In the present work, we have established sufficient conditions for boundary controllability of nonlocal fractional neutral integrodifferential evolution systems with time-varying delays in Banach space. The outcomes are obtained by applying the fractional theory and Banach fixed point theorem. At last, we give an application for the validation of the theoretical results.
Citation: Yong-Ki Ma, Kamalendra Kumar, Rakesh Kumar, Rohit Patel, Anurag Shukla, Velusamy Vijayakumar. Discussion on boundary controllability of nonlocal fractional neutral integrodifferential evolution systems[J]. AIMS Mathematics, 2022, 7(5): 7642-7656. doi: 10.3934/math.2022429
In the present work, we have established sufficient conditions for boundary controllability of nonlocal fractional neutral integrodifferential evolution systems with time-varying delays in Banach space. The outcomes are obtained by applying the fractional theory and Banach fixed point theorem. At last, we give an application for the validation of the theoretical results.
[1] | H. O. Fattorini, Boundary control systems, SIAM J. Control, 6 (1968), 349–384. https://doi.org/10.1137/0306025 doi: 10.1137/0306025 |
[2] | J. Y. Park, J. U. Jeong, Boundary controllability of semilinear neutral evolution systems, Bull. Korean Math. Soc., 48 (2011), 705–712. https://doi.org/10.4134/BKMS.2011.48.4.705 doi: 10.4134/BKMS.2011.48.4.705 |
[3] | H. M. Ahmed, M. M. El-Borai, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 2019 (2019), 82. https://doi.org/10.1186/s13662-019-2028-1 doi: 10.1186/s13662-019-2028-1 |
[4] | H. K. Han, J. Y. Park, Boundary controllability of differential equations with nonlocal condition, J. Math. Anal. Appl., 230 (1999), 242–250. https://doi.org/10.1006/jmaa.1998.6199 doi: 10.1006/jmaa.1998.6199 |
[5] | K. Balachandran, E. R. Anandhi, Controllability of neutral functional integrodifferential infinite delay systems in Banach spaces, Bull. Korean Math. Soc., 8 (2004), 689–702. https://doi.org/10.11650/twjm/1500407712 doi: 10.11650/twjm/1500407712 |
[6] | K. Balachandran, E. R. Anandhi, Boundary controllability of delay integrodifferential systems in Banach spaces, J. Korean Soc. Ind. Appl. Math., 4 (2000), 67–75. |
[7] | B. Radhakrishnan, K. Balachandran, Controllability results for nonlinear impulsive integrodifferential evolution systems with time-varying delays, J. Contr. Theor. Appl., 11 (2013), 415–421. https://doi.org/10.1007/s11768-013-2147-2 doi: 10.1007/s11768-013-2147-2 |
[8] | C. Dineshkumar, K. S. Nisar, R. Udhayakumar, V. Vijayakumar, A discussion on approximate controllability of Sobolevtype Hilfer neutral fractional stochastic differential inclusions, Asian J. Control, 2021, 1–15. https://doi.org/10.1002/asjc.2650 |
[9] | V. Vijayakumar, R. Udhayakumar, Y. Zhou, N. Sakthivel, Approximate controllability results for Sobolev-type delay differential system of fractional order without uniqueness, Numer. Methods Partial Differ. Equ., 2020, 1–18. https://doi.org/10.1002/num.22642 |
[10] | K. Kumar, R. Kumar, K. Manoj, Controllability results for general integrodifferential evolution equations in Banach space, Differ. Equ. Contr. Processes, 3 (2015), 1–15. |
[11] | Y. Cheng, S. Gao, Y. Wu, Exact controllability of fractional order evolution equations in Banach spaces, Adv. Differ. Equ., 2018 (2018), 332. https://doi.org/10.1186/s13662-018-1794-5 doi: 10.1186/s13662-018-1794-5 |
[12] | X. Fu, K. Ezzinbi, Existence of solutions for neutral functional differential evolution equations with nonlocal conditions, Nonlinear Anal., 54 (2003), 215–227. https://doi.org/10.1016/S0362-546X(03)00047-6 doi: 10.1016/S0362-546X(03)00047-6 |
[13] | M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Soliton Fract., 14 (2002), 433–440. https://doi.org/10.1016/S0960-0779(01)00208-9 doi: 10.1016/S0960-0779(01)00208-9 |
[14] | M. M. El-Borai, The fundamental solutions for fractional evolution equations of parabolic type, J. Appl. Math. Stoch. Anal., 3 (2004), 484863. https://doi.org/10.1155/S1048953304311020 doi: 10.1155/S1048953304311020 |
[15] | Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063–1077. https://doi.org/10.1016/j.camwa.2009.06.026 |
[16] | V. Vijayakumar, R. Udhayakumar, A new exploration on existence of Sobolev-type Hilfer fractional neutral integro-differential equations with infinite delay, Numer. Methods Partial Differ. Equ., 37 (2021), 750–766. https://doi.org/10.1002/num.22550 doi: 10.1002/num.22550 |
[17] | V. Vijayakumar, S. K. Panda, K. S. Nisar, H. M. Baskonus, Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay, Numer. Methods Partial Differ. Equ., 37 (2021), 1200–1221. https://doi.org/10.1002/num.22573 doi: 10.1002/num.22573 |
[18] | V. Vijayakumar, R. Udhayakumar, C. Dineshkumar, Approximate controllability of second order nonlocal neutral differential evolution inclusions, IMA J. Math. Control. Inf., 38 (2021), 192–210. https://doi.org/10.1093/imamci/dnaa001 doi: 10.1093/imamci/dnaa001 |
[19] | V. Vijayakumar, R. Udhayakumar, K. Kavitha, On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay, Evol. Equ. Control The., 10 (2021), 271–396. https://doi.org/10.3934/eect.2020066 doi: 10.3934/eect.2020066 |
[20] | W. K. Williams, V. Vijayakumar, R. Udhayakumar, S. K. Panda, K. S. Nisar, Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order $1 < r < 2$, Numer. Methods Partial Differ. Equ., (2020), 1–19. https://doi.org/10.1002/num.22697 |
[21] | Y. J. Lin Guo, W. Litman, Null boundary controllability for semilinear heat equations, Appl. Math. Optim., 32 (1995), 281–316. https://doi.org/10.1007/BF01187903 doi: 10.1007/BF01187903 |
[22] | H. M. Ahmed, Boundary controllability of impulsive nonlinear fractional delay integro-differential system, Cogent Eng., 3 (2016), 1215766. https://doi.org/10.1080/23311916.2016.1215766 doi: 10.1080/23311916.2016.1215766 |
[23] | R. Gorenflo, F. Mainardi, Fractional calculus and stable probability distributions, Arch. Mech., 50 (1998), 377–388. |
[24] | M. Warma, On the approximate controllability from the boundary for fractional wave equations, Appl. Anal., 96 (2017), 2291–2315. https://doi.org/10.1080/00036811.2016.1221066 doi: 10.1080/00036811.2016.1221066 |
[25] | C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order $1 < r < 2$, Math. Comput. Simul., 190 (2021), 1003–1026. https://doi.org/10.1016/j.matcom.2021.06.026 doi: 10.1016/j.matcom.2021.06.026 |
[26] | C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A. Shukla, K. S. Nisar, A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order $r \in (1, 2)$ with delay, Chaos Soliton Fract., 153 (2021), 111565. https://doi.org/10.1016/j.chaos.2021.111565 |
[27] | K. Kavitha, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, N. Sakthivel, A note on approximate controllability of Hilfer fractional neutral differential inclusions with infinite delay, Math. Methods Appl. Sci., 44 (2021), 4428–4447. https://doi.org/10.1002/mma.7040 doi: 10.1002/mma.7040 |
[28] | K. Kavitha, V. Vijayakumar, A. Shukla, K. S. Nisar, R. Udhayakumar, Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type, Chaos Soliton Fract., 151 (2021), 111264. https://doi.org/10.1016/j.chaos.2021.111264 doi: 10.1016/j.chaos.2021.111264 |
[29] | M. Mohan Raja, V. Vijayakumar, R. Udhayakumar, A new approach on approximate controllability of fractional evolution inclusions of order $1 < r < 2$ with infinite delay, Chaos Soliton Fract., 141 (2020), 110343. https://doi.org/10.1016/j.chaos.2020.110343 doi: 10.1016/j.chaos.2020.110343 |
[30] | M. Mohan Raja, V. Vijayakumar, R. Udhayakumar, Y. Zhou, A new approach on the approximate controllability of fractional differential evolution equations of order $1 < r < 2$ in Hilbert spaces, Chaos Soliton Fract., 141 (2020), 110343. https://doi.org/10.1016/j.chaos.2020.110343 doi: 10.1016/j.chaos.2020.110343 |
[31] | N. I. Mahmudov, R. Udhayakumar, V. Vijayakumar, On the approximate controllability of second-order evolution hemivariational inequalities, Results Math., 75 (2020), 160. https://doi.org/10.1007/s00025-020-01293-2 doi: 10.1007/s00025-020-01293-2 |
[32] | A. Shukla, R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861–875. https://doi.org/10.1007/s12190-020-01418-4 doi: 10.1007/s12190-020-01418-4 |
[33] | A. Shukla, U. Arora, N. Sukavanam, Approximate controllability of retarded semilinear stochastic system with non local conditions, J. Appl. Math. Comput., 49 (2015), 513–527. https://doi.org/10.1007/s12190-014-0851-9 doi: 10.1007/s12190-014-0851-9 |
[34] | A. Shukla, N. Sukavanam, D. N. Pandey, Approximate controllability of semilinear system with state delay using sequence method, J. Franklin Inst., 352 (2015), 5380–5392. https://doi.org/10.1016/j.jfranklin.2015.08.019 doi: 10.1016/j.jfranklin.2015.08.019 |
[35] | A. Shukla, N. Sukavanam, D. N. Pandey, Controllability of semilinear stochastic control system with finite delay, IMA J. Math. Control Inf., 35 (2018), 427–449. https://doi.org/10.1093/imamci/dnw059 doi: 10.1093/imamci/dnw059 |
[36] | A. Shukla, N. Sukavanam, D. N. Pandey, Complete controllability of semi-linear stochastic system with delay, Rend. Circ. Mat. Palermo, 64 (2015), 209–220. https://doi.org/10.1007/s12215-015-0191-0 doi: 10.1007/s12215-015-0191-0 |
[37] | A. Shukla, N. Sukavanam, D. N. Pandey, Approximate controllability of semilinear fractional stochastic control system, Asian-Eur. J. Math., 11 (2018), 1850088. https://doi.org/10.1142/S1793557118500882 doi: 10.1142/S1793557118500882 |
[38] | A. Shukla, V. Vijayakumar, K. S. Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order $r\in (1, 2)$, Chaos Soliton Fract., 154 (2022), 111615. https://doi.org/10.1016/j.chaos.2021.111615 doi: 10.1016/j.chaos.2021.111615 |
[39] | A. Haq, N. Sukavanam, Controllability of second-order nonlocal retarded semilinear systems with delay in control, Appl. Anal., 99 (2020), 2741–2754. https://doi.org/10.1080/00036811.2019.1582031 doi: 10.1080/00036811.2019.1582031 |
[40] | D. Phan, S. S. Rodrigues, Approximate controllability for Navier-Stokes equations in 3D rectangles under Lions boundary conditions, J. Dyn. Control Syst., 25 (2019), 351–376. https://doi.org/10.1007/s10883-018-9412-0 doi: 10.1007/s10883-018-9412-0 |
[41] | A. Meraj, D. N. Pandey, Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions, Indian J. Pure Appl. Math., 51 (2020), 501–518. https://doi.org/10.1007/s13226-020-0413-9 doi: 10.1007/s13226-020-0413-9 |
[42] | A. V. Balakrishnan, Applied functional analysis, New York: Springer, 1976. |
[43] | R. D. Driver, Ordinary and delay differential equations, New York: Springer, 1977. https://doi.org/10.1007/978-1-4684-9467-9 |
[44] | J. Klamka, Controllability and minimum energy control, Cham: Springer, 2019. https://doi.org/10.1007/978-3-319-92540-0 |
[45] | Y. Yang, C. Hu, J. Yu, H. Jiang, S. Wen, Synchronization of fractional-order spatiotemporal complex networks with boundary communication, Neurocomputing, 450 (2021), 197–207. https://doi.org/10.1016/j.neucom.2021.04.008 doi: 10.1016/j.neucom.2021.04.008 |
[46] | L. Yang, J. Jiang, Synchronization analysis of fractional order drive-response networks with in-commensurate orders, Chaos Soliton Fract., 109 (2018), 47–52. https://doi.org/10.1016/j.chaos.2018.02.014 doi: 10.1016/j.chaos.2018.02.014 |
[47] | S. Yang, J. Yu, C. Hu, H. Jiang, Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks, Neural Networks, 104 (2018), 104–113. https://doi.org/10.1016/j.neunet.2018.04.007 doi: 10.1016/j.neunet.2018.04.007 |
[48] | S. Yang, C. Hu, J. Yu, H. Jiang, Exponential stability of fractional-order impulsive control systems with applications in synchronization, IEEE Trans. Cybern., 50 (2019), 3157–3168. https://doi.org/10.1109/TCYB.2019.2906497 doi: 10.1109/TCYB.2019.2906497 |
[49] | H. R. Marasi, H. Aydi, Existence and uniqueness results for two-term nonlinear fractional differential equations via a fixed point technique, J. Math., 2021 (2021), 6670176. https://doi.org/10.1155/2021/6670176 doi: 10.1155/2021/6670176 |
[50] | S. U. Rehman, H. Aydi, Rational fuzzy cone contractions on fuzzy cone metric spaces with an application to Fredholm integral equations, J. Funct. Spaces, 2021 (2021), 5527864. https://doi.org/10.1155/2021/5527864 doi: 10.1155/2021/5527864 |
[51] | P. O. Mohammed, H. Aydi, A. Kashuri, Y. S. Hamed, K. M. Abualnaja, Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels, Symmetry, 13 (2021), 550. https://doi.org/10.3390/sym13040550 doi: 10.3390/sym13040550 |
[52] | H. Aydi, M. Jleli, B. Samet, On positive solutions for a fractional thermostat model with a convex-concave source term via $\psi$-Caputo fractional derivative, Mediterr. J. Math., 17 (2020), 16. https://doi.org/10.1007/s00009-019-1450-7 doi: 10.1007/s00009-019-1450-7 |
[53] | O. P. V. Villagran, C. A. Nonato, C. A. Raposo, A. J. A. Ramos, Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type, Rend. Circ. Mat. Palermo, 2022. https://doi.org/10.1007/s12215-021-00703-w |
[54] | A. Georgieva, Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method, Demonstr. Math., 54 (2021), 11–24. https://doi.org/10.1515/dema-2021-0005 doi: 10.1515/dema-2021-0005 |