Processing math: 93%
Research article

Number of maximal 2-component independent sets in forests

  • Received: 03 January 2022 Revised: 03 April 2022 Accepted: 11 April 2022 Published: 20 May 2022
  • MSC : 05C30, 05C69

  • Let G=(V(G),E(G)) be a graph. For a positive integer k, we call SV(G) a k-component independent set of G if each component of G[S] has order at most k. Moreover, S is maximal if there does not exist a k-component independent set S of G such that SS and |S|<|S|. A maximal k-component independent set of a graph G is denoted briefly by Mk-CIS. We use tk(G) to denote the number of Mk-CISs of a graph G. In this paper, we show that for a forest G of order n,

    t2(G){3n3,ifn0 (mod 3)andn3,43n43,ifn1 (mod 3)andn4,5,ifn=5,423n83,ifn2 (mod 3)andn8,

    with equality if and only if GFn, where

    Fn{n3P3,ifn0 (mod 3)andn3,n43P3K1,3,ifn1 (mod 3)andn4,K1,4,ifn=5,n83P32K1,3,ifn2 (mod 3)andn8.

    Citation: Shuting Cheng, Baoyindureng Wu. Number of maximal 2-component independent sets in forests[J]. AIMS Mathematics, 2022, 7(7): 13537-13562. doi: 10.3934/math.2022748

    Related Papers:

    [1] Nattapong Kamsrisuk, Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Quantum calculus with respect to another function. AIMS Mathematics, 2024, 9(4): 10446-10461. doi: 10.3934/math.2024510
    [2] Xue-Xiao You, Muhammad Aamir Ali, Ghulam Murtaza, Saowaluck Chasreechai, Sotiris K. Ntouyas, Thanin Sitthiwirattham . Post-quantum Simpson's type inequalities for coordinated convex functions. AIMS Mathematics, 2022, 7(2): 3097-3132. doi: 10.3934/math.2022172
    [3] Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon . On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications. AIMS Mathematics, 2023, 8(2): 3885-3896. doi: 10.3934/math.2023193
    [4] Saad Ihsan Butt, Muhammad Nasim Aftab, Hossam A. Nabwey, Sina Etemad . Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus. AIMS Mathematics, 2024, 9(3): 5523-5549. doi: 10.3934/math.2024268
    [5] Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218
    [6] Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769
    [7] Muhammad Uzair Awan, Muhammad Aslam Noor, Tingsong Du, Khalida Inayat Noor . On M-convex functions. AIMS Mathematics, 2020, 5(3): 2376-2387. doi: 10.3934/math.2020157
    [8] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [9] Andrea Aglić Aljinović, Domagoj Kovačević, Mehmet Kunt, Mate Puljiz . Correction: Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2021, 6(2): 1880-1888. doi: 10.3934/math.2021114
    [10] Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon . Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771
  • Let G=(V(G),E(G)) be a graph. For a positive integer k, we call SV(G) a k-component independent set of G if each component of G[S] has order at most k. Moreover, S is maximal if there does not exist a k-component independent set S of G such that SS and |S|<|S|. A maximal k-component independent set of a graph G is denoted briefly by Mk-CIS. We use tk(G) to denote the number of Mk-CISs of a graph G. In this paper, we show that for a forest G of order n,

    t2(G){3n3,ifn0 (mod 3)andn3,43n43,ifn1 (mod 3)andn4,5,ifn=5,423n83,ifn2 (mod 3)andn8,

    with equality if and only if GFn, where

    Fn{n3P3,ifn0 (mod 3)andn3,n43P3K1,3,ifn1 (mod 3)andn4,K1,4,ifn=5,n83P32K1,3,ifn2 (mod 3)andn8.



    Simpson's rules are well-known methods for numerical integration and numerical estimation of definite integral. Thomas Simpson is credited with inventing this process (1710–1761). However, about 100 years earlier, Johannes Kepler used the same approximation, so this form is also known as Kepler's law. The three-point Newton-Cotes quadrature rule is included in Simpson's rule, so estimation based on three steps quadratic kernel is often referred to as Newton type results.

    1) Simpson's quadrature formula (Simpson's 1/3 rule)

    π2π1Π(x)dxπ2π16[Π(π1)+4Π(π1+π22)+Π(π2)].

    2) Simpson's second formula or Newton-Cotes quadrature formula (Simpson's 3/8 rule).

    π2π1Π(x)dxπ2π18[Π(π1)+3Π(2π1+π23)+3Π(π1+2π23)+Π(π2)].

    In the literature, there are several estimations linked to these quadrature laws, one of which is known as Simpson's inequality:

    Theorem 1.1. Suppose that Π:[π1,π2]R is a four times continuously differentiable mapping on (π1,π2), and let Π(4)=supx(π1,π2)|Π(4)(x)|<. Then, one has the inequality

    |13[Π(π1)+Π(π2)2+2Π(π1+π22)]1π2π1π2π1Π(x)dx|12880Π(4)(π2π1)4.

    Many authors have concentrated on Simpson's type inequalities for different classes of functions in recent years. Since convexity theory is an effective and efficient method for solving a large number of problems that exist within various branches of pure and applied mathematics, some mathematicians have worked on Simpson's and Newton's type results for convex mappings. Dragomir et al. [1], presented new Simpson's type inequalities and their applications to numerical integration quadrature formulas. Furthermore, Alomari et al. in [2] derive some Simpson's type inequalities for s-convex functions. Following that, in [3], Sarikaya et al. discovered variants of Simpson's type inequalities dependent on convexity. The authors given some Newton's type inequalities for harmonic and p-harmonic convex functions in [4,5]. Iftikhar et al. also have new Newton's type inequalities for functions whose local fractional derivatives are generalized convex in [6].

    On the other hand, in the domain of q analysis, many works are being carried out as initiated by Euler in order to attain adeptness in mathematics that constructs quantum computing q calculus considered as a relationship between physics and mathematics. In different areas of mathematics, it has numerous applications such as combinatorics, number theory, basic hypergeometric functions, orthogonal polynomials, and other sciences, as well as mechanics, the theory of relativity, and quantum theory [7,8]. Quantum calculus also has many applications in quantum information theory, which is an interdisciplinary area that encompasses computer science, information theory, philosophy, and cryptography, among other areas [9,10]. Apparently, Euler invented this important branch of mathematics. He used the q parameter in Newton's work on infinite series. Later, in a methodical manner, the q-calculus, calculus without limits, was firstly given by Jackson [11,12]. In 1966, Al-Salam [13] introduced a q-analogue of the q-fractional integral and q -Riemann–Liouville fractional. Since then, related research has gradually increased. In particular, in 2013, Tariboon [14] introduced the π1Dq-difference operator and qπ1-integral. In 2020, Bermudo et al. [15] introduced the notion of π2Dq derivative and qπ2-integral. Sadjang [16] generalized to quantum calculus and introduced the notions of post-quantum calculus, or briefly (p,q)-calculus. Soontharanon et al. [17] introduced the fractional (p,q)-calculus later on. In [18], Tunç and Göv gave the post-quantum variant of π1Dq-difference operator and qπ1-integral. Recently, in 2021, Chu et al. [19] introduced the notions of π2Dp,q derivative and (p,q)π2-integral.

    Many integral inequalities have been studied using quantum and post-quantum integrals for various types of functions. For example, in [15,20,21,22,23,24,25,26,27], the authors used π1Dq,π2Dq-derivatives and qπ1,qπ2-integrals to prove Hermite–Hadamard integral inequalities and their left–right estimates for convex and coordinated convex functions. In [28], Noor et al. presented a generalized version of quantum integral inequalities. For generalized quasi-convex functions, Nwaeze et al. proved certain parameterized quantum integral inequalities in [29]. Khan et al. proved quantum Hermite–Hadamard inequality using the green function in [30]. Budak et al. [31], Ali et al. [32,33], and Vivas-Cortez et al. [34] developed new quantum Simpson's and quantum Newton's type inequalities for convex and coordinated convex functions. For quantum Ostrowski's inequalities for convex and co-ordinated convex functions, one can consult [35,36,37,38]. Kunt et al. [39] generalized the results of [22] and proved Hermite–Hadamard-type inequalities and their left estimates using π1Dp,q difference operator and (p,q)π1 integral. Recently, Latif et al. [40] found the right estimates of Hermite–Hadamard type inequalities proved by Kunt et al. [39]. To prove Ostrowski's inequalities, Chu et al. [19] used the concepts of π2Dp,q difference operator and (p,q)π2 integral.

    Inspired by this ongoing studies, we offer some new quantum parameterized Simpson's and Newton's type inequalities for convex functions using the notions of quantum derivatives and integrals.

    The structure of this paper is as follows: Section 2 provides a quick review of the ideas of q-calculus, as well as some related works. In Section 3, we present two integral identities that aid in the proof of the key conclusions. We prove quantum Simpson's and quantum Newton's inequalities in sections 4 and 5, respectively. Section 6 finishes with a few suggestions for future research.

    In this section, we first present some known definitions and related inequalities in q-calculus. Set the following notation(see, [8]):

    [n]q=1qn1q=n1k=0qk, q(0,1).

    Jackson [11] defined the q-integral of a given function Π from 0 to π2 as follows:

    π20Π(x)dqx=(1q)π2n=0qnΠ(π2qn), where 0<q<1 (2.1)

    provided that the sum converges absolutely. Moreover, he defined the q -integral of a given function over the interval [π1,π2] as follows:

    π2π1Π(x)dqx=π20Π(x)dqxπ10Π(x)dqx.

    Definition 2.1. [14] We consider the mapping Π:[π1,π2]R. Then, the qπ1-derivative of Π at x[π1,π2] is defined by the the following expression

    π1DqΠ(x)=Π(x)Π(qx+(1q)π1)(1q)(xπ1),xπ1. (2.2)

    If x=π1, we define π1DqΠ(π1)=limxπ1π1DqΠ(x) if it exists and it is finite.

    Definition 2.2. [15] We consider the mapping Π:[π1,π2]R. Then, the qπ2-derivative of Π at x[π1,π2] is defined by

    π2DqΠ(x)=Π(qx+(1q)π2)Π(x)(1q)(π2x),xπ2. (2.3)

    If x=π2, we define π2DqΠ(π2)=limxπ2π2DqΠ(x) if it exists and it is finite.

    Definition 2.3. [14] We consider the mapping Π:[π1,π2]R. Then, the qπ1-definite integral on [π1,π2] is defined by

    π2π1Π(x)π1dqx=(1q)(π2π1)n=0qnΠ(qnπ2+(1qn)π1)=(π2π1)10Π((1τ)π1+τπ2)dqτ. (2.4)

    Remark 2.1. If we set π1=0 in Definition 2.3, then we obtain q-Jackson integral, which is given in expression (2.1).

    In [22,27], the authors proved quantum Hermite-Hadamard type inequalities and their estimations by using the notions of qπ1 -derivative and qπ1-integral.

    On the other hand, in [15], Bermudo et al. gave the following definition and obtained the related Hermite-Hadamard type inequalities:

    Definition 2.4. [15] We consider the mapping Π:[π1,π2]R. Then, the qπ2-definite integral on [π1,π2] is defined by

    π2π1Π(x)π2dqx=(1q)(π2π1)n=0qnΠ(qnπ1+(1qn)π2)=(π2π1)10Π(τπ1+(1τ)π2)dqτ.

    Theorem 2.1. [15] Let Π:[π1,π2]R be a convex function on [π1,π2] and 0<q<1. Then, qπ2-Hermite-Hadamard inequalities are given as follows:

    Π(π1+qπ2[2]q)1π2π1π2π1Π(x)π2dqxΠ(π1)+qΠ(π2)[2]q. (2.5)

    In [24], Budak proved the left and right bounds of the inequality (2.5).

    To obtain the key results of this paper, we prove three separate identities in this section.

    Let's begin with the following crucial Lemma.

    Lemma 3.1. If Π:[π1,π2]RR is a qπ1-differentiable function on (π1,π2) such that π1DqΠ is continuous and integrable on [π1,π2], then we have the following identity:

    qλΠ(π1)+(1μq)Π(π2)+q(μλ)Π(π1q+π2[2]q)1π2π1π2π1Π(x)π1dqx=q(π2π1)×[1[2]q0(tλ)π1DqΠ(tπ2+(1t)π1)dqt+11[2]q(tμ)π1DqΠ(tπ2+(1t)π1)dqt] (3.1)

    where q(0,1).

    Proof. From Definition 2.1, we have

    π1DqΠ(tπ2+(1t)π1)=Π(tπ2+(1t)π1)Π(qtπ2+(1qt)π1)(1q)(π2π1)t. (3.2)

    By utilizing the properties of quantum integrals, we obtain

    1[2]q0(tλ)π1DqΠ(tπ2+(1t)π1)dqt+11[2]q(tμ)π1DqΠ(tπ2+(1t)π1)dqt=1[2]q0(μλ)π1DqΠ(tπ2+(1t)π1)dqt+10(tμ)π1DqΠ(tπ2+(1t)π1)dqt=(μλ)1[2]q0Π(tπ2+(1t)π1)Π(qtπ2+(1qt)π1)(1q)(π2π1)tdqt+10Π(tπ2+(1t)π1)Π(qtπ2+(1qt)π1)(1q)(π2π1)dqtμ10Π(tπ2+(1t)π1)Π(qtπ2+(1qt)π1)(1q)(π2π1)tdqt. (3.3)

    By Definition 2.3, we have the following equalities

    1[2]q0Π(tπ2+(1t)π1)Π(qtπ2+(1qt)π1)(1q)(π2π1)tdqt=1π2π1[n=0Π(qn[2]qπ2+(1qn[2]q)π1)n=0Π(qn+1[2]qπ2+(1qn+1[2]q)π1)]=1π2π1[Π(π1q+π2[2]q)Π(π1)], (3.4)
    10Π(tπ2+(1t)π1)Π(qtπ2+(1qt)π1)(1q)(π2π1)tdqt=1π2π1[Π(π2)Π(π1)] (3.5)

    and

    10Π(tπ2+(1t)π1)Π(qtπ2+(1qt)π1)(1q)(π2π1)dqt=1π2π1[n=0qnΠ(qnπ2+(1qn)π1)n=0qnΠ(qn+1π2+(1qn+1)π1)]=1π2π1[n=0qnΠ(qnπ2+(1qn)π1)1qn=1qnΠ(qnπ2+(1qn)π1)]=1π2π1[n=0qnΠ(qnπ2+(1qn)π1)1qn=0qnΠ(qnπ2+(1qn)π1)+1qΠ(π2)]=1π2π1[1qΠ(π2)1q(π2π1)π2π1Π(x)π1dqx]. (3.6)

    If we substitute the computed integrals (3.4)–(3.6) in (3.3), we establish the required identity (3.1).

    Remark 3.1. In Lemma 3.1, if we choose λ=1[6]q and μ=[5]q[6]q, then we have the following identity:

    1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]1π2π1π2π1Π(s)π1dqs=q(π2π1)×[1[2]q0(t1[6]q)π1DqΠ(tπ2+(1t)π1)dqt+11[2]q(t[5]q[6]q)π1DqΠ(tπ2+(1t)π1)dqt]

    which is proved by Iftikhar et al. in [41].

    Remark 3.2. In Lemma 3.1, if we choose λ=μ=1[2]q, then we obtain [42,Lemma 3.1].

    Remark 3.3. In Lemma 3.1, if we choose λ=0 and μ=1q, then Lemma 3.1 reduces to [22,Lemma 11].

    Remark 3.4. In Lemma 3.1, if we take the limit q1, then we have [43,Lemma 2.1 for m=1].

    Lemma 3.2. If Π:[π1,π2]RR is a qπ1-differentiable function on (π1,π2) such that π1DqΠ is continuous and integrable on [π1,π2], then we have the following identity:

    qλΠ(π1)+q(μλ)Π(π1q[2]q+π2[3]q)+q(νμ)Π(π1q2+π2[2]q[3]q)+(1νq)Π(π2)1π2π1π2π1Π(x)π1dqx=(π2π1)q[1[3]q0(tλ)π1DqΠ(tπ2+(1t)π1)dqt+[2]q[3]q1[3]q(tμ)π1DqΠ(tπ2+(1t)π1)dqt+1[2]q[3]q(tν)π1DqΠ(tπ2+(1t)π1)dqt] (3.7)

    where q(0,1).

    Proof. By the fundamental properties of quantum integrals, we have

    1[3]q0(tλ)π1DqΠ(tπ2+(1t)π1)dqt+[2]q[3]q1[3]q(tμ)π1DqΠ(tπ2+(1t)π1)dqt+1[2]q[3]q(tν)π1DqΠ(tπ2+(1t)π1)dqt=1[3]q0(μλ)π1DqΠ(tπ2+(1t)π1)dqt+[2]q[3]q0(νμ)π1DqΠ(tπ2+(1t)π1)dqt+10(tν)π1DqΠ(tπ2+(1t)π1)dqt.

    By applying the same steps in the proof of Lemma 3.1 for rest of this proof, one can obtain the desired identity (3.7).

    Remark 3.5. If we take λ=1[8]q, μ=1[2]q, and ν=[7]q[8]q in Lemma 3.2, then we obtain the following identity

    1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]1π2π1π2π1Π(x)π1dqx=q(π2π1)[1[3]q0(t1[8]q)π1DqΠ(tπ2+(1t)π1)dqt+[2]q[3]q1[3]q(t1[2]q)π1DqΠ(tπ2+(1t)π1)dqt+1[2]q[3]q(t[7]q[8]q)π1DqΠ(tπ2+(1t)π1)dqt]

    which is proved by Erden et al. in [44].

    Remark 3.6. If we take λ=μ=ν=1[2]q, in Lemma 3.2, then we obtain [42,Lemma 3.1].

    Corollary 3.1. If we take the limit q1 in Lemma 3.2, then we obtain the following new identity

    λΠ(π1)+(μλ)Π(2π1+π23)+(νμ)Π(π1+2π23)+(1ν)Π(π2)1π2π1π2π1Π(x)dx=(π2π1)[130(tλ)Π(tπ2+(1t)π1)dt+2313(tμ)Π(tπ2+(1t)π1)dt+123(tν)Π(tπ2+(1t)π1)dt]

    For brevity, let us prove another lemma that will be used frequently in the main results.

    Lemma 3.3. The following quantum integrals holds for λ,μ,ν0:

    Ω11=1[2]q0|tλ|dqt=2λ2q[2]q+1([2]q)3λ[2]q (3.8)
    Ω12=11[2]q|tμ|dqt=2μ2q[2]q+([2]q)2+1([2]q)3μ([2]q+1)[2]q (3.9)
    Ω13=1[3]q0|tλ|dqt=2λ2q[2]q+1[2]q([3]q)2λ[3]q (3.10)
    Ω14=[2]q[3]q1[3]q|tμ|dqt=2μ2q[2]qμ([2]q+1)[3]q+([2]q)2+1[2]q([3]q)2 (3.11)
    Ω15=1[2]q[3]q|tν|dqt=2ν2q[2]qν([2]q+[3]q)[3]q+[2]q([3]q)2+1[2]q (3.12)
    Ω1=1[2]q0t|tλ|dqt=2λ3q2[2]q[3]q+1([2]q)3[3]qλ([2]q)3 (3.13)
    Ω2=1[2]q0(1t)|tλ|dqt=Ω11Ω1=2λ2q[2]q2λ3q2[2]q[3]qλ(([2]q)21)([2]q)3+[3]q1([2]q)3[3]q (3.14)
    Ω3=11[2]qt|tμ|dqt=2μ3q2[2]q[3]q+1+([2]q)3([2]q)3[3]qμ(([2]q)2+1)([2]q)3 (3.15)
    Ω4=11[2]q(1t)|tμ|dqt==Ω12Ω3=2μ2q[2]q2μ3q2[2]q[3]qμ(([2]q)31)([2]q)3+[3]q(1+([2]q)2)([2]q)31([2]q)3[3]q (3.16)
    Ω5=1[3]q0t|tλ|dqt=2λ3q2[2]q[3]q+1([3]q)4λ([3]q)2[2]q (3.17)
    Ω6=1[3]q0(1t)|tλ|dqt==Ω13Ω5=2λ2q[2]q2λ3q2[2]q[3]q+λ(1[2]q[3]q)([3]q)2[2]q+([3]q)2[2]q([3]q)4[2]q (3.18)
    Ω7=[2]q[3]q1[3]qt|tμ|dqt=2μ3q2[2]q[3]q+1+([2]q)3([3]q)4μ(([2]q)2+1)([3]q)2[2]q (3.19)
    Ω8=[2]q[3]q1[3]q(1t)|tμ|dqt=Ω14Ω7=2μ2q[2]q2μ3q2[2]q[3]qμ(([2]q)2([3]q1)+[2]q[3]q)([3]q)2[2]q+(([2]q)2+1)([3]q)3[2]q([2]q)4([3]q)4[2]q (3.20)
    Ω9=1[2]q[3]qt|tν|dqt=2ν3q2[2]q[3]qν(([2]q)2+([3]q)2)[2]q([3]q)2+([2]q)3+([3]q)3([3]q)4 (3.21)
    Ω10=1[2]q[3]q(1t)|tν|dqt (3.22)
    =Ω15Ω9=2υ2q[2]q2υ3q2[2]q[3]qυ(([3]q)2([2]q1)+([2]q)2([3]q1))([3]q)2[2]q (3.23)
    +([3]q)2([2]q[3]q)([2]q)3([3]q)4 (3.24)

    Proof. By the definition of q-integral, we have

    Ω1=1[2]q0t|tλ|dqt=λ0t(λt)dqt+1[2]qλt(tλ)dqt=2λ0t(λt)dqt+1[2]q0t(tλ)dqt=2λ3q2[2]q[3]q+1([2]q)3[3]qλ([2]q)3

    and so

    Ω1=2λ3q2[2]q[3]q+1([2]q)3[3]qλ([2]q)3.

    This gives the proof of the equality (3.13). The others can be calculated in similar way.

    In this section, we prove a new generalization of quantum Simpson's, Midpoint and Trapezoid type inequalities for quantum differentiable convex functions.

    Theorem 4.1. We assume that the given conditions of Lemma 3.1 hold. If the mapping |π1DqΠ| is convex on [π1,π2], then the following inequality holds:

    |qλΠ(π1)+(1μq)Π(π2)+q(μλ)Π(π1q+π2[2]q)1π2π1π2π1Π(x)π1dqx|q(π2π1)[(Ω1+Ω3)|π1DqΠ(π2)|+(Ω2+Ω4)|π1DqΠ(π1)|] (4.1)

    where Ω1-Ω4 are given in (3.13)-(3.16), respectively.

    Proof. By taking the modulus in Lemma 3.1 and using the convexity of |π1DqΠ|, we obtain

    qλΠ(π1)+(1μq)Π(π2)+q(μλ)Π(π1q+π2[2]q)1π2π1π2π1Π(x)π1dqxq(π2π1)×[1[2]q0|tλ||π1DqΠ(tπ2+(1t)π1)|dqt+11[2]q|tμ||π1DqΠ(tπ2+(1t)π1)|dqt](π2π1)q[|π1DqΠ(π2)|{1[2]q0t|tλ|dqt+11[2]qt|tμ|dqt}+|π1DqΠ(π1)|{1[2]q0(1t)|tλ|dqt+11[2]q(1t)|tμ|dqt}]=(π2π1)q[(Ω1+Ω3)|π1DqΠ(π2)|+(Ω2+Ω4)|π1DqΠ(π1)|]

    which is the desired inequality.

    Remark 4.1. If we take the limit q1 in Theorem 4.1, then we have [43,Theorem 2.1 for s=m=1].

    Remark 4.2. If we assume λ=μ=1[2]q in Theorem 4.1, then we obtain [42,Theorem 4.1].

    Remark 4.3. In Theorem 4.1, if we choose λ=0 and μ=1q, then Theorem 4.1 reduces to [22,Theorem 13].

    Remark 4.4. If we assume λ=1[6]q and μ=[5]q[6]q in Theorem 4.1, then we obtain the following inequality

    |1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]1π2π1π2π1Π(s)π1dqs|q(π2π1){|π1DqΠ(π2)|[A1(q)+A2(q)]+|π1DqΠ(π1)|[B1(q)+B2(q)]},

    where

    A1(q)=2q2[2]2q+[6]2q([6]q[3]q)[2]3q[3]q[6]3q,B1(q)=2q[3]q[6]qq2[2]q[3]q[6]3q+1[2]3q(q+q2[3]qq2+2q[6]q),A2(q)=2q2[5]3q[2]q[3]q[6]3q+[6]q(1+[2]3q)[3]q[5]q(1+[2]2q)[2]3q[3]q[6]q,B2(q)=2q[5]2q[6]q[3]qq2[5]3q[2]q[3]q[6]3q+q2[2]q[3]qq[5]q[2]q[6]q1[2]3q[[5]q(2q+q2)[6]qq+q2[3]q]

    which is proved by Ifitikhar et al. [41].

    Theorem 4.2. We assume that the given conditions of Lemma 3.1 hold. If the mapping |π1DqΠ|p1, p11 is convex on [π1,π2], then the following inequality holds:

    |λqΠ(π1)+(1μq)Π(π2)+q(μλ)Π(π1q+π2[2]q)1π2π1π2π1Π(x)π1dqx|(π2π1)q[Ω11p111(Ω1|π1DqΠ(π2)|p1+Ω2|π1DqΠ(π1)|p1)1p1+Ω11p112(Ω3|π1DqΠ(π2)|p1+Ω4|π1DqΠ(π1)|p1)1p1] (4.2)

    where Ω11, Ω12 and Ω1-Ω4 are given in (3.8), (3.9), and (3.13)–(3.16), respectively.

    Proof. By taking the modulus in Lemma 3.1 and using the power mean inequality, we have

    |λqΠ(π1)+(1μq)Π(π2)+q(μλ)Π(π1q+π2[2]q)1π2π1π2π1Π(x)π1dqx|(π2π1)q[(1[2]q0|tλ|dqt)11p1(1[2]q0|tλ||π1DqΠ(tπ2+(1t)π1)|p1dqt)1p1+(11[2]q|tμ|dqt)11p1(11[2]q|tμ||π1DqΠ(tπ2+(1t)π1)|p1dqt)1p1].

    By using the convexity of |π1DqΠ|p1, we have

    |λqΠ(π1)+(1μq)Π(π2)+q(μλ)Π(π1q+π2[2]q)1π2π1π2π1Π(x)π1dqx|(π2π1)q[(1[2]q0|tλ|dqt)11p1×(|π1DqΠ(π2)|p11[2]q0t|tλ|dqt+|π1DqΠ(π1)|p11[2]q0(1t)|tλ|dqt)1p1+(11[2]q|tμ|dqt)11p1×(|π1DqΠ(π2)|p111[2]qt|tμ|dqt+|π1DqΠ(π1)|p111[2]q(1t)|tμ|dqt)1p1]=(π2π1)q[Ω11p111(Ω1|π1DqΠ(π2)|p1+Ω2|π1DqΠ(π1)|p1)1p1+Ω11p112(Ω3|π1DqΠ(π2)|p1+Ω4|π1DqΠ(π1)|p1)1p1]

    and the proof is completed.

    Remark 4.5. If we take the limit q1 in Theorem 4.2, then we have [43,Theorem 2.3 for s=m=1].

    Remark 4.6. If we assume λ=μ=1[2]q in Theorem 4.2, then we obtain [42,Theorem 4.2].

    Remark 4.7. If we assume λ=1[6]q and μ=[5]q[6]q in Theorem 4.2, then we obtain the following inequality

    |1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]1π2π1π2π1Π(s)π1dqs|q(π2π1)[(2q[2]q[6]2q+q3[3]qq[6]q[2]3q)11p1×(A1(q)|π1DqΠ(π2)|p1+B1(q)|π1DqΠ(π1)|p1)1p1+(2q[5]2q[2]q[6]2q+1[2]q[5]q[6]q[5]q[2]2q[6]q[6]q[2]3q)11p1×(A2(q)|π1DqΠ(π2)|p1+B2(q)|π1DqΠ(π1)|p1)1p1

    where A1(q),A2(q),B1(q) and B2(q) are defined in Remark 4.4. The above inequality is proved by Ifitikhar et al. [41].

    Remark 4.8. In Theorem 4.2, if we choose λ=0 and μ=1q, then Theorem 4.2 reduces to [22,Theorem 16].

    Theorem 4.3. We assume that the given conditions of Lemma 3.1 hold. If the mapping |π1DqΠ|p1, p1>1 is convex on [π1,π2], then the following inequality holds:

    |λqΠ(π1)+(1μq)Π(π2)+q(μλ)Π(π1q+π2[2]q)1π2π1π2π1Π(x)π1dqx|(π2π1)q[Ω1r116(|π1DqΠ(π2)|p1([2]q)3+(([2]q)21)|π1DqΠ(π1)|p1([2]q)3)1p1+Ω1r117((([2]q)21)|π1DqΠ(π2)|p1([2]q)3+(([2]q)32([2]q)2+1)|π1DqΠ(π1)|p1([2]q)3)1p1] (4.3)

    where p11+r11=1 and

    Ω16=1[2]q0|tλ|r1dqt,Ω17=11[2]q|tμ|r1dqt

    Proof. By taking the modulus in Lemma 3.1 and using the Hölder inequality, we have

    |λqΠ(π1)+(1μq)Π(π2)+q(μλ)Π(π1q+π2[2]q)1π2π1π2π1Π(x)π1dqx|(π2π1)q[(1[2]q0|tλ|r1dqt)1r1(1[2]q0|π1DqΠ(tπ2+(1t)π1)|p1dqt)1p1+(11[2]q|tμ|r1dqt)1r1(11[2]q|π1DqΠ(tπ2+(1t)π1)|p1dqt)1p1].

    Since |π1DqΠ|p1 is convex on [π1,π2], we have

    |λqΠ(π1)+(1μq)Π(π2)+q(μλ)Π(π1q+π2[2]q)1π2π1π2π1Π(x)π1dqx|q(π2π1)×[(1[2]q0|tλ|r1dqt)1r1(|π1DqΠ(π2)|p11[2]q0tdqt+|π1DqΠ(π1)|p11[2]q0(1t)dqt)1p1+(11[2]q|tμ|r1dqt)1r1(|π1DqΠ(π2)|p111[2]qtdqt+|π1DqΠ(π1)|p111[2]q(1t)dqt)1p1]=(π2π1)q[Ω1r116(|π1DqΠ(π2)|p1([2]q)3+(([2]q)21)|π1DqΠ(π1)|p1([2]q)3)1p1+Ω1r117((([2]q)21)|π1DqΠ(π2)|p1([2]q)3+(([2]q)32([2]q)2+1)|π1DqΠ(π1)|p1([2]q)3)1p1].

    This completes the proof.

    Remark 4.9. If we take the limit q1 in Theorem 4.3, then Theorem 4.3 becomes [43,Theorem 2.2 for s=m=1].

    Remark 4.10. If we assume λ=μ=1[2]q in Theorem 4.3, then we obtain [27,Theorem 3.3].

    Remark 4.11. If we assume λ=1[6]q and μ=[5]q[6]q in Theorem 4.3, then we obtain the following inequality

    |1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]1π2π1π2π1Π(s)π1dqs|q(π2π1)[(q2r1[4]r1q[2]r1+1q[6]r1q)1r1+([2]r1+1q[5]r1qqr1[4]r1q[2]r1+1q[6]r1q)1r1×(q2+2q[2]3q|π1DqΠ(π2)|p1+q3+q2q[2]3q|π1DqΠ(π1)|p1)1p1]

    which is established by Iftikhar et al. in [41].

    Remark 4.12. In Theorem 4.2, if we choose λ=0 and μ=1q, then Theorem 4.3 reduces to [22,Theorem 18].

    Some new generalized versions of quantum Newton's and Trapezoid type inequalities for quantum differentiable convex functions are offered in this section.

    Theorem 5.1. We assume that the given conditions of Lemma 3.2 hold. If the mapping |π1DqΠ| is convex on [π1,π2], then the following inequality holds:

    |qλΠ(π1)+q(μλ)Π(π1q[2]q+π2[3]q)+q(νμ)Π(π1q2+π2[2]q[3]q)+(1νq)Π(π2)1π2π1π2π1Π(x)π1dqx|(π2π1)q[(Ω5+Ω7+Ω9)|π1DqΠ(π2)|+(Ω6+Ω8+Ω10)|π1DqΠ(π1)|] (5.1)

    where Ω5-Ω10 are given in (3.17)-(3.22), respectively.

    Proof. By considering Lemma 3.2 and applying the same method that used in the proof of Theorem 4.1, then we can obtain the desired inequality (5.1).

    Remark 5.1. If we assume λ=μ=ν=1[2]q in Theorem 5.1, then we obtain [42,Theorem 4.1].

    Corollary 5.1. If we take the limit q1 in Theorem 5.1, then we obtain the following inequality

    |λΠ(π1)+(μλ)Π(2π1+π23)+(νμ)Π(π1+2π23)+(1ν)Π(π2)1π2π1π2π1Π(x)dx|(π2π1)q[(Ω5+Ω7+Ω9)|π1DqΠ(π2)|+(Ω6+Ω8+Ω10)|π1DqΠ(π1)|]

    where

    Ω5=130t|tλ|dt=λ33+181λ18,
    Ω6=130(1t)|tλ|dt=18λ25λ+118181λ33,
    Ω7=2313t|tμ|dt=μ335μ18+19
    Ω8=2313(1t)|tμ|dt=18μ2+5+5μ18μ19μ33
    Ω9=123t|tν|dt=ν3313ν18+3581,
    Ω10=123(1t)|tν|dt=18ν2+13+13ν185ν33581ν33

    Remark 5.2. If we take λ=1[8]q, μ=1[2]q, and ν=[7]q[8]q in Theorem 5.1, then we obtain the following inequality

    |1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]1π2π1π2π1Π(x)π1dqx|q(π2π1)[|π1DqΠ(π2)|[A3(q)+A4(q)+A5(q)]+|π1DqΠ(π1)|[B3(q)+B4(q)+B5(q)]]

    where

    A3(q)=2q2[3]3q+[8]2q([8]q[2]q[3]2q)[8]3q[3]4q[2]q,B3(q)=2q[8]q[3]qq2[8]3q[2]q[3]q+[3]2q[2]q[3]4q[2]q+1[3]q[2]q[8]q[3]2q[2]q,A4(q)=2q2[2]4q[3]q+[2]2q(1+[2]3q)[3]2q(1+[2]2q)[3]4q[2]2q,B4(q)=2q[2]3qq[3]2qq2[3]2qA4(q),A5(q)=2q2[7]3q[8]3q[2]q[3]q+[2]q[8]q([2]3q+[3]3q)[7]q[3]2q([2]2q+[3]2q)[3]4q[8]q[2]q,

    and

    B5(q)=2q[7]2q[8]q[3]qq2[7]3q[8]3q[2]q[3]q+q2[2]q[3]qq[7]q[2]q[8]q+[2]q([3]2q[2]2q)[3]4q(q+q2)[7]q[2]q[3]2q[8]q.

    Theorem 5.2. We assume that the given conditions of Lemma 3.2 hold. If the mapping |π1DqΠ|p1, p11 is convex on [π1,π2], then the following inequality holds:

    |qλΠ(π1)+q(μλ)Π(π1q[2]q+π2[3]q)+q(νμ)Π(π1q2+π2[2]q[3]q)+(1νq)Π(π2)1π2π1π2π1Π(x)π1dqx|(π2π1)q[Ω11p113(Ω5|π1DqΠ(π2)|p1+Ω6|π1DqΠ(π1)|p1)1p1+Ω11p114((Ω7|π1DqΠ(π2)|p1+Ω8|π1DqΠ(π1)|p1)1p1)+Ω11p115(Ω9|π1DqΠ(π2)|p1+Ω10|π1DqΠ(π1)|p1)1p1] (5.2)

    where Ω5-Ω10 and Ω13-Ω15 are given in (3.17)–(3.22) and (3.10)–(3.12), respectively. The above inequality established by Erden et al. in [44].

    Proof. By applying the steps used in the proof of Theorem 4.2 and taking into account Lemma 3.2, we can obtain the required inequality (5.2).

    Corollary 5.2. If we take the limit q1 in Theorem 5.2, then we obtain the following inequality

    |λΠ(π1)+(μλ)Π(2π1+π23)+(νμ)Π(π1+2π23)+(1ν)Π(π2)1π2π1π2π1Π(x)dx|(π2π1)q[Θ11p111(Ω5|π1DqΠ(π2)|p1+Ω6|π1DqΠ(π1)|p1)1p1+Θ11p112((Ω7|π1DqΠ(π2)|p1+Ω8|π1DqΠ(π1)|p1)1p1)+Θ11p113(Ω9|π1DqΠ(π2)|p1+Ω10|π1DqΠ(π1)|p1)1p1]

    where Ω5-Ω10 are defined in Corollary 5.1 and

    Θ11=130|tλ|dt=λ2+19[2]qλ3,
    Θ12=2313|tμ|dt=18μ2+518μ,
    Θ13=123|tν|dt=18ν2+13185ν3.

    Remark 5.3. If we take λ=1[8]q, μ=1[2]q, and ν=[7]q[8]q in Theorem 5.2, then we obtain the following inequality

    |1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]1π2π1π2π1Π(x)π1dqx|q(π2π1)[(2q[8]2q[2]q+[8]q[3]q[2]q[3]2q[2]q[8]q)11p1×(A3(q)|π1DqΠ(π2)|p1+B3(q)|π1DqΠ(π1)|p1)1p1+(2q[2]3q+q[3]2q[2]q+1[3]q[2]q[3]2q[2]q)11p1×(A4(q)|π1DqΠ(π2)|p1+B4(q)|π1DqΠ(π1)|p1)1p1+(2q[7]2q[8]2q[2]q+[3]2q+[2]2q[2]q[3]2q[7]q([3]q+[2]q)[8]q[3]q)11p1×(A5(q)|π1DqΠ(π2)|p1+B5(q)|π1DqΠ(π1)|p1)1p1

    where A3(q)A5(q) and B3(q)B5(q) are given in Remark 5.2. The above inequality established by Erden et al. in [44].

    Remark 5.4. If we assume λ=μ=ν=1[2]q in Theorem 5.2, then we obtain [42,Theorem 4.2].

    Theorem 5.3. We assume that the given conditions of Lemma 3.2 hold. If the mapping |π1DqΠ|p1, p1>1 is convex on [π1,π2], then the following inequality holds:

    |qλΠ(π1)+q(μλ)Π(π1q[2]q+π2[3]q)+q(νμ)Π(π1q2+π2[2]q[3]q)+(1νq)Π(π2)1π2π1π2π1Π(x)π1dqx|(π2π1)q[Ω1r118(|π1DqΠ(π2)|p1([3]q)2[2]q+([2]q[3]q1)|π1DqΠ(π1)|p1([3]q)2[2]q)1p1+Ω1r119((([2]q)21)|π1DqΠ(π2)|p1([3]q)2[2]q+(([2]q)2([3]q1)[3]q[2]q+1)|π1DqΠ(π1)|p13[2]q)1p1+Ω1r120((([3]q)2([2]q)2)|π1DqΠ(π2)|p1([3]q)2[2]q+(([3]q)2([2]q1)([2]q)2([3]q1))|π1DqΠ(π1)|p1([3]q)2[2]q)1p1] (5.3)

    where p11+r11=1 and

    Ω18=1[3]q0|tλ|r1dqt,Ω19=[2]q[3]q1[3]q|tμ|r1dqt,Ω20=1[2]q[3]q|tν|r1dqt.

    Proof. By applying the steps used in the proof of Theorem 4.3 and taking into account Lemma 3.2, we can obtain the required inequality (5.3).

    Remark 5.5. If we assume λ=μ=1[2]q in Theorem 5.3, then we obtain [27,Theorem 3.3].

    Remark 5.6. If we take λ=1[8]q, μ=1[2]q, and ν=[7]q[8]q in Theorem 5.3, then we obtain the following inequality

    |1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]1π2π1π2π1Π(x)π1dqx|q(π2π1)[(q3r1[5]r1q[3]r1+1q[8]r1q)1r1×(1[3]2q[2]q|π1DqΠ(π1)|p1+[3]q[2]q1[3]2q[2]q|π1DqΠ(π2)|p1)1p1+(qr1[2]qq2r1[3]r1+1q[2]r1q)1r1
    ×(q2+2[3]2q[2]q|π1DqΠ(π1)|p1+q[3]q[2]q(q2+2q)[3]2q[2]q|π1DqΠ(π2)|p1)1p1+(q7r1[8]r1q[2]q([7]q[3]q[8]q[2]q)r1[8]r1q[3]r1+1q)1r1×([3]2q[2]2q[3]2q[2]q|π1DqΠ(π1)|p1+q2[3]q[2]q+[2]2q[3]2q[3]2q[2]q|π1DqΠ(π2)|p1)1p1]

    which is proved by Iftikhar et al. in [41].

    To sum up, we provided some generalisations of quantum Simpson's and quantum Newton's inequalities for quantum differentiable convex functions with two and three parameters, respectively. It is important to note that by considering the limit q\rightarrow 1^{-} and different special choices of the involved parameters in our key results, our results transformed into some new and well-known results. We believe that it is an interesting and innovative problem for future researchers who can obtain similar inequalities for different types of convexity and quantum integrals.

    This research was funded by King Mongkut's University of Technology North Bangkok. Contract no.KMUTNB-63-KNOW-22.

    The authors declare no conflict of interest.



    [1] V. E. Alekseev, R. Boliac, D. V. Korobitsyn, V. V. Lozin, NP-hard graph problems and boundary classes of graphs, Theor. Comput. Sci., 389 (2007), 219–236. https://doi.org/10.1016/j.tcs.2007.09.013 doi: 10.1016/j.tcs.2007.09.013
    [2] R. Boliac, K. Cameron, V. V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin., 72 (2004), 241–253.
    [3] S. Cheng, B. Wu, On the k-component independence number of a tree, Discrete Dyn. Nat. Soc., 2021, 5540604.
    [4] M. Hujter, Z. Tuza, The number of maximal independent sets in triangle-free graphs, SIAM J. Discrete Math., 6 (1993), 284–288. https://doi.org/10.1137/0406022 doi: 10.1137/0406022
    [5] M. J. Jou, G. J. Chang, Maximal independent sets in graphs with at most one cycle, Discrete Appl. Math., 79 (1997), 67–73. https://doi.org/10.1016/S0166-218X(97)00033-4 doi: 10.1016/S0166-218X(97)00033-4
    [6] K. M. Koh, C. Y. Goh, F. M. Dong, The maximum number of maximal independent sets in unicyclic connected graphs, Discrete Math., 308 (2008), 3761–3769. doilinkhttps://doi.org/10.1016/j.disc.2007.07.079 doi: 10.1016/j.disc.2007.07.079
    [7] Y. Orlovich, A. Dolguib, G. Finkec, V. Gordond, F. Wernere, The complexity of dissociation set problems in graphs, Discrete Appl. Math., 159 (2011) 1352–1366. https://doi.org/10.1016/j.dam.2011.04.023
    [8] C. H. Papadimitriou, M. Yannakakis, The complexity of restricted spanning tree problems, J. Assoc. Comput. Mach., 29 (1982), 285–309. https://doi.org/10.1145/322307.322309 doi: 10.1145/322307.322309
    [9] B. E. Sagan, A note on independent sets in trees, SIAM J. Discrete Math., 1 (1988), 105–108. https://doi.org/10.1137/0401012 doi: 10.1137/0401012
    [10] B. E. Sagan, V. R. Vatter, Maximal and maximum independent sets in graphs with at most r cycles, J. Graph Theory, 53 (2006), 283–314. https://doi.org/10.1002/jgt.20186 doi: 10.1002/jgt.20186
    [11] J. Tu, Z. Zhang, Y. Shi, The maximum number of maximum dissociation sets in trees, J. Graph Theory, 96 (2021), 472–489. https://doi.org/10.1002/jgt.22627 doi: 10.1002/jgt.22627
    [12] H. S. Wilf, The number of maximal independent sets in a tree, SIAM J. Alg. Discrete Methods, 7 (1986), 125–130. https://doi.org/10.1137/0607015 doi: 10.1137/0607015
    [13] I. Wloch, Trees with extremal numbers of maximal independent sets including the set of leaves, Discrete Math., 308 (2008), 4768–4772. https://doi.org/10.1016/j.disc.2007.08.087 doi: 10.1016/j.disc.2007.08.087
    [14] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J. Comput., 10 (1981), 310–327. https://doi.org/10.1137/0210022 doi: 10.1137/0210022
    [15] J. Zito, The structure and maximum number of maximum independent sets in trees, J. Graph Theory, 15 (1991), 207–221. https://doi.org/10.1002/jgt.3190150208 doi: 10.1002/jgt.3190150208
  • This article has been cited by:

    1. Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Ibrahim Slimane, Kamsing Nonlaopon, Y. S. Hamed, Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications, 2022, 7, 2473-6988, 5728, 10.3934/math.2022317
    2. Lulu Zhang, Yu Peng, Tingsong Du, On multiplicative Hermite–Hadamard- and Newton-type inequalities for multiplicatively (P,m)-convex functions, 2024, 534, 0022247X, 128117, 10.1016/j.jmaa.2024.128117
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1749) PDF downloads(51) Cited by(2)

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog