Research article Special Issues

Global existence and energy decay for a transmission problem under a boundary fractional derivative type

  • Received: 10 June 2023 Revised: 16 September 2023 Accepted: 20 September 2023 Published: 28 September 2023
  • MSC : 35B37, 35L55, 74D05, 93D15, 93D20

  • The paper considers the effects of fractional derivative with a high degree of accuracy in the boundary conditions for the transmission problem. It is shown that the existence and uniqueness of the solutions for the transmission problem in a bounded domain with a boundary condition given by a fractional term in the second equation are guaranteed by using the semigroup theory. Under an appropriate assumptions on the transmission conditions and boundary conditions, we also discuss the exponential and strong stability of solution by also introducing the theory of semigroups.

    Citation: Noureddine Bahri, Abderrahmane Beniani, Abdelkader Braik, Svetlin G. Georgiev, Zayd Hajjej, Khaled Zennir. Global existence and energy decay for a transmission problem under a boundary fractional derivative type[J]. AIMS Mathematics, 2023, 8(11): 27605-27625. doi: 10.3934/math.20231412

    Related Papers:

  • The paper considers the effects of fractional derivative with a high degree of accuracy in the boundary conditions for the transmission problem. It is shown that the existence and uniqueness of the solutions for the transmission problem in a bounded domain with a boundary condition given by a fractional term in the second equation are guaranteed by using the semigroup theory. Under an appropriate assumptions on the transmission conditions and boundary conditions, we also discuss the exponential and strong stability of solution by also introducing the theory of semigroups.



    加载中


    [1] Z. Achouri, N. Amroun, A. Benaissa, The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative, Math. Method. Appl. Sci., 40 (2017), 3837–3854. https://doi.org/10.1002/mma.4267 doi: 10.1002/mma.4267
    [2] H. Atoui, A. Benaissa, Optimal energy decay for a transmission problem of waves under a nonlocal boundary control, Taiwanese J. Math., 23 (2019), 1201–1225. https://doi.org/10.11650/tjm/190108 doi: 10.11650/tjm/190108
    [3] M. R. Alaimia, N. E. Tatar, Blow up for the wave equation with a fractional damping, J. Appl. Anal., 11 (2005), 133–144. https://doi.org/10.1515/JAA.2005.133 doi: 10.1515/JAA.2005.133
    [4] W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, T. Am. Math. Soc., 306 (1988), 837–852. https://doi.org/10.2307/2000826 doi: 10.2307/2000826
    [5] R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724
    [6] L. R. Bagley, P. J. Torvik, Fractional calculus: A different approach to the analysis of viscoelastically damped structures, AIAA J., 21 (1983), 741–748. https://doi.org/10.2514/3.8142 doi: 10.2514/3.8142
    [7] P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real material, J. Appl. Mech., 51 (1984), 294–298. https://doi.org/10.1115/1.3167615 doi: 10.1115/1.3167615
    [8] A. Beniani, N. Bahri, R. Alharbi, K. Bouhali, K. Zennir, Stability for weakly coupled wave equations with a general internal control of diffusive type, Axioms, 12 (2023), 48. https://doi.org/10.3390/axioms12010048 doi: 10.3390/axioms12010048
    [9] Y. Bidi, A. Beniani, K. Bouhali, K. Zennir, H. M. Elkhair, E. I. Hassan, et al., Local existence and blow-up of solutions for wave equation involving the fractional Laplacian with nonlinear source term, Axioms, 12 (2023), 343. https://doi.org/10.3390/axioms12040343 doi: 10.3390/axioms12040343
    [10] A. Borichev, Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455–478. https://doi.org/10.1007/s00208-009-0439-0 doi: 10.1007/s00208-009-0439-0
    [11] Y. Lyubich, P. Vu, Asymptotic stability of linear differential equations in Banach spaces, Stud. Math., 88 (1988), 37–42.
    [12] T. F. Ma, H. P. Oquendo, A transmission problem for beams on nonlinear supports, Bound. Value Probl., 2006 (2006), 75107. https://doi.org/10.1155/BVP/2006/75107 doi: 10.1155/BVP/2006/75107
    [13] M. Mainardi, E. Bonetti, The applications of real order derivatives in linear viscoelasticity, In: Progress and Trends in Rheology II, 1988. https://doi.org/10.1007/978-3-642-49337-9_11
    [14] B. Mbodje, Wave energy decay under fractional derivative controls, IAM J. Math. Control I., 23 (2006), 237–257. https://doi.org/10.1093/imamci/dni056 doi: 10.1093/imamci/dni056
    [15] B. Mbodje, G. Montseny, Boundary fractional derivative control of the wave equation, IEEE T. Automat. Contr., 40 (1995), 378–382. https://doi.org/10.1109/9.341815 doi: 10.1109/9.341815
    [16] I. Podlubny, Fractional differential equations, 1999.
    [17] J. Prüss, On the spectrum of $C_0$-semigroups, T. Am. Math. Soc., 284 (1984), 847–857. https://doi.org/10.2307/1999112 doi: 10.2307/1999112
    [18] J. E. Muñoz Rivera, H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 1–21. https://doi.org/10.1023/A:1006449032100 doi: 10.1023/A:1006449032100
    [19] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, 1993.
    [20] A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. I, 328 (1999), 731–734. https://doi.org/10.1016/S0764-4442(99)80244-4 doi: 10.1016/S0764-4442(99)80244-4
    [21] C. Q. Xu, S. P. Yung, L. K. Li, Stabilization of the wave system with input delay in the boundary control, ESAIM Contr. Optim. Ca., 12 (2006), 770–785. https://doi.org/10.1051/cocv:2006021 doi: 10.1051/cocv:2006021
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1221) PDF downloads(112) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog