3.20) are satisfied, the system described by
Eq (3.2) will experience a Neimark-Sacker bifurcation at the time τ = τ∗1. Furthermore, if ρ is less
than zero, the Neimark-Sacker bifurcation is classified as supercritical, resulting in the generation of a
stable periodic oscillation.

Remark 3.2. Through examination, we can gain valuable insights into how the dynamic equilibrium
between predator and prey populations is influenced by the system’s parameters. In cases where the
Neimark-Sacker bifurcation is supercritical, the system exhibits stable periodic oscillations, indicating
a consistent pattern in the interactions between predator and prey populations. Altering specific
parameters in the model can lead to the destabilization of initially stable periodic orbits due to the
Neimark-Sacker bifurcation, giving rise to complex quasi-periodic or chaotic behaviors. This process
not only reveals the intricacies of the interaction mechanisms between predators and prey but also
showcases the dynamic evolution that ecosystems may experience when facing internal and external
disturbances.
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3.3. Flip bifurcation analysis

In the context of a Flip bifurcation, characteristic equation (3.4) exhibits one characteristic value
of −1, while the other has a modulus less than one. By treating the time step as a parameter, the
two eigenvalues of characteristic equation (3.4) can be determined as follows: λ1 (τ) = −1, λ2 (τ) =
tr (τ) + 1.

The time step at which Flip bifurcations occur is designated as τ = τ∗2. In light of the conditions
governing Flip bifurcations, the following can be ascertained: 1 + tr

(
τ∗2

)
+ det

(
τ∗2

)
= 0,∣∣∣∣tr (

τ∗2

)
+ 1

∣∣∣∣ < 1.
(3.21)

By calculation, we have  τ∗2 = (1+kv∗)2

βv∗κ

(
v∗
√

u∗
− 2r

1+kv∗ +
4ru∗

1+kv∗ ±
√
ς
)
,

2 < τ
(

v∗

2
√

u∗
− r−2ru∗

1+kv∗

)
< 4,

(3.22)

where κ = kr
√

u∗ − kr(u∗)3/2 + (1 + kv∗)2, ς = (−2r
√

u∗+4r(u∗)3/2+v∗+k(v∗)2)2
−8βu∗v∗κ

u∗(1+kv∗)2 .

The discussion provided focuses solely on τ∗2 =
(1+kv∗)2

βv∗κ

(
v∗
√

u∗
− 2r

1+kv∗ +
4ru∗

1+kv∗ +
√
ς
)
. The alternative

case, τ∗2 =
(1+kv∗)2

βv∗κ

(
v∗
√

u∗
− 2r

1+kv∗ +
4ru∗

1+kv∗ −
√
ς
)
, can be obtained through a similar approach.

The normal form of the Flip bifurcation will be examined in the following section.
First, we move the system from the positive equilibrium to the origin using the transformations

u2,n = un − u∗, v2,n = vn − v∗, τ̃ = τ − τ∗2, which enables us to obtain the following result: u2,n+1 = u2,n +
(̃
τ + τ∗2

) (
r
(
u2,n + u∗

) (
1 −

(
u2,n + u∗

)) ( 1
1+k(v2,n+v∗)

)
−

√(
u2,n + u∗

) (
v2,n + v∗

))
,

v2,n+1 = v2,n −
(̃
τ + τ∗2

)
α
(
v2,n + v∗

)
+ τβ

√(
u2,n + u∗

) (
v2,n + v∗

)
.

(3.23)
Performing a Taylor expansion of the system at the origin

(
u2,n, v2,n, τ

∗
2

)
= (0, 0, 0), we obtain the

following result:
u2,n+1 = a100u2,n + a010v2,n + a001τ̃ + f21

(
u2,n, v2,n, τ̃

)
+ O

((∣∣∣u2,n

∣∣∣ + ∣∣∣v2,n

∣∣∣ + |̃τ|)4
)
,

v2,n+1 = b100u2,n + b010v2,n + b001τ̃ + g21
(
u2,n, v2,n, τ̃

)
+ O

((∣∣∣u2,n

∣∣∣ + ∣∣∣v2,n

∣∣∣ + |̃τ|)4
)
,

(3.24)

where the corresponding coefficients are given in Appendix B.

Ignoring the quadratic term O
((∣∣∣u2,n

∣∣∣ + ∣∣∣v2,n

∣∣∣ + |̃τ|)4
)
, the system can be rewritten as

(
u2,n+1

v2,n+1

)
=

 1 − τ∗2v∗

2
√

u∗
+

rτ∗2(1−2u∗)
1+kv∗ −τ∗2

√
u∗ + krτ∗2(−1+u∗)u∗

(1+kv∗)2

βτ∗2v∗

2
√

u∗
1 − ατ∗2 + βτ

∗
2

√
u∗

 ( u2,n

v2,n

)
+

(
f21

(
u2,n, v2,n, τ̃

)
g21

(
u2,n, v2,n, τ̃

) )
. (3.25)

The following transformation is applied:(
u2,n

v2,n

)
=

(
a010 a010

−1 − a100 λ2 − a100

) (
U2,n

V2,n

)
= A

(
U2,n

V2,n

)
. (3.26)
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Model (3.25) becomes(
U2,n+1

V2,n+1

)
=

(
−1 0
0 λ2

) (
U2,n

V2,n

)
+

(
f22

(
U2,n,V2,n, τ̃

)
g22

(
U2,n,V2,n, τ̃

) )
, (3.27)

where(
f22

(
U2,n,V2,n, τ̃

)
g22

(
U2,n,V2,n, τ̃

) )
= A−1

(
f21

(
a010U2,n + a010V2,n, (−1 − a100) U2,n + (λ2 − a100) V2,n, τ̃

)
g21

(
a010U2,n + a010V2,n, (−1 − a100) U2,n + (λ2 − a100) V2,n, τ̃

) )
. (3.28)

Therefore, we can obtain
U2,n+1

V2,n+1

τ̃

 =

−1 0 0
0 λ2 0
0 0 1




U2,n

V2,n

τ̃

 +


f22
(
U2,n,V2,n, τ̃

)
g22

(
U2,n,V2,n, τ̃

)
0

 . (3.29)

The center prevalence at the origin can be expressed as follows:

WC (0, 0, 0) =
{(

U2,n,V2,n, τ̃
)
∈ R3|V2,n = z∗

(
U2,n, τ̃

)
, z∗ (0, 0) = 0,Dz∗ (0, 0) = 0

}
, (3.30)

where
z∗

(
U2,n, τ̃

)
= e1

(
U2,n

)2
+ e2U2,nτ̃ + e3(̃τ)2

+ O
((∣∣∣U2,n

∣∣∣ + |̃τ|)3
)
. (3.31)

Therefore, we can obtain

e1
(
−U2,n + f12

(
U2,n, z∗

(
U2,n, τ̃

)
, τ̃

))2
+ e2

(
−U2,n + f12

(
U2,n, z∗

(
U2,n, τ̃

)
, τ̃

))
τ̃ + e3(̃τ)2

− λ2e1
(
U2,n

)2

−λ2

(
e2U2,nτ̃ + e3(̃τ)2

)
− g12

(
U2,n, z∗

(
U2,n, τ̃

)
, τ̃

)
= O

((∣∣∣U2,n

∣∣∣ + |̃τ|)3
)
.

By comparing the quadratic coefficients, we can determine the coefficients as follows:

e1 = −
1

2a010 (−1 + λ2) (1 + λ2)
(a020(1 + a100)3 + a010

(
−2(1 + a100)2a110 + (1 + a100)2b020

+ a010 (1 + a100) (a200 − 2b110) + a010
2b200

)
,

e2 =
1

a010(1 + λ2)2

(
a011(1 + a100)2

− a010 ((1 + a100) a101 − (1 + a100) b011 + a010b101)
)
,

e3 = −
1

2a010 (−1 + λ2) (1 + λ2)
(a002 + a002a100 + a010b002) .

(3.32)

In accordance with the findings presented in (3.29), (3.31), and (3.32), we can conclude that

L
(
U2,n, τ̃

)
= Un+1 = −U2,n + f22

(
U2,n, z∗

(
U2,n, τ̃

)
, τ̃

)
. (3.33)

As indicated in [44], the occurrence of a Flip bifurcation requires that both the values of η1 and η2

are non-zero.

η1 =

∂2L
(
U2,n, τ̃

)
∂U2,n∂̃τ

+
1
2
∂L

(
U2,n, τ̃

)
∂̃τ

∂2L
(
U2,n, τ̃

)
∂U2

2,n

 ∣∣∣∣(U2,n ,̃τ)=(0,0) , 0,

η2 =

1
6
∂3L

(
U2,n, τ̃

)
∂U3

2,n

+

1
2
∂2L

(
U2,n, τ̃

)
∂U2

2,n

2 ∣∣∣∣(U2,n ,̃τ)=(0,0) , 0.

(3.34)
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Theorem 3.5. If the conditions (3.22) are satisfied with η1 , 0 and η2 , 0, the system described
by Eq (3.2) will experience a Flip bifurcation at the time τ = τ∗2. Moreover, the stability of the Flip
bifurcation is contingent on the sign of η2: Stability occurs for η2 > 0, while instability arises for
η2 < 0.

Remark 3.3. Flip bifurcation plays a crucial role in predator-prey models by revealing the nonlinear
characteristics of ecosystem population dynamics and enhancing our understanding of the intricate
interactions between predators and prey. As system parameters approach the Flip bifurcation point,
population size fluctuations can become notably drastic, indicating dynamic shifts and potential
crises within the ecosystem. By forecasting periodic changes in predator and prey populations, Flip
bifurcation offers vital scientific support for ecological conservation and management.

4. Turing instability analysis

Turing instability refers to the phenomenon where a system, which is stable in the absence
of diffusion, becomes unstable in an inhomogeneous space due to the presence of diffusion. In
the following section, we examine the circumstances under which instability arises in spatially
inhomogeneous systems.

To obtain the conditions for Turing instability, we consider

∇2Xi, j + λXi, j = 0, (4.1)

which satisfies the periodic boundary conditions: Xi,0 = Xi,m, Xi,1 = Xi,m+1, X0, j = Xm, j, X1, j = Xm+1, j.
In accordance with the stipulations set forth in [45], the variable Xi, j = xiy j (x , 0, y , 0), as

introduced in (4.1), can be expressed as

λ = −
(
x + y + x−1 + y−1 − 4

)
. (4.2)

According to the periodic boundary conditions, we have xm = 1, ym = 1, which can be restated as

xl = e
2(l−1)π

m i, ys = e
2(s−1)π

m i, (4.3)

here, l and s are positive integers, with 1 ≤ l, s ≤ m.
Upon substituting Eq (4.3) into Eq (4.2), the eigenvalue expression of Eq (4.1) is structured

as follows:

λl,s = k2
l,s = 4

(
sin2 (l − 1) π

m
+ sin2 (s − 1) π

m

)
∆
= 4

(
sin2ϕl + sin2ϕs

)
. (4.4)

In this context, the eigenfunction corresponding to the eigenvalue λl,s is denoted as Xi, j
l,s , i.e.,

∇2Xi, j
l,s + λl,sX

i, j
l,s = 0. (4.5)

The following part examines the stability of E∗ (u∗, v∗) in the presence of small-space heterogeneous
perturbations.
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Let ũn (i, j) = un (i, j) − u∗, ṽn (i, j) = vn (i, j) − v∗. Since ∇2un (i, j) = ∇2ũn (i, j), ∇2vn (i, j) =
∇2̃vn (i, j), we have

ũn+1 (i, j) =a10

(̃
un (i, j) +

τ

h2 d11∇
2ũn (i, j) +

τ

h2 d12∇
2ṽn (i, j)

)
+ a01

(
(̃vn (i, j) +

τ

h2 d21∇
2ũn (i, j)

+
τ

h2 d22∇
2ṽn (i, j)

)
+ O

(
(|̃un (i, j)| + |̃vn (i, j)|)2

)
,

ṽn+1 (i, j) =b10

(̃
un (i, j) +

τ

h2 d11∇
2ũn (i, j) +

τ

h2 d12∇
2ṽn (i, j)

)
+ b01

(
(̃vn (i, j) +

τ

h2 d21∇
2ũn (i, j)

+
τ

h2 d22∇
2ṽn (i, j)

)
+ O

(
(|̃un (i, j)| + |̃vn (i, j)|)2

)
.

(4.6)
In this case, a10, a01, b10, and b01 are equivalent to the coefficients of the Neimark-Sacker

bifurcation expansion in system (3.14). When the perturbation is small, the O
(
(|̃un (i, j)| + |̃vn (i, j)|)2

)
term can be disregarded to simplify the linear system as follows:

ũn+1 (i, j) =a10

(̃
un (i, j) +

τ

h2 d11∇
2ũn (i, j) +

τ

h2 d12∇
2ṽn (i, j)

)
+ a01

(
(̃vn (i, j) +

τ

h2 d21∇
2ũn (i, j)

+
τ

h2 d22∇
2ṽn (i, j)

)
,

ṽn+1 (i, j) =b10

(̃
un (i, j) +

τ

h2 d11∇
2ũn (i, j) +

τ

h2 d12∇
2ṽn (i, j)

)
+ b01

(
(̃vn (i, j) +

τ

h2 d21∇
2ũn (i, j)

+
τ

h2 d22∇
2ṽn (i, j)

)
.

(4.7)
The system (4.7) is then multiplied by Xi, j

l,s on both sides simultaneously.

Xi, j
l,s ũn+1 (i, j) =Xi, j

l,s (a10ũn (i, j) + a01̃vn (i, j)) +
τ

h2 Xi, j
l,s

(
a10d11∇

2ũn (i, j) + a10d12∇
2ṽn (i, j)

+ a01d21∇
2ũn (i, j) + a01d22∇

2ṽn (i, j)
)
,

Xi, j
l,s ṽn+1 (i, j) =Xi, j

l,s (b10ũn (i, j) + a01̃vn (i, j)) +
τ

h2 Xi, j
l,s

(
b10d11∇

2ũn (i, j) + b10d12∇
2ṽn (i, j)

+ b01d21∇
2ũn (i, j) + b01d22∇

2ṽn (i, j)
)
.

(4.8)

By adding up the values of i and j appearing in the above equation, we can obtain

m∑
i, j=1

Xi, j
l,s ũn+1 (i, j) =a10

 m∑
i, j=1

Xi, j
l,s ũn (i, j) +

τ

h2 d11

m∑
i, j=1

Xi, j
l,s∇

2ũn (i, j) +
τ

h2 d12

m∑
i, j=1

Xi, j
l,s∇

2ṽn (i, j)


+ a01

 m∑
i, j=1

Xi, j
l,s ṽn (i, j) +

τ

h2 d21

m∑
i, j=1

Xi, j
l,s∇

2ũn (i, j) +
τ

h2 d22

m∑
i, j=1

Xi, j
l,s∇

2ṽn (i, j)

 ,
m∑

i, j=1

Xi, j
l,s ṽn+1 (i, j) =b10

 m∑
i, j=1

Xi, j
l,s ũn (i, j) +

τ

h2 d11

m∑
i, j=1

Xi, j
l,s∇

2ũn (i, j) +
τ

h2 d12

m∑
i, j=1

Xi, j
l,s∇

2ṽn (i, j)


+ b01

 m∑
i, j=1

Xi, j
l,s ṽn (i, j) +

τ

h2 d21

m∑
i, j=1

Xi, j
l,s∇

2ũn (i, j) +
τ

h2 d22

m∑
i, j=1

Xi, j
l,s∇

2ṽn (i, j)

 .
(4.9)
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Based on reference [35], by introducing variables un =
m∑

i, j=1
Xi, j

l,s ũn (i, j) and vn =
m∑

i, j=1
Xi, j

l,s ṽn (i, j) and

incorporating Eq (4.9), we can proceed to simplify the expression as follows: un+1 =
(
a10 −

τ
h2 (a10d11 + a01d21) k2

l,s

)
un +

(
a01 −

τ
h2 (a10d12 + a01d22) k2

l,s

)
vn,

vn+1 =
(
b10 −

τ
h2 (b10d11 + b01d21) k2

l,s

)
un +

(
b01 −

τ
h2 (b10d12 + b01d22) k2

l,s

)
vn.

(4.10)

The stability of the solutions of systems (4.7) and (4.10) is interconnected. In the subsequent
analysis, we derive the instability conditions of system (4.7) primarily through the examination of
system (4.10).

The Jacobi matrix of system (4.10) is given by(
a10 −

τ
h2 (a10d11 + a01d21) k2

l,s a01 −
τ
h2 (a10d12 + a01d22) k2

l,s
b10 −

τ
h2 (b10d11 + b01d21) k2

l,s b01 −
τ
h2 (b10d12 + b01d22) k2

l,s

)
. (4.11)

Consequently, the characteristic equation can be derived.

λ2 + M
(
k2

l,s

)
λ + N

(
k2

l,s

)
= 0, (4.12)

where
M

(
k2

l,s

)
= a10 + b01 −

τ

h2 k2
l,s (a10d11 + a01d21 + b10d12 + b01d22) ,

N
(
k2

l,s

)
=

1
h4

(a10b01 − a01b10) ∗
(
h4 − h2τk2

l,s (d11 + d22) − τ2k4
l,s (d11d22 − d12d21)

)
.

At this juncture, the eigenvalues can be expressed as

λ1,2

(
k2

l,s

)
=

M
(
k2

l,s

)
±

√
M2

(
k2

l,s

)
− 4N

(
k2

l,s

)
2

, (4.13)

where l, s ∈ Z+, 1 ≤ s, l ≤ m.
The critical value of the Turing bifurcation being

∣∣∣∣λ12

(
k2

l,s

)∣∣∣∣ = 1 implies that if there are eigenvalues

with a modulus greater than 1, i.e.,
∣∣∣∣λ12

(
k2

l,s

)∣∣∣∣ > 1, the system (4.10) will be in an unstable state.

We define P (l, s) = max
{∣∣∣∣λ1

(
k2

l,s

)∣∣∣∣ , ∣∣∣∣λ2

(
k2

l,s

)∣∣∣∣}, Pm =
m

max
l,s=1
{P (l, s)}. Subsequently, we can derive the

following theorem.

Theorem 4.1. The following theorem characterizes the conditions under which systems (2.6) and (2.7)
exhibit various types of instability:

(i) Pure Turing instability occurs in systems (2.6) and (2.7) if either condition (3.5) holds and
Pmax > 1.

(ii) Neimark-Sacker-Turing instability arises in systems (2.6) and (2.7) when conditions (3.8),
(3.11), (3.12), (3.20), and Pmax > 1 are satisfied.

(iii) Flip-Turing instability is present in systems (2.6) and (2.7) if condition (3.22), η1 , 0, η2 , 0,
and Pmax > 1 are met.
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Remark 4.1. The significance of Turing instability analysis in biology mainly lies in revealing
the complex spatial distribution patterns between predators and prey, such as speckled and
striped patterns, which have a significant impact on the survival of species and the structure and
function of ecosystems. In addition, the analysis helps to understand the cyclical fluctuations
of species populations, reflecting the dynamic balance of ecosystems and providing a scientific
basis for predicting population trends. Turing analysis also explores non-linear dynamic behavior
in ecosystems, including chaos and bifurcation phenomena, demonstrating the high sensitivity of
ecosystems to environmental changes, where small alterations can lead to significant ecological
consequences. Such analyses have advanced ecological modeling, prompting researchers to explore
more complex ecological interactions and enriching our overall understanding of ecosystems.

5. Numerical simulation

5.1. Numerical simulation without diffusion

In this part, we perform numerical simulations of system (3.2), adjusting the parameter τ based on
the theoretical results of Section 3. The selection of parameters for each set of images is shown in
Table 1.

Table 1. Parameter selection for numerical simulations in the absence of diffusion.

Number Figure τ β α r k
(1) Figure 1 1.2 0.5 0.4 0.8 1
(2) Figures 2 and 3 0.421004 0.89 0.56 0.9 2
(3) Figures 4 and 5 2.316924 0.77 0.76 0.93 1

(1) When τ = 1.2, β = 0.5, α = 0.4, r = 0.8, k = 1, we can calculate that u∗ = 0.64, v∗ = 0.193109,
λ1 (τ) = 0.814937 + 0.215692i, λ2 (τ) = 0.814937 − 0.215692i, 1 − tr (τ) + det (τ) = 0.080771 > 0,
1 + tr (τ) + det (τ) = 3.34052 > 0, 1 − det (τ) = 0.289354 > 0. The parameter set chosen fulfills
condition (3.5). According to Theorem 3.3, system (3.2) exhibits local asymptotic stability at the
equilibrium point E∗ (u∗, v∗), as depicted in Figure 1.

(2) When τ=1.378279274904209, β = 0.79, α = 0.56, r = 0.99, k = 2, we can calculate that
u∗ = 0.502484, v∗ = 0.236899, λ1

(
τ∗1

)
= 0.882546 + 0.470226i, λ2

(
τ∗1

)
= 0.882546 − 0.470226i,

ρ = −0.563247431 , 0, d = ∂|λ1,2(τ)|
2

∂τ

∣∣∣τ=τ∗1 = 0.17043568 , 0, (−2r
√

u∗+4r(u∗)3/2+v∗+k(v∗)2)2

2βu∗v∗(kr
√

u∗−kr(u∗)3/2+(1+kv∗)2) =
0.23490798 , 1, 2. The parameter set chosen fulfills conditions (3.8), (3.11), (3.12), and (3.20).
According to Theorem 3.4, system (3.2) exhibits Neimark-Sacker bifurcation at the equilibrium point
E∗ (u∗, v∗), as depicted in Figure 2 and 3.

AIMS Mathematics Volume 10, Issue 1, 1248–1299.



1263

Figure 1. System (3.2) undergos a locally asymptotically stable state for the parameter
choices in Table 1 (1).

Figure 2. System (3.2) undergos a Neimark-Sacker bifurcation for the parameter choices in
Table 1 (2).
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Figure 3. The diagram and MLE of the Neimark-Sacker bifurcation and the value of τ from 1
to 3.

(3) When τ= 2.316924715563065, β = 0.77, α = 0.76, r = 0.93, k = 1, we can calculate that
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u∗ = 0.974194, v∗ = 0.023151, λ1

(
τ∗2

)
= −1, λ2

(
τ∗2

)
= 0.975535, η1 = −0.8632132 , 0, η2 =

−190.9651638 , 0. The parameter set chosen fulfills condition (3.22), η1 , 0, η2 , 0. According to
Theorem 3.5, system (3.2) exhibits Flip bifurcation at the equilibrium point E∗ (u∗, v∗), as depicted in
Figures 4 and 5.
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Figure 4. System (3.2) undergos a Flip bifurcation for the parameter choices in Table 1 (3).
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Figure 5. The diagram and MLE of the Flip bifurcation and the value of τ from 2 to 3.2.

5.2. Numerical simulations with spatial inhomogeneity

In accordance with Theorem 4.1, we conducted numerical simulations of systems (2.6) and (2.7).
These simulations were performed on a computer with varying parameter values, and the results are
presented in Figures 6–49. The values of un (i, j) and vn (i, j) are almost indistinguishable in the visual
representations; therefore, we have chosen to display only the relevant images of un (i, j). Additionally,
we have plotted single-point maps of un (i, j) and vn (i, j) in the two-dimensional space (m + 2)×(m + 2)
at point (i, j) =

(
m
2 ,

m
2

)
. For this section, all m values are fixed at 200 and the selected spatial step size

is h = 0.5. To simplify the characteristic roots, λ1

(
k2

l,s

)
and λ2

(
k2

l,s

)
are expressed in terms of l1 = 1,

s1 = 1, l2 = 101, s2 = 101.
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5.3. Numerical simulations of self-diffusion

In the case of considering self-diffusion, we let d12 = 0, d21 = 0. This means that the main focus is
on the spatial distribution and dynamics within the population.

We numerically simulate the system (2.3) with the diffusion coefficient d11, d12, d21, and d22 adjusted
according to the theoretical results of Section 4. The selection of parameters for each set of images is
shown in Table 2–4.

Table 2. Parameter selection for numerical simulations considering self-diffusive states.

Figure τ β α r k d11 d22

(4) Figures 6 and 7 1.2 0.5 0.4 0.8 1 0.02 0.051
(5) Figures 8 and 9 1.2 0.5 0.4 0.8 1 0.02 0.0531
(6) Figures 10 and 11 1.2 0.5 0.4 0.8 1 0.04 0.001

(4) With the parameters given in Table 2 (4), we can get λ1

(
k2

l1,s1

)
= 0.162158, λ2

(
k2

l1,s1

)
=

−0.97443, Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 0.97443 < 1, and systems (2.6) and (2.7), with a stable spatially
homogeneous stationary state (Figures 6 and 7).

(5) With the parameters given in Table 2 (5), we can get λ1

(
k2

l2,s2

)
= 0.162338, λ2

(
k2

l2,s2

)
=

−1.055247, Pmax =
∣∣∣∣λ2

(
k2

l2,s2

)∣∣∣∣ = 1.055247 > 1, and systems (2.6) and (2.7), with pure Turing
instability (Figures 8 and 9).

(6) With the parameters given by Table 2 (6), we can get λ1

(
k2

l2,s2

)
= 1.027747, λ2

(
k2

l2,s2

)
=

−0.369199, Pmax =
∣∣∣∣λ1

(
k2

l2,s2

)∣∣∣∣ = 1.027747 > 1, and systems (2.6) and (2.7), occurring form pure
Turing instability (Figures 10 and 11).

Figure 6. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state
for the parameter choices in Table 2 (4).
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Figure 7. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state.

Figure 8. Systems (2.6) and (2.7) undergo pure Turing instability for the parameter choices
in Table 2 (5).
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Figure 9. Systems (2.6) and (2.7) undergo pure Turing instability.

Figure 10. Systems (2.6) and (2.7) undergo pure Turing instability for the parameter choices
in Table 2 (6).
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Figure 11. Systems (2.6) and (2.7) undergo pure Turing instability.

Table 3. Parameter selection for numerical simulations considering self-diffusive states.

Figure τ β α r k d11 d22

(7) Figures 12 and 13 0.421004 0.89 0.56 0.9 2 0.08 0.04
(8) Figures 14 and 15 0.421004 0.89 0.56 0.9 2 0.14 0.1576
(9) Figures 16 and 17 0.421004 0.89 0.56 0.9 2 0.15 0.060194
(10) Figures 18 and 19 0.421004 0.89 0.56 0.9 2 0.14 0.1585

(7) With the parameters given by Table 3 (7), we can get λ1

(
k2

l1,s1

)
= 0.188382, λ2

(
k2

l1,s1

)
=

−0.079129, Pmax =
∣∣∣∣λ1

(
k2

l1,s1

)∣∣∣∣ = 0.188382 < 1, systems (2.6) and (2.7), which exhibit a stable spatially
homogeneous stationary state (Figures 12 and 13).
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Figure 12. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state
for the parameter choices in Table 3 (7).

Figure 13. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state.
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(8) With the parameters given by Table 3 (8), we can get λ1

(
k2

l1,s1

)
= −0.99391 + 0.086131i,

λ2

(
k2

l1,s1

)
= −0.99391 − 0.086131i, Pmax =

∣∣∣∣λ1,2

(
k2

l1,s1

)∣∣∣∣ = 1, systems (2.6) and (2.7), which exhibit
a Neimark-Sacker-Neimark-Sacker (Figures 14 and 15).

(9) With the parameters given by Table 3 (9), we can get λ1

(
k2

l1,s1

)
= 0.192995, λ2

(
k2

l1,s1

)
= −1,

Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 1, where systems (2.6) and (2.7) exhibit a Neimark-Sacker-Flip (Figures 16 and
17).

(10) With the parameters given by Table 3 (10), we can get λ1

(
k2

l2,s2

)
= −0.999971 + 0.07794i,

λ2

(
k2

l2,s2

)
= −0.999971 − 0.07794i, Pmax =

∣∣∣∣λ1,2

(
k2

l2,s2

)∣∣∣∣ = 1.077911 > 1, where systems (2.6) and (2.7)
exhibit Neimark-Sacker-Turing instability (Figures 18 and 19).

Figure 14. Systems (2.6) and (2.7) undergo a Neimark-Sacker-Neimark-Sacker bifurcation
for the parameter choices in Table 3 (8).
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Figure 15. Systems (2.6) and (2.7) undergo a Neimark-Sacker-Neimark-Sacker bifurcation.

Figure 16. Systems (2.6) and (2.7) undergo a Neimark-Sacker-Flip bifurcation for the
parameter choices in Table 3 (9).
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Figure 17. Systems (2.6) and (2.7) undergo a Neimark-Sacker-Flip bifurcation.

Figure 18. Systems (2.6) and (2.7) undergo Neimark-Sacker-Turing instability for the
parameter choices in Table 3 (10).
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Figure 19. Systems (2.6) and (2.7) undergo Neimark-Sacker-Turing instability.

Table 4. Parameter selection for numerical simulations considering self-diffusive states.

Figure τ β α r k d11 d22

(11) Figures 20 and 21 2.316924 0.77 0.76 0.93 1 0.02 0.0256
(12) Figures 22 and 23 1.2 0.5 0.4 0.8 1 0.02 0.051774409
(13) Figures 24 and 25 2.316924 0.77 0.76 0.93 1 0.01 0.02674
(14) Figures 26 and 27 2.316924 0.77 0.76 0.93 1 0.01 0.0272

(11) With the parameters given by Table 4 (11), we can get λ1

(
k2

l1,s1

)
= 0.478856, λ2

(
k2

l1,s1

)
=

−0.948964, Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 0.948964 < 1, where systems (2.6) and (2.7) exhibit a stable spatially
homogeneous stationary state (Figures 20 and 21).
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Figure 20. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state
for the parameter choices in Table 4 (11).

Figure 21. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state.
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(12) With the parameters given by Table 4 (12), we can get λ1

(
k2

l1,s1

)
= 0.162218, λ2

(
k2

l1,s1

)
= −1,

Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 1, where systems (2.6) and (2.7) exhibit Flip bifurcation (Figures 22 and 23).

(13) With the parameters given by Table 4 (13), we can get λ1

(
k2

l1,s1

)
= −0.247986, λ2

(
k2

l1,s1

)
= −1,

Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 1, where systems (2.6) and (2.7) exhibit a Flip-Flip bifurcation (Figures 24 and
25).

(14) With the parameters given by Table 4 (14), we can get λ1

(
k2

l2,s2

)
= −0.248172, λ2

(
k2

l2,s2

)
=

−1.03339, Pmax =
∣∣∣∣λ2

(
k2

l2,s2

)∣∣∣∣ = 1.03339 > 1, where systems (2.6) and (2.7) exhibit Flip-Turing
instability (Figures 26 and 27).

Figure 22. Systems (2.6) and (2.7) undergo a Flip bifurcation for the parameter choices in
Table 4 (12).
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Figure 23. Systems (2.6) and (2.7) undergo a Flip bifurcation.

Figure 24. Systems (2.6) and (2.7) undergo a Flip-Flip bifurcation for the parameter choices
in Table 4 (13).
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Figure 25. Systems (2.6) and (2.7) undergo a Flip-Flip bifurcation.

Figure 26. Systems (2.6) and (2.7) undergo Flip-Turing instability for the parameter choices
in Table 4 (14).
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Figure 27. Systems (2.6) and (2.7) undergo Flip-Turing instability.

5.4. Numerical simulations of cross-diffusion

Cross-diffusion serves as a powerful tool in elucidating the spatial propagation of predator-prey
interactions, offering a more precise portrayal of their distribution and interplay in space. By
incorporating cross-diffusion, the model becomes adept at capturing the intricate spatial dynamics
between predator and prey populations, thereby enhancing its ability to forecast their behavior and
evolutionary trajectories within the ecosystem.

We numerically simulate the system (2.3) with the diffusion coefficient d11, d12, d21, and d22 adjusted
according to the theoretical results of Section 4. The selection of parameters for each set of images is
shown in Table 5–7.
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Table 5. Parameter selection for numerical simulations considering cross-diffusion states.

Figure τ β α r k d11 d12 d21 d22

(15) Figures 28 and 29 1.2 0.5 0.4 0.8 1 0.04 0.01 0.01 0.066
(16) Figures 30 and 31 1.2 0.5 0.4 0.8 1 0.02 0.01 0.01 0.0586
(17) Figures 32 and 33 1.2 0.5 0.4 0.8 1 0.004 0.01 0.01 0.028

(15) With the parameters given by Table 2 (4), we can get λ1

(
k2

l1,s1

)
= −0.487432, λ2

(
k2

l1,s1

)
=

−0.984083, Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 0.984083 < 1, where systems (2.6) and (2.7) exhibit a stable spatially
homogeneous stationary state (Figures 28 and 29).

(16) With the parameters given by Table 2 (5), we can get λ1

(
k2

l2,s2

)
= 0.307499, λ2

(
k2

l2,s2

)
=

−1.011111, Pmax =
∣∣∣∣λ2

(
k2

l2,s2

)∣∣∣∣ = 1.011111 > 1, where systems (2.6) and (2.7) exhibit pure Turing
instability (Figures 30 and 31).

(17) With the parameters given by Table 2 (6), we can get λ1

(
k2

l2,s2

)
= 1.00735, λ2

(
k2

l2,s2

)
=

−0.148926, Pmax =
∣∣∣∣λ2

(
k2

l2,s2

)∣∣∣∣ = 1.00735 > 1, where systems (2.6) and (2.7) exhibit pure Turing
instability (Figures 32 and 33).

Figure 28. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state
for the parameter choices in Table 5 (15).
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Figure 29. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state.

Figure 30. Systems (2.6) and (2.7) undergo pure Turing instability for the parameter choices
in Table 5 (16).
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Figure 31. Systems (2.6) and (2.7) undergo pure Turing instability.

Figure 32. Systems (2.6) and (2.7) undergo pure Turing instability for the parameter choices
in Table 5 (17).
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Figure 33. Systems (2.6) and (2.7) undergo pure Turing instability.

Table 6. Parameter selection for numerical simulations considering cross-diffusion states.

Figure τ β α r k d11 d12 d21 d22

(18) Figures 34 and 35 0.421004 0.89 0.56 0.9 2 0.1 0.01 0.01 0.15
(19) Figures 36 and 37 0.421004 0.89 0.56 0.9 2 0.14 0.01 0.01 0.15946
(20) Figures 38 and 39 0.421004 0.89 0.56 0.9 2 0.1 0.01 0.01 0.15163
(21) Figures 40 and 41 0.421004 0.89 0.56 0.9 2 0.14 0.01 0.01 0.161

(18) With the parameters given by Table 3 (7), we can get λ1

(
k2

l1,s1

)
= −0.343818, λ2

(
k2

l1,s1

)
=

−0.97811, Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 0.97811 < 1, where systems (2.6) and (2.7) exhibit a stable spatially
homogeneous stationary state (Figures 34 and 35).
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Figure 34. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state
for the parameter choices in Table 6 (18).

Figure 35. Systems (2.6) and (2.7) undergo a stable spatially uniform steady state.

AIMS Mathematics Volume 10, Issue 1, 1248–1299.



1284

(19) With the parameters given by Table 3 (8), we can get λ1

(
k2

l1,s1

)
= −0.987596 + 0.15486i,

λ2

(
k2

l1,s1

)
= −0.987596 − 0.15486i, Pmax =

∣∣∣∣λ1,2

(
k2

l1,s1

)∣∣∣∣ = 1, where systems (2.6) and (2.7) exhibit a
Neimark-Sacker-Neimark-Sacker (Figures 36 and 37).

(20) With the parameters given by Table 3 (9), we can get λ1

(
k2

l1,s1

)
= −0.343932, λ2

(
k2

l1,s1

)
= −1,

Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 1, where systems (2.6) and (2.7) exhibit a Neimark-Sacker-Flip (Figures 38 and
39).

(21) With the parameters given by Table 3 (10), we can get λ1

(
k2

l2,s2

)
= −0.897022 + 0.483603i,

λ2

(
k2

l2,s2

)
= −0.897022 − 0.483603i, Pmax =

∣∣∣∣λ2

(
k2

l2,s2

)∣∣∣∣ = 1.008817 > 1, where systems (2.6) and (2.7)
exhibit Neimark-Sacker-Turing instability (Figures 40 and 41).

Figure 36. Systems (2.6) and (2.7) undergo a Neimark-Sacker-Neimark-Sacker bifurcation
for the parameter choices in Table 6 (19).
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Figure 37. Systems (2.6) and (2.7) undergo a Neimark-Sacker-Neimark-Sacker bifurcation.

Figure 38. Systems (2.6) and (2.7) undergo a Neimark-Sacker-Flip bifurcation for the
parameter choices in Table 6 (20).
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Figure 39. Systems (2.6) and (2.7) undergo a Neimark-Sacker-Flip bifurcation.

Figure 40. Systems (2.6) and (2.7) undergo Neimark-Sacker-Turing instability for the
parameter choices in Table 6 (21).
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Figure 41. Systems (2.6) and (2.7) undergo Neimark-Sacker-Turing instability.

Table 7. Parameter selection for numerical simulations considering cross-diffusive states.

Figure τ β α r k d11 d12 d21 d22

(22) Figures 42 and 43 2.316924 0.77 0.76 0.93 1 0.02 0.01 0.01 0.04
(23) Figures 44 and 45 1.2 0.5 0.4 0.8 1 0.02 0.01 0.01 0.0582753
(24) Figures 46 and 47 2.316924 0.77 0.76 0.93 1 0.02 0.01 0.01 0.04786
(25) Figures 48 and 49 2.316924 0.77 0.76 0.93 1 0.02 0.01 0.01 0.048118

(22) With the parameters given by Table 4 (11), we can get λ1

(
k2

l1,s1

)
= 0.759989, λ2

(
k2

l1,s1

)
=

−0.51266, Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 0.759989 < 1, where systems (2.6) and (2.7) exhibit a stable spatially
homogeneous stationary state (Figures 42 and 43).
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Figure 42. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state
for the parameter choices in Table 7 (22).

Figure 43. Systems (2.6) and (2.7) undergo a stable spatially homogeneous stationary state.
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(23) With the parameters given by Table 4 (12), we can get λ1

(
k2

l1,s1

)
= 0.30886, λ2

(
k2

l1,s1

)
= −1,

Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 1, where systems (2.6) and (2.7) exhibit Flip bifurcation (Figures 44 and 45).

(24) With the parameters given by Table 4 (13), we can get λ1

(
k2

l1,s1

)
= 0.664292, λ2

(
k2

l1,s1

)
= −1,

Pmax =
∣∣∣∣λ2

(
k2

l1,s1

)∣∣∣∣ = 1, where systems (2.6) and (2.7) exhibit a Flip-Flip bifurcation (Figures 46
and 47).

(25) With the parameters given by Table 4 (14), we can get λ1

(
k2

l2,s2

)
= 0.662093, λ2

(
k2

l2,s2

)
=

−1.016646, Pmax =
∣∣∣∣λ2

(
k2

l2,s2

)∣∣∣∣ = 1.016646 > 1, where systems (2.6) and (2.7) exhibit Flip-Turing
instability (Figures 48 and 49).

Figure 44. Systems (2.6) and (2.7) undergo a Flip bifurcation for the parameter choices in
Table 7 (23).
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Figure 45. Systems (2.6) and (2.7) undergo a Flip bifurcation.

Figure 46. Systems (2.6) and (2.7) undergo a Flip-Flip bifurcation for the parameter choices
in Table 7 (24).
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Figure 47. Systems (2.6) and (2.7) undergo a Flip-Flip bifurcation.

Figure 48. Systems (2.6) and (2.7) undergo Flip-Turing instability for the parameter choices
in Table 7 (25).
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Figure 49. Systems (2.6) and (2.7) undergo Flip-Turing instability.

Remark 5.1. By adjusting the diffusion coefficient, we simulate different ecological conditions and
observe changes in the balance between predators and prey. This study enhances our understanding
of how ecosystems maintain stability or undergo changes under varying environmental pressures.
An in-depth exploration of the effects of different diffusion coefficients on the predator-prey system
provides a crucial theoretical foundation for ecological management and conservation. Managers can
regulate ecological balance, promote biodiversity, and effectively prevent overpopulation or extinction
of species by controlling the dispersal ability of specific species, thereby maintaining the health of the
ecosystem. Studying the phenomenon of bifurcation in the predator-prey system enables us to better
predict the future development trends of ecosystems and speculate possible stable or unstable states
based on parameter changes, enabling the implementation of appropriate management measures to
ensure the stability and sustainability of the ecosystem.
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6. Conclusions

In this paper, we discretize a continuous predator-prey model with diffusion. To better reflect real-
world contexts, we adopt a diffusion-followed-by-reaction strategy to optimize the discretized reaction-
diffusion model. Given the limited analyses of such discrete predator-prey models with diffusion
properties in current research, we adopt a CML modeling approach and introduce a diffusion factor to
enhance the accuracy of models. This innovation aims to more accurately model real-world biological
scenarios.

In the absence of diffusion, we establish the asymptotic stability conditions, as well as the conditions
for the occurrence of the Neimark-Sacker bifurcation and the Flip bifurcation. We complete the
computation of the canonical forms of these two bifurcations and present the theorems of Turing
instability in different states occurring in spatial inhomogeneity. We then verify the four theorems
through numerical simulations. By calculating the maximum Lyapunov exponent and generating
bifurcation maps, we illustrate the transition of the system from the bifurcated state to the chaotic state.
By adjusting the diffusion coefficients, we observe that the system exhibits different spatial patterns.
These simulation results show that the predator-prey model implies extremely complex spatio-temporal
dynamic behavior.

The Neimark-Sacker bifurcation vividly illustrates the characteristics of cyclic fluctuations and
rhythmic changes in biological populations, phenomena that are prevalent in nature. These fluctuations
enable populations to better adapt to environmental changes, thereby effectively maintaining ecological
balance. Through Neimark-Sacker bifurcation analysis, we can observe the dynamic behaviors of
populations under varying environmental conditions, gaining insights into how they respond to external
pressures and resource fluctuations through periodic changes. This adaptive capacity not only aids in
the survival and reproduction of populations but also contributes to the stability of ecosystems on a
broader scale.

Conversely, the Flip bifurcation uncovers the pattern whereby the period of population size
fluctuations increases as system parameters change. This finding indicates that as environmental factors
evolve, the dynamic characteristics of populations undergo significant alterations, potentially leading
to more intricate ecological interactions and the evolution of population structures. Flip bifurcation
analyses serve as a crucial tool for understanding how populations respond to diverse ecological
conditions and how regulating relevant parameters can influence their stability and volatility.

Moreover, Turing analysis reveals the complex spatial distribution patterns between predators and
prey. This analytical approach enhances our understanding of how different ecological niches are
spatially formed and how the interactions between predators and prey impact their distribution and
abundance. By studying Turing’s model, we can delve deeper into the spatial dynamics within
ecosystems, uncovering the underlying mechanisms that govern population distribution.

In summary, bifurcation analysis offers a novel perspective to comprehensively understand the
nonlinear dynamics of biological populations. By integrating Neimark-Sacker bifurcation, Flip
bifurcation, and Turing analysis, we not only gain a clearer understanding of population dynamics but
also establish a scientific foundation for ecological management and conservation efforts. The insights
derived from these analyses provide essential theoretical support for exploring the complexity and
diversity of ecosystems, thereby enhancing our understanding of ecological balance and sustainable
development.
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Through these studies, we gain a deeper understanding of the complexity and diversity of the
natural world, providing solid scientific support for the protection of the ecological environment and
the maintenance of ecological balance.
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(1 + kv∗)2 , a201 =
v∗

8(u∗)3/2 −
r

1 + kv∗
, a111 = −

1

2
√

u∗
+

kr (−1 + 2u∗)
(1 + kv∗)2 ,

a020 = −
k2r (−1 + u∗) u∗τ∗2

(1 + kv∗)3 , a120 =
k2r (1 − 2u∗) τ∗2

(1 + kv∗)3 , a030 =
k3r (−1 + u∗) u∗τ∗2

(1 + kv∗)4 ,

a021 = −
k2r (−1 + u∗) u∗

(1 + kv∗)3 , a002 = a102 = a012 = a003 = 0,

b100 =
βv∗τ∗2
2
√

u∗
, b010 = 1 − ατ∗2 + β

√
u∗τ∗2, b001 = −αv∗ + β

√
u∗v∗, b200 = −

βv∗τ∗2
8(u∗)3/2 ,
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b110 =
βτ∗2

2
√

u∗
, b101 =

βv∗

2
√

u∗
, b011 = −α + β

√
u∗, b300 =

βv∗τ∗2
16(u∗)5/2 , b210 = −

βτ∗2

8(u∗)3/2 ,

b201 = −
β

8(u∗)3/2 , b111 =
β

2
√

u∗
, b002 = b020 = b120 = b030 = b021 = b102 = b012 = b003 = 0.
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