In this paper, we first investigate a new asymmetric Huber regression (AHR) estimation procedure to analyze skewed data with partial functional linear models. To automatically reflect distributional features as well as bound the influence of outliers effectively, we further propose a weighted composite asymmetric Huber regression (WCAHR) estimation procedure by combining the strength across multiple asymmetric Huber loss functions. The slope function and constant coefficients are estimated through minimizing the combined loss function and approximating the slope function with principal component analysis. The asymptotic properties of the proposed estimators are derived. To realize the WCAHR estimation, we also develop a practical algorithm based on pseudo data. Numerical results show that the proposed WCAHR estimators can well adapt to the different error distributions, and thus are more useful in practice. Two real data examples are presented to illustrate the applications of the proposed methods.
Citation: Juxia Xiao, Ping Yu, Zhongzhan Zhang. Weighted composite asymmetric Huber estimation for partial functional linear models[J]. AIMS Mathematics, 2022, 7(5): 7657-7684. doi: 10.3934/math.2022430
In this paper, we first investigate a new asymmetric Huber regression (AHR) estimation procedure to analyze skewed data with partial functional linear models. To automatically reflect distributional features as well as bound the influence of outliers effectively, we further propose a weighted composite asymmetric Huber regression (WCAHR) estimation procedure by combining the strength across multiple asymmetric Huber loss functions. The slope function and constant coefficients are estimated through minimizing the combined loss function and approximating the slope function with principal component analysis. The asymptotic properties of the proposed estimators are derived. To realize the WCAHR estimation, we also develop a practical algorithm based on pseudo data. Numerical results show that the proposed WCAHR estimators can well adapt to the different error distributions, and thus are more useful in practice. Two real data examples are presented to illustrate the applications of the proposed methods.
[1] | J. Ramsay, B. Silverman, Functional data analysis, 2 Eds., New York: Springer, 2005. http://dx.doi.org/10.1007/b98888 |
[2] | F. Yao, H. Müller, J. Wang, Functional linear regression analysis for longitudinal data, Ann. Statist., 33 (2005), 2873–2903. http://dx.doi.org/10.1214/009053605000000660 doi: 10.1214/009053605000000660 |
[3] | P. Hall, J. Horowitz, Methodology and convergence rates for functional linear regression, Ann. Statist., 35 (2007), 70–91. http://dx.doi.org/10.1214/009053606000000957 doi: 10.1214/009053606000000957 |
[4] | H. Shin, Partial functional linear regression, J. Stat. Plan. Infer., 139 (2009), 3405–3418. http://dx.doi.org/10.1016/j.jspi.2009.03.001 doi: 10.1016/j.jspi.2009.03.001 |
[5] | P. Hall, G. Hooker, Truncated linear models for functional data, J. Roy. Stat. Soc. Ser. B, 78 (2016), 637–653. http://dx.doi.org/10.1111/rssb.12125 doi: 10.1111/rssb.12125 |
[6] | K. Kato, Estimation in functional linear quantile regression, Ann. Statist., 40 (2012), 3108–3136. http://dx.doi.org/10.1214/12-AOS1066 doi: 10.1214/12-AOS1066 |
[7] | D. Kong, K. Xue, F. Yao, H. Zhang, Partially functional linear regression in high dimensions, Biometrika, 103 (2016), 147–159. http://dx.doi.org/10.1093/biomet/asv062 doi: 10.1093/biomet/asv062 |
[8] | P. Yu, Z. Zhang, J. Du, A test of linearity in partial functional linear regression, Metrika, 79 (2016), 953–969. http://dx.doi.org/10.1007/s00184-016-0584-x doi: 10.1007/s00184-016-0584-x |
[9] | J. Zhou, Z. Chen, Q. Peng, Polynomial spline estimation for partial functional linear regression models, Comput. Stat., 31 (2016), 1107–1129. http://dx.doi.org/10.1007/s00180-015-0636-0 doi: 10.1007/s00180-015-0636-0 |
[10] | M. Imaizumi, K. Kato, PCA-based estimation for functional linear regression with functional responses, J. Multivariate Anal., 163 (2018), 15–36. http://dx.doi.org/10.1016/j.jmva.2017.10.001 doi: 10.1016/j.jmva.2017.10.001 |
[11] | Q. Tang, L. Cheng, Partial functional linear quantile regression, Sci. China Math., 57 (2014), 2589–2608. http://dx.doi.org/10.1007/s11425-014-4819-x doi: 10.1007/s11425-014-4819-x |
[12] | P. Yu, Z. Zhu, Z. Zhang, Robust exponential squared loss-based estimation in semi-functional linear regression models, Comput. Stat., 34 (2019), 503–525. http://dx.doi.org/10.1007/s00180-018-0810-2 doi: 10.1007/s00180-018-0810-2 |
[13] | X. Cai, L. Xue, F. Lu, Robust estimation with a modified Huber's loss for partial functional linear models based on splines, J. Korean Stat. Soc., 49 (2020), 1214–1237. http://dx.doi.org/10.1007/s42952-020-00052-x doi: 10.1007/s42952-020-00052-x |
[14] | Y. Lim, H. Oh, A data-adaptive principal component analysis: use of composite asymmetric Huber function, J. Comput. Graph. Stat., 25 (2015), 1230–1247. http://dx.doi.org/10.1080/10618600.2015.1067621 doi: 10.1080/10618600.2015.1067621 |
[15] | P. Huber, Robust estimation of a location parameter, Ann. Math. Statist., 35 (1964), 73–101. http://dx.doi.org/10.1214/aoms/1177703732 doi: 10.1214/aoms/1177703732 |
[16] | H. Zou, M. Yuan, Composite quantile regression and the oracle model selection theory, Ann. Statist., 36 (2008), 1108–1126. http://dx.doi.org/10.1214/07-AOS507 doi: 10.1214/07-AOS507 |
[17] | T. Cai, P. Hall, Prediction in functional linear regression, Ann. Statist., 34 (2006), 2159–2179. http://dx.doi.org/10.1214/009053606000000830 doi: 10.1214/009053606000000830 |
[18] | H. Ma, Y. Bai, Z. Zhu, Dynamic single-index model for functional data, Sci. China Math., 59 (2016), 2561–2584. http://dx.doi.org/10.1007/s11425-016-0051-3 doi: 10.1007/s11425-016-0051-3 |
[19] | Y. Lu, J. Du, Z. Sun, Functional partially linear quantile regression model, Metrika, 77 (2014), 317–332. http://dx.doi.org/10.1007/s00184-013-0439-7 doi: 10.1007/s00184-013-0439-7 |
[20] | H. Shin, M. Lee, On prediction rate in partial functional linear regression, J. Multivariate Anal., 103 (2012), 93–106. http://dx.doi.org/10.1016/j.jmva.2011.06.011 doi: 10.1016/j.jmva.2011.06.011 |
[21] | H. Zhu, R. Zhang, Z. Yu, H. Lian, Y. Liu, Estimation and testing for partially functional linear errors-in-variables models, J. Multivariate Anal., 170 (2019), 296–314. http://dx.doi.org/10.1016/j.jmva.2018.11.005 doi: 10.1016/j.jmva.2018.11.005 |
[22] | X. Cui, H. Lin, H. Lian. Partially functional linear regression in reproducing kernel Hilbert spaces, Comput. Stat. Data Anal., 150 (2020), 106978. http://dx.doi.org/10.1016/j.csda.2020.106978 doi: 10.1016/j.csda.2020.106978 |
[23] | D. Liebl, Modeling and forecasting electricity spot prices: a functional data perspective, Ann. Appl. Stat., 7 (2013), 1562–1592. http://dx.doi.org/10.1214/13-AOAS652 doi: 10.1214/13-AOAS652 |
[24] | M. Febrero-bande, M. Fuente, Statistical computing in functional data analysis: The R Package fda.usc, J. Stat. Softw., 51 (2012), 1–28. http://dx.doi.org/10.18637/jss.v051.i04 doi: 10.18637/jss.v051.i04 |