In this paper, we introduce the notion of a function kernel which was motivated from the kernel in group theory, and we apply this notion to several algebraic structures, e.g., groups, groupoids, $ BCK $-algebras, semigroups, leftoids. Using the notions of left and right cosets in groupoids, we investigate some relations with function kernels. Moreover, the notion of an idenfunction in groupoids is introduced, which is a generalization of an identity axiom in algebras by functions, and we discuss it with function kernels.
Citation: Hee Sik Kim, Choonkil Park, Eun Hwa Shim. Function kernels and divisible groupoids[J]. AIMS Mathematics, 2022, 7(7): 13563-13572. doi: 10.3934/math.2022749
In this paper, we introduce the notion of a function kernel which was motivated from the kernel in group theory, and we apply this notion to several algebraic structures, e.g., groups, groupoids, $ BCK $-algebras, semigroups, leftoids. Using the notions of left and right cosets in groupoids, we investigate some relations with function kernels. Moreover, the notion of an idenfunction in groupoids is introduced, which is a generalization of an identity axiom in algebras by functions, and we discuss it with function kernels.
[1] | O. Borůvka, Foundations of the theory of groupoids and groups, Basel: Springer, 1976. https://doi.org/10.1007/978-3-0348-4121-4 |
[2] | R. H. Bruck, A survey of binary systems, 3 Eds., Berlin, Heidelberg: Springer, 1971. https://doi.org/10.1007/978-3-662-43119-1 |
[3] | Y. S. Huang, BCI-algebra, Beijing: Science Press, 2006. |
[4] | I. H. Hwang, H. S. Kim, J. Neggers, Some implicativities for groupoids and $BCK$-algebras, Mathematics, 7 (2019), 1–8. https://doi.org/10.3390/math7100973 doi: 10.3390/math7100973 |
[5] | Y. Imai, K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19–22. https://doi.org/10.3792/pja/1195522169 doi: 10.3792/pja/1195522169 |
[6] | A. Iorgulescu, Algebras of logic as $BCK$-algebras, Bucharest: Editura ASE, 2008. |
[7] | H. S. Kim, J. Neggers, The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc., 45 (2008), 651–661. https://doi.org/10.4134/BKMS.2008.45.4.651 doi: 10.4134/BKMS.2008.45.4.651 |
[8] | H. S. Kim, J. Neggers, S. S. Ahn, On pre-commutative algebras, Mathematics, 7 (2019), 1–7. https://doi.org/10.3390/math7040336 doi: 10.3390/math7040336 |
[9] | H. S. Kim, J. Neggers, S. S. Ahn, Construction of $BCK$-neighborhood systems in a $d$-algebra, AIMS Math., 6 (2021), 9422–9435. https://doi.org/10.3934/math.2021547 doi: 10.3934/math.2021547 |
[10] | Y. L. Liu, H. S. Kim, J. Neggers, Some special elements and pseudo inverse functions in groupoids, Mathematics, 7 (2019), 1–7. https://doi.org/10.3390/math7020173 doi: 10.3390/math7020173 |
[11] | J. Meng, Y. B. Jun, $BCK$-algebras, Seoul: Kyung Moon Sa Co., 1994. |
[12] | J. Neggers, H. S. Kim, On $d$-algebras, Math. Slovaca, 49 (1999), 19–26. |
[13] | S. Z. Song, H. S. Kim, Y. B. Jun, Commutative ideals of $BCK$-algebras and $BCI$-algebras based on soju structures, AIMS Math., 6 (2021), 8567–8584. https://doi.org/10.3934/math.2021497 doi: 10.3934/math.2021497 |