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Abstract: In this paper, we have investigated a spatial predator-prey system with hunting cooperation
in predators and type-I functional response. Using linear stability analysis, we obtain the stipulations
for diffusive instability and identify the corresponding domain in the space of control parameters.
Using qualitative and quantitative analysis, we obtain complex patterns, namely, spotted pattern, stripe
pattern and mixed pattern in the Turing domain, by varying the rate of hunting cooperation in predators
and diffusion coefficients of prey and predators. The results focus on the effect of hunting cooperation
in pattern dynamics of a diffusive predator-prey model and help us in better understanding of the
dynamics of the predator-prey interaction in real environment.
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1. Introduction

Spatial patterns formation in nature are ubiquitous, with illustrations like zebra stripe patterns on
animals skin, Turing patterns in a coherent quantum field, or diffusive patterns in predator-prey
models [1–5]. The spatial factors of species interplay has been recognized as a vital component in
how ecological communities are created and ecological interplay occur over a broad limit of temporal
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and spatial scale [6]. Spatial population distribution is of major importance in the study of ecological
systems [7–9]. Mechanisms and scenarios characterizing the spatial population distribution of
ecological species in spatial habitat are a focus of special interest in population dynamics. The spatial
population distribution is affected by the proliferation capacity of the species and interactions between
individuals [10].

Spatial pattern formation of predator-prey systems have started based upon the elementary work of
A. M. Turing on morphogenesis [11]. The spatial predator-prey systems are studied to comprehend
the role of random mobility of the prey and predator, inside their residence. A fully comprehensive
elucidation of the spatial impact on ecological species interplays can be observed in the book, written
by Okubo et.al. [12].

Spatial mathematical model is an appropriate tool for investigating fundamental mechanism of
complex spatiotemporal population dynamics. An appropriate mathematical structure to explain the
spatial aspect of population dynamics is specified by reaction-diffusion equations. Reaction-diffusion
models were initially applied to describe the ecological pattern formation by Segel and Jackson in
1972 [3], based on the primary work of Turing [11]. Over the last several decades, a lot of articles
have been published on the spatial dynamics of predator-prey model based on reaction-diffusion
equations and different types of patterns have emerged for these models [2–5,12–19].

Cooperative behavior can stimulate a relation among the population density and per capita
population growth rate [20,21]. Ecologists have accepted several mechanisms for stimulating
cooperative behavior in prey, namely cooperating reproduction, foraging capacity, etc. The
cooperative behavior in prey may be generated by predation or by procedure inborn to the prey
lifespan history [21]. Theory has pervasively payed attention to cooperative behavior in preys [22–30]
and cooperative behavior in predators is less studied and poorly understood [31–33], in particular
when space is considered explicitly. A mathematical model of prey and predator population interplay
with cooperative behavior in predators through the system of nonlinear ordinary differential equations
has been studied in non-spatial domain by Alves et.al. [34]. Motivated from their work, we modify
and extend the model in a spatial domain to study its spatial dynamics.

Mechanisms of spatial pattern dynamics of predator-prey systems with cooperative behavior in
predators have been comparatively new and to the best of our knowledge, not studied so far. The
objective of this current investigation is to create deep intuition into methods of spatial pattern
formation in predator-prey model with cooperative behavior in predators. Here, we investigate how
distinct intensity of cooperation rate, basic reproduction numbers of the predator and diffusion
coefficients affects the spatial patterns of predator-prey interaction.

This paper is organized as follows: In section II, we formulate a reaction-diffusion predator-prey
system with zero flux boundary conditions and non-zero initial conditions. Furthermore, we analyze
the non-spatial dynamics of the model with hunting cooperation in predators and give a survey of the
linear stability analysis in section III. In section IV, we obtain the sufficient condition for Turing
bifurcation with zero-flux boundary condition. In section V, we carry out a series of numerical
simulations to reveal that there is a large variety of different spatiotemporal dynamics in the spatial
model for different intensities of predator’s hunting cooperation, basic reproduction number of the
predator and the rates of diffusion coefficients. The paper ends with a discussion.
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2. Model description

By incorporating diffusion and Holling type I functional response in the general predator-prey
system with cooperative behavior in predators [34], we obtain the following diffusive predator-prey
model as

∂U
∂T

= rU
(
1 −

U
K

)
− (λ + aV)UV + D1∇

2U, (2.1)

∂V
∂T

= e(λ + aV)UV − mV + D2∇
2V, (2.2)

where U(T ) and V(T ) are the densities of prey and predator population at time T and location (x1, x2),
respectively. Here, r is the intrinsic growth rate of the prey and K is its carrying capacity. The parameter
λ (λ >0) is the attack rate per predator and prey, a (a > 0) describes the predator cooperation in hunting
(aV is cooperation term). We consider a Holling type I functional response of the form

(λ + aV)U (2.3)

which depends on both prey and predator densities, thereby reflecting hunting cooperation (handling-
driven). The parameter e is conversion efficiency and m is the per capita mortality rate of predators.
The non-negative constants D1 and D2 are the diffusion coefficients for prey and predator densities
respectively.

We now non-dimensionalize the system Eqs (1) and (2) by introducing the non-dimensional
variables

X =
eλ
m

U, Y =
λ

m
V, t = mT, x = x1

√
m
D2
, y = x2

√
m
D2
, (2.4)

and non-dimensional parameters

σ =
r
m
, ω =

eλ
m

K, α =
am
λ2 , D =

D1

D2
, (2.5)

and obtain the modified model as
∂X
∂t

= σX
(
1 −

X
ω

)
− (1 + αY) XY + D ∇2X, (2.6)

∂Y
∂t

= (1 + αY) XY − Y + ∇2Y, (2.7)

where the positive constant D is the ratio of diffusion coefficients of prey and predator densities and
∇2( = ∂2

∂x2 + ∂2

∂y2

)
is the usual Laplacian operator in two dimensional space R = (x, y). To make certain

that spatial patterns are governed by reaction-diffusion equations, system equations (6) and (7) is to be
analyzed with the following non-zero initial conditions

X(x, y, 0) > 0, Y(x, y, 0) > 0, (x, y) ∈ Ω = [0, L] × [0, L], (2.8)

and zero-flux (Neumann) boundary conditions

∂X
∂ν

=
∂Y
∂ν

= 0, (2.9)

where L denotes the size of the system in the direction of x and y. ν is outward unit normal on the
boundary ∂Ω. Condition (9) implies that no individual species leave the domain.
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3. Analysis of the non-spatial model

In absence of diffusion, the equilibrium points of the system Eqs (6) and (7) are given by

σX
(
1 −

X
ω

)
− (1 + αY) XY = 0, (3.1)

(1 + αY) XY − Y = 0. (3.2)

The system Eqs (6) and (7) has following ecologically significant equilibrium solutions: (i) (0, 0)
(both extinct), (ii) (ω, 0) (predator extinct) and (iii) (X∗, Y∗) (coexist), where X∗ = 1

(1+αY∗) and Y∗ is the
positive solution of

ωα2Y3 + 2αωY2 + ω(1 − σα)Y + σ(1 − ω) = 0. (3.3)

The cubic Eq (12) have one and two positive real roots when (ω > 1, σα > 1 or σα < 1) and (ω < 1,
σα > 1) respectively.

The variational matrix about the equilibrium point (X∗, Y∗) is given by[
σ − Y(1 + αY) − 2Xσ

ω
−X(1 + 2Yα)

Y(1 + αY) X + 2uvα − 1

]
(X∗,Y∗)

. (3.4)

(i) At (0, 0), the variational matrix is [
σ 0
0 −1

]
,

whose eigenvalues are −1 and σ(> 0). Hence, the system is unstable at the origin.

(ii) At (ω, 0), the variational matrix is [
−σ −ω

0 ω − 1

]
,

whose eigenvalues are −σ and ω − 1. Hence, the system is stable if ω < 1.

(iii) At (X∗,Y∗), the variational matrix is[
σ − Y∗(1 + αY∗) − 2σ

ω(1+αY∗) −2 + 1
(1+αY∗)

Y∗(1 + αY∗) αY∗
(1+αY∗)

]
, (3.5)

and, the corresponding characteristic equation is

λ2 + B1λ + B2 = 0, (3.6)

where B1 = Y∗(1 + αY∗) + 2σ
ω(1+αY∗) −

αY∗
(1+αY∗) − σ, B2 =

Y∗(1+αY∗)(ασ+(1+αY∗)2)ω−2ασY∗

(1+αY∗)2ω
.

The equilibrium solution (X∗, Y∗) is locally asymptotically stable if and only if
(σ + Y∗(−1 + α(1 − Y∗(2 + Y∗α) + σ)))ω − 2σ < 0

and
Y∗(1 + Y∗α)

(
(1 + Y∗α)2 + ασ

)
ω − 2Y∗ασ > 0.
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4. Analysis of the spatial model

Interior equilibrium point (X∗, Y∗) of non-spatial system is spatially homogenous steady state, that
is, constant in space and time for the reaction-diffusion system Eqs (6) and (7) (diffusive model). We
assume that (X∗, Y∗) is stable in non-spatial system of (6–7) which means the spatially homogenous
steady state is stable with respect to spatially homogenous perturbations. Though the diffusion is
often considered as a stabilizing process, it is a well known fact that diffusion can make a spatially
homogenous steady state linearly unstable (Turing instability) with respect to heterogenous
perturbations in a system of two interacting species [3,11]. The condition for Turing instability may
be obtained by introducing a small heterogenous perturbation of the homogenous steady state as
follows:

X (t, x, y) = X∗ + ε1 exp
(
λkt + i(kxx + kyy)

)
, (4.1)

Y (t, x, y) = Y∗ + ε2 exp
(
λkt + i(kxx + kyy)

)
, (4.2)

where ε1 and ε2 are two non-zero real numbers and k =
(
kx, ky

)
such that k2 =

(
k2

x + k2
y

)
is the wave

number.
Substituting (16–17) into (6–7) and then linearizing it about interior equilibrium point (X∗, Y∗), we

obtain the variational matrix as[
σ − Y∗(1 + αY∗) − 2σ

ω(1+αY∗) − δk
2 −2 + 1

(1+αY∗)
Y∗(1 + αY∗) αY∗

(1+αY∗) − k2

]
. (4.3)

The corresponding characteristic equation is

λ2 + C1(k2)λ + C2(k2) = 0, (4.4)

where

C1(k2) = (1 + δ) k2 + 2σ
ω(1+αY∗) − σ − Y∗

(
α

1+αY∗ − 1 − αY∗
)
,

and

C2(k2) = δk4 +
(
− δωαY∗ +

(
2σ + (1 + αY∗)(Y∗ + αY∗2 − σ)ω

))
(1 + αY∗)k2 +

(
(1 + αY∗)2 +

σα
)
ωY∗(1 + αY∗) − 2σαY∗.

By Routh-Hurwitz criterion, the system (6–7) will be stable about (X∗, Y∗) if C1(k2) > 0 and
C2(k2) > 0. As the parameters, δ

(
= d1

d2

)
and k2 are all positive and 2σ

ω(1+αY∗) −σ−Y∗
(

α
1+αY∗ − 1 − αY∗

)
>

0 (by the stability of the non-spatial model of (6–7)), hence, C1(k2) > always positive. Hence, the
condition for diffusive instability is C2(k2) < 0.

The polynomial function C2(k2) has a minimum for some value of k2, say k2
min, where

k2
min =

δαωY∗ + (−ω(1 + αY∗)2Y∗ + σ(ω + αωY∗ − 2))
2δ(1 + αY∗)ω

. (4.5)
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Hence, the minimum value of k for which Turing instability will occur, is, C2(k2
min) < 0. Therefore,

substitute k2
min in C2(k2), we get the sufficient condition for Turing instability

4δ(2ασ − (1 + αY∗)((1 + αY∗)2 + ασ)ω)Y∗

ω(1 + αY∗)2 +

(δαωY∗ + (−ω(1 + αY∗)2Y∗ + σ(ω + αωY∗ − 2)))2

ω2(1 + αY∗)2 > 0. (4.6)

The interval of the wave number for which Turing instability take place is (k−, k+) and in this interval,
we have C2(k2) < 0, where

k− =
αY∗

2(1 + αY∗)
−

A
2δω(1 + αY∗)

−
1
2δ

√
B2 + C (4.7)

k+ =
αY∗

2(1 + αY∗)
−

A
2δω(1 + αY∗)

+
1
2δ

√
B2 + C (4.8)

and

A = 2σ + (1 + αY∗)(Y∗ + αY∗2 − σ)ω,
B = δαωY∗ + (−Y∗(1 + αY∗)2ω + σ(ω + ωαY∗ − 2)),
C = 4δω(2ασ − (1 + αY∗)((1 + αY∗)2 + ασ)ω)Y∗.

5. Numerical simulations

We will now investigate the numerical results of spatiotemporal models, namely (6–7). For
numerical simulation, we set σ and ω as σ = 10.0, ω = 0.8, and consider α and D, as controlling
parameters. For these values of parameters, the positive equilibrium points are (0, 0), (0.8, 0),
(0.6159, 1.4171) and (0.6431, 1.2614). The steady state (0.6159, 1.4171) is stable and (0.6431,
1.2614) is unstable. Throughout our study in the spatiotemporal domain, we have considered the
stable steady state (0.6159, 1.4171). Please note that the non-dimensional parameter ω = eλ

m K,
comprising of the dimensional carrying capacity, attack rate, per capita mortality rate of predators and
the conversion efficiency, can also be interpreted as the basic reproduction number of the predator,
which is defined as the average number of offspring produced by a single predator during its life time,
when introduced into the prey population at carrying capacity.

We now simulate the spatial model in two dimensional space with the help of finite difference
scheme for spatial derivatives. The forward Euler’s numerical method is used for the non-spatial part of
model (6–7) and general finite difference scheme of five point is used for the spatial part. The reaction-
diffusion partial differential equations, given by (6–7), is numerically solved by using splitting method
[36,37]. The numerical values for the step sizes of time and space have been selected adequately
small for avoiding the numerical artifacts. In this study, we have employed statistically uncorrelated
Gaussian white noise perturbation in space, which is mathematically denoted in two dimensional case
as

X(xi, y j, 0) = X∗ + εi j, (5.1)
Y(xi, y j, 0) = Y∗ + ηi j, (5.2)
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where εi j and ηi j are statistically uncorrelated Gaussian white noise perturbations with zero mean and
fixed variance in two dimensional space.

For spatial model, we perform all the numerical simulations of the system (6–7) over the non-zero
initial condition and zero-flux boundary conditions, in two dimensional spatial domain. The domain
size is 70 × 70 with time-step ∆t = 0.001 and space-step ∆x = ∆y = 1.0. The parameter values of σ
remain same and ω, α are used as the controlling parameter (just like the temporal case).

Note: The Neumann zero-flux conditions are placed at boundary of the numerical domain in two
dimensional problems. The size of the domain is chosen large enough so that the impact of the
boundaries has been kept as small as possible during the simulation time.

We now demonstrate diffusive induced instability (Turing instability) and the corresponding patterns
formation for the system (6–7). Although, the sufficient conditions for Turing instability were obtained
analytically in previous section, whether they are satisfied with our corresponding set of parameter
values, is yet to be tested. In order to do so, we sketch the polynomial function C2(k2) for distinct
values of D1, ω and α (other parameter values are fixed, namely, σ = 10, D2 = 0.07). Figures 1, 2 and
3 shows the plot of C2(k2) against the wave number (k) for different values of D1, ω and α respectively.
We observe that the sufficient condition of the diffusive instability min C2(k2) < 0 holds, when D1 is
adequately large, beginning from D1 = 2.2 (see Figure 1). The polynomial function C2(k2) < 0 holds,
the wave number (k) fit in the interval (k−, k+) and the length of the interval increases with an increase
in the diffusion coefficient D1. We next plot C2(k2) for different values of ω (other parameters remain
fixed) and we observe that the conditions for the Turing instability holds for ω ≤ 0.804 approximately,
and the length of the interval (k−, k+) decreases with an increase in ω (see Figure 2). We next plot
C2(k2) for different values of α (other parameters remain fixed) and we observe that the conditions for
the Turing instability holds for α ≤ 0.45 approximately, and the length of the interval (k−, k+) decreases
with an increase in α (see Figure 3).
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Figure 1. C2(k2) vs k for different values of D1.
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Figure 2. C2(k2) vs k for different values of ω.
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Figure 3. C2(k2) vs k for different values of α.

In Figure 4, we illustrate the density distributions of prey and predator which covers two types
of pattern namely spots and stripes. Figure 5 and Figure 6, shows the two dimensional stationary
diffusive patterns of the model (6–7) at time t = 500 with ω=0.800 and diffusion coefficients D1 = 3.1
and D2 = 0.07 for the prey and predator population respectively. In these figures hexagonal patterns
(spots) prevail over the entire habitat eventually. In Figures 4, 5 and 6, it is observe that blue spots
(minimum density of X) are distributed on a reddish background (maximum density of X), that is, the
preys are segregated with low population density.
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Figure 4. Spatial density distribution pattern formation of prey and predator (spots type).
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Figure 5. Spatial density distribution pattern formation of prey and predator (mixed spots-
stripes type).
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Figure 6. Spatial density distribution pattern formation of prey and predator (stripes type).

6. Discussions and conclusions

In theoretical ecology, intensive studies of the mechanisms and scenarios of pattern formation in
models of interacting populations have always been an attraction as their perception help to enhance
the understanding of real-world ecological systems. In this paper, we have considered a diffusive
predator-prey model with hunting cooperation in predators and type I functional response, under
non-zero initial conditions and zero-flux boundary conditions. We have provided the elaborate
analysis of both temporal and spatiotemporal models and studied possible scenarios of pattern
formation in the diffusive predator-prey model with hunting cooperation in predators. While studying
the spatiotemporal model, we first obtain the condition for diffusive instability and identified the
corresponding domain in the space of controlling parameters. The hunting cooperation coefficient (α),
the basic reproduction number of the predator (ω) and the diffusion coefficient of the prey (D1) are the
controlling parameters in our study. Using the parameter values from Turing domain, we investigate
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the properties of the system using extensive numerical simulations.
By varying the values of cooperation coefficient, we get dissimilar types of diffusive patterns,

namely, patchy pattern (spots), stripe pattern and mixed pattern (spot-stripe). From the point of view
of population dynamics, one can observe that the spot formation for preys imply that the preys are
scattered and isolated with low density and the remainder region is high density, which means that the
preys may break out in the area and are safe. Similarly, spot formation in predators convey that with
hunting cooperation, the predators are scattered and isolated but still survives. The methods and
consequences in this study may amplify the systematic investigation of spatial pattern formation in
the predator-prey systems, and may nicely enforce in some different research dimensions. Further
analyze are important to study the patterns dynamics of some more diffusive ecological. It would be
interesting to study the traveling waves in the spatial predator-prey models with hunting cooperation
in predators with type II, III or type IV functional responses [35–38]. This article highlights a number
of research areas for future consideration in spatial pattern formation.
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