In this paper, we mainly investigate the random convolution sampling stability for signals in multiply generated shift invariant subspace of weighted mixed Lebesgue space. Under some restricted conditions for the generators and the convolution function, we conclude that the defined multiply generated shift invariant subspace could be approximated by a finite dimensional subspace. Furthermore, with overwhelming probability, the random convolution sampling stability holds for signals in some subset of the defined multiply generated shift invariant subspace when the sampling size is large enough.
Citation: Suping Wang. The random convolution sampling stability in multiply generated shift invariant subspace of weighted mixed Lebesgue space[J]. AIMS Mathematics, 2022, 7(2): 1707-1725. doi: 10.3934/math.2022098
In this paper, we mainly investigate the random convolution sampling stability for signals in multiply generated shift invariant subspace of weighted mixed Lebesgue space. Under some restricted conditions for the generators and the convolution function, we conclude that the defined multiply generated shift invariant subspace could be approximated by a finite dimensional subspace. Furthermore, with overwhelming probability, the random convolution sampling stability holds for signals in some subset of the defined multiply generated shift invariant subspace when the sampling size is large enough.
[1] | A. Aldroubi, K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant space, SIAM Rev., 43 (2001), 585–620. doi: 10.1137/s0036144501386986. doi: 10.1137/s0036144501386986 |
[2] | R. F. Bass, K. Gröchenig, Random sampling of bandlimited functions, Israel J. Math., 177 (2010), 1–28. doi: 10.1007/s11856-010-0036-7. doi: 10.1007/s11856-010-0036-7 |
[3] | R. F. Bass, K. Gröchenig, Relevant sampling of bandlimited functions, Illinois J. Math., 57 (2013), 43–58. doi: 10.1215/ijm/1403534485. doi: 10.1215/ijm/1403534485 |
[4] | A. Benedek, R. Panzone, The space $L^{p}$ with mixed norm, Duke Math. J., 28 (1961), 301–324. doi: 10.1215/s0012-7094-61-02828-9. doi: 10.1215/s0012-7094-61-02828-9 |
[5] | E. J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52 (2006), 489–509. doi: 10.1109/TIT.2005.862083. doi: 10.1109/TIT.2005.862083 |
[6] | S. H. Chan, T. Zickler, Y. M. Lu, Monte Carlo non-local means: Random sampling for large-scale image filtering, IEEE Trans. Image Process., 23 (2014), 3711–3725. doi: 10.1109/tip.2014.2327813. doi: 10.1109/tip.2014.2327813 |
[7] | Y. C. Eldar, Compressed sensing of analog signal in a shift-invariant spaces, IEEE Trans. Signal Process., 57 (2009), 2986–2997. doi: 10.1109/TSP.2009.2020750. doi: 10.1109/TSP.2009.2020750 |
[8] | K. Gröchenig, Weight functions in time-frequency analysis, 2006. Available from: https://arXiv.org/abs/math/0611174. |
[9] | Y. Han, B. Liu, Q. Y. Zhang, A sampling theory for non-decaying signals in mixed Lebesgue spaces $L^{p, q}(\mathbb{R}\times \mathbb{R}^{d})$, Appl. Anal., 2020. doi: 10.1080/00036811.2020.1736286. |
[10] | Y. C. Jiang, W. Li, Random sampling in multiply generated shift-invariant subspaces of mixed Lebesgue spaces $L^{p, q}(\mathbb{R}\times \mathbb{R}^{d})$, J. Comput. Appl. Math., 386 (2021), 113237. doi: 10.1016/j.cam.2020.113237. |
[11] | A. Kumar, D. Patel, S. Sampath, Sampling and reconstruction in reproducing kernel subspaces of mixed Lebesgue spaces, J. Pseudo-Differ. Oper. Appl., 11 (2020), 843–868. doi: 10.1007/s11868-019-00315-0. doi: 10.1007/s11868-019-00315-0 |
[12] | R. Li, B. Liu, R. liu, Q. Y. Zhang, Nonuniform sampling in principle shift-invariant subspaces of mixed Lebesgue spaces $L^{p, q}(\mathbb{R}^{d+1})$, J. Math. Anal. Appl., 453 (2017), 928–941. doi: 10.1016/j.jmaa.2017.04.036. doi: 10.1016/j.jmaa.2017.04.036 |
[13] | R. Li, B. Liu, R. Liu, Q. Y. Zhang, The $L^{p, q}$-stability of the shifts of finitely many functions in mixed Lebesgue spaces $L^{p, q}(\mathbb{R}^{d+1})$, Acta Math. Sin., Engl. Ser., 34 (2018), 1001–1014. doi: 10.1007/s10114-018-7333-1. doi: 10.1007/s10114-018-7333-1 |
[14] | Y. X. Li, Q. Y. Sun, J. Xian, Random sampling and reconstruction of concentrated signals in a reproducing kernel space, Appl. Comput. Harmon. Anal., 54 (2021), 273–302. doi: 10.1016/j.acha.2021.03.006. doi: 10.1016/j.acha.2021.03.006 |
[15] | S. P. Luo, Error estimation for non-uniform sampling in shift invariant space, Appl. Anal., 86 (2007), 483–496. doi: 10.1080/00036810701259236. doi: 10.1080/00036810701259236 |
[16] | D. Patel, S. Sampath, Random sampling in reproducing kernel subspaces of $L^{p}(\mathbb{R}^{n})$, J. Math. Anal. Appl., 491 (2020), 124270. doi: 10.1016/j.jmaa.2020.124270. |
[17] | S. Smale, D. X. Zhou, Online learning with Markov sampling, Anal. Appl., 7 (2009), 87–113. doi: 10.1142/S0219530509001293. doi: 10.1142/S0219530509001293 |
[18] | J. B. Yang, Random sampling and reconstruction in multiply generated shift-invariant spaces, Anal. Appl., 17 (2019), 323–347. doi: 10.1142/S0219530518500185. doi: 10.1142/S0219530518500185 |
[19] | J. B. Yang, W. Wei, Random sampling in shift invariant spaces, J. Math. Anal. Appl., 398 (2013), 26–34. doi: 10.1016/j.jmaa.2012.08.030. doi: 10.1016/j.jmaa.2012.08.030 |
[20] | D. X. Zhou, The covering number in learning theory, J. Complexity, 18 (2002), 739–767. doi: 10.1006/jcom.2002.0635. doi: 10.1006/jcom.2002.0635 |