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1. Introduction and position of problem

A generalization of power series, in which each term has an integer exponent in mathematical
analysis, and Laurent series in the theory of functions of a complex variable, was Hadamard
series (Hadamard operator) and Frobenius series in mathematical physics with fractional exponents
for each term. It is possible to generalize the derivative of an integer order to a derivative of a
fractional order (Riemann-Liouville derivatives and Caputo-Gerasimov derivatives). It is natural to
write solutions of differential equations of fractional order in terms of Hadamard or Frobenius series.
Fractional derivatives appear in new physical, technical and chemical problems arising in research
activities. Here, we are interested in taking this phenomenon (fractional derivatives) in the boundary
conditions with respect to the time variable, for more detail, please see [5-7,9, 19].

A new class of initial boundary value problems is a transmission problem given by the equations

{ P10 — Tyl + w1 0u(x, 1) =0, x€ (0,0, (L.1)
0204V — ToVyy + @20 v(x, 1) =0, x€(lp,L), t€(0,00),
subject to the initial conditions
u(x,0) = up(x), Ou(x,0)=u(x), xe(0,0), (12)
v(x,0) = vo(x), 9v(x,0) =vi(x), xe(yL),
transmission conditions
u(lo, 1) = v(lo, 1), pat1uy (lo, 1) = p172v (o, 1), V1> 0, (1.3)
boundary conditions
u(0,1) = 0,72v, (L, 1) + yp2120 v (L, 1) =0, ¥t >0, (1.4)
and compatibility conditions
uo(lo) = vo (lo) , u1(lo) = vi (o) , paT1u0x (lo) = p172vox (lo) (1.5)

where 0 < [y < L, @, @, are positive constants, pi, 02, T1, T» > 0 represent the densities and tensions of
the strings u and v, respectively, v > 0, the initial data (u, u;, vo, v;) belong to a suitable function space
which will be defined later. We will mention some works related to the stabilization of transmission
problems with mechanism of damping (see [8,20,21]). In [18], the authors consider a transmission
problem in viscoelasticity. The exponential decay of the solutions is obtained and it is proved that the
linear model is well posed. In [12], a transmission problem involving two Euler-Bernoulli equations
which model the vibrations of a composite beam is considered. By one boundary damping term, the
global existence and decay property of the solutions are showed.
Recently in [2], Benaissa and Atoui consider the following transmission problem

P10 —Tiuy, =0, x€(0,1),

0204V —T2ve =0,  x € (L, L),

u(lo, 1) = v(lp, 1), patiuty (Lo, 1) = p172vy (o, 1),

u(0,1) = 0, 72v, (L, 1) + ypo120" v (L, 1) = 0, > 0.

(1.6)
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The lack of exponential decay of the energy is proved and also the polynomial decay rate is showed by
using the spectrum method and the Borichev-Tomilov theorem [10].

The paper is organized as follows. In section 1, we introduce our model in (1.1) and the actual
state-of-the-art is given. In section 2, the well-posedness of strong/weak solutions of the system is
given by using the Hille-Yosida theorem. In section 3, we treat the question of stability where we find
that the augmented model is strongly stable in the absence of compactness of the resolvent by using
a criteria of Arendt-Batty. In section 4, we show the lack of exponential stability by spectral analysis
and the polynomial type decay rate is proved which depends on a parameter @. We finished our work
with section 5 by dealing with the polynomial stability for £ # 0.

2. Preliminary and well-posedness of solution

The beginning of this section concerns to write the system (1.1) by another way. For this aim, we
will use the following result.

Theorem 2.1. [14] Let o be a function defined by
0(s) =1s|®"V2 s €(—00,+00),@ € (0, 1).
Then the relationship between the ’input’ U and the "output’ O of the following system
B® (5,1) + (S +£) @ (s, = Ug(s) =0, s5€(=00,+00),0<4,0<1, 2.1)
®(s,0) =0,

O (t) = (m)"" sin (an) f ) 0(s)®(s,1)ds,

is introduced by
0 =1""1,
where )
[1fl @ = % fo -0 et -1 f(D)dr

Lemma 2.1. [1] Define

D={weC/Rw+{>0U{Jw #0}.
If @ € D, then

= 00)

o T+ + 52

dl (w + {)“_1 ,

Fi(w) =

sin am

fm o’ (5) J
—————ds
o (W+{+ %)

= (l-a) -2 (@+0)2.

and

F> (@)

sin ar
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We need now to reformulate the system (1.1). For this aim, we take U = d,v in (2.1) and using (1.4),
the system (1.1) becomes for ¢ € (0, +o0)

L1041 — Ty, + @10u = 0, x € (0,1,
0204V — ToVy + @20,y = 0, x € (lp, L),
QD EN+(E+)PEN -0y (LDeE) =0, £ER,
u(lo,t) = v (lo, 1), pat1ux (lo, 1) = p172v: (lo, 1)

u0,1) =0 2.2)
v (L) +6p2 [ 0@ @ ENdE =0,

u(x, 0) = up(x),  Auu(x,0) = s (%), x € (0, o),

v(x,0) = vo(x),  Gv(x, 0) = i (x), x € (o, L),

where ¢ = (7)! sin (an) v. The energy associated with the solutions (u, v, ®) of (2.2) is defined as
follows

1 l() 2 Tl 2 1 L 2 T2 2 g e 2
E() == |O:ul” + — |uy|” |dx + = |Ov]" + = v |dx + = |D (&, 1) dé. (2.3)
2 0 P1 2 lo P2 2 J-w

Lemma 2.2. Let (u,v, ®) be a regular solution of (2.2). Then, the energy (2.3) satisfies

g = - (g‘ [2(8 + )0 @ nP g + 2 [0l dx+ 2 [FlopP dx.) <0. (24

Proof. By multiplication of (2.2), by d,u and then integrating by parts over (0, /), we obtain
lo

1d (", »
37 (l@,ul + — |u,l )dx + — |6tu| dx — —ﬂeux (lp) du(ly) =
tJo P1 P1 Jo P1

Now, we multiply (2.2), by d,v and then we integrate by parts over (/y, L) and we arrive at

LL (2100 + 2 v, )dx + @, [ 100 dx = 2, (L) 87 (L) + Re2v, (Io) 8,7 (lp) = 0

1d{( (o L
S ( f (IG,uIZ + 8 qulz)dx + f (la,vlz + 2 |vx|2) dx)
t P1 I P2

lo
0,ul* dx + — |<9,v| dx — Rel?vx LoyvL)y=0
2

lo

Summing, we obtain

From the boundary condition (2.2)4, we get

1 lo L
—i( f (|a,u|2 + ﬂ|ux|2)dx+ f (|atv|2 + 2|vx|2) dx)
2 dt 0 P1 Iy P2
lo L +00
— |0,ul* dx + & 10> dx + ¢d,v (L) f 0D (&, 1) dE = 0. (2.5)

P1 Jo P2 Ji
We multiply (2.2); by ¢® and then we integrate over (—oo, +c0) and we obtain

o Lotz s f (& + )10 & 0P dé - ¢Redy (L) f 0O OENdE=0.  (26)
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Then, using (2.5) and (2.6), we arrive at

+00 L
g0=- [ (e-Joenta-2" f ol dx =2 [ jon dx <.
—co 1 Jo P2 Ji

Now, we will use a semigroup setting for (2.2). For this aim, we introduce the
vector X = (u, ¢, v,, ®)T, where ¢ = d,u and ¢ = d,v. Then we get that the system (2.2) is equivalent
to the following system

X =AX, 0<t,
{ X(0) = Xo. @.7)
Here X, := (uo, uy, vo, vi, ©o)’. The operator A given by
u 14
() ;_:uxx - %‘P
Al v | = v (2.8)
(,0 ;_z xx = le//
o) | -(E+o@)+y L)o@
is a linear operator. We introduce the following Hilbert space (the energy space)
H! ={ue H" (0.l : u(0) = 0}.
H = {H! (0.1) X L*(0.10) x H' (I, L) X L2(lp, L) X L (=00, +00) : u(ly) = v (o)}
For X = (u, ¢, v, ¢, ®)” and X = (, p, v, ¥, )", the inner product in H is defined as follows
— — T too
<X, X> = f wp + —uxux dx + tpw + —zvx\_/)C dx + gf DD dx,
H 0 ,02 —00
where the domain of A is defined by
(M,QD, V,w, q))T € 7_{ ‘ue H2 (09 l()) N Hé (0’ lO)»
e H' (0,1y),ve H*(ly,L),y € H' (Ip, L),
D (A) = ¢ e H, (0,lp),v (lo, L), ¢ (lo, L) (2.9)

u(lo) = v(ly) ,Pz+7'1 uy (lp) = p11avy (o) ,
T (L) +6pa [ 0@ @ (&) dé = 0,1¢| D € L? (—00, +00)

We state now a result for existence and uniqueness.

Theorem 2.2. (1) If Xy € D (A), then the system (2.2) has a unique strong solution
XeC'Ry, DAY NC' Ry, H).
(2) If Xy € H, then the system (2.2) has a unique weak solution
X eC'R:, H).
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Proof. Firstly, we will show the dissipativity of the operator A. In fact, we have VX € D(A)

<ﬂX’ X>7—[ = 010 [(Tl Uyx — ﬂ()0) i ;_igoxux] dx + j;()L [(;_ivxx -2 )lﬁ + T_zwxvx] dx

p_| P1 P2 P2

s [ (-(E+)e@+uLe©)0©.
Then, by (2.5) and (2.6), we get
Re (AX, X)y = —Res [ (£ + )10 & DI dé < 0. (2.10)

Hence, A is dissipative.
Now, we will prove the surjectivity of the operator wl—A for 0 < @. Let F = (fi, f>, f3, fa, f5) € H.
We will prove that there exists X € D(A) such that

(wl - A)X = F. 2.11)

Here the Eq (2.11) is equivalent to the equation

wu—¢ = fi,
(0+ %)~ = h
@y — ¢ = fi, (2.12)

(ZD'+ %)l//_ ;_zvxx :f4’
(@+&+) -y @o© = fi.

Suppose that # and v are found with the appropriate regularity. Then, from (2.12); and (2.12);, we find
that

¢ =wu— fi,
= wv—fi (2.13)
It is not hard to see that ¢ € H! (0,1y) and v € H' (Iy, L). Furthermore, by (2.12)s, we can find ® as

follows
o VD@ fs

2.14
E+l+w (2.14)
By (2.12) and (2.13), we have that u and v satisfy
y— o T Sy = + J2,
Tt p e m TN 2.15)
wv—p—zvxx+p—2¢=wf3+f4.

The solving of the system (2.15) is equivalent to find u € H> N H!(0, ly) and v € H? (Iy, L) so that

1 o — o — I _
fo (wzuw - p—iuxxw + p—llgow) dx = fo (@fi + o) wdx,
L, h 3 _ (2.16)
I (@i = By + Zyx)dx = [ (@ fs + f) xdx,
for allw € H! (0,y) and y € H' (Iy, L). By (2.14) and (2.16), we get that u and v satisfying
fol (wzuw + ;—iuxwx + %QOW) dx 1
~ 2w, () w (o) = Q)W ()] = [ (@fi + fr) W, o1

Jo (@ + o, + 22um)ax
~2 v (X L) = vilo) W) = [ (@f + fa) xdx.
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Adding the Egs (2.2)¢ and (2.17), ,, we obtain

fol (wzuw + LWy + %QDW) dx + szL (wzv} + 2V + %l/’)?) dx = fol (@f + fo) wdx

L _ _ o _ % oro(L)— (2.18)
+ [ @ fs + fxdx - sx (L) [ 22 fidé - o (L) [ D0 () de,
where ¢ = ¢ (L) f_ ::o ffj%ﬂ dé. Then, (2.18) is equivalent to
a((u,v),(w,x)) = L(w,x). (2.19)

Here the linear form
L:H'(0,ly)x H (l),L) — C,

and the bilinear form s
a:(H!(0.l)x H' (lo,L)) — C,

are given as follows
! 2 — T1 _ w — L 9 — Ty _ wy _
a((u,v),(w,x)) = f wuUw + —uw, + —oew|dx + f WYY + —Vox, + —Yx|dx,
0 P1 P1 I P2 P2

and

! — L — — S
Lov) = [ (@fi+ pawdx+ [ (@f+ foXde =0 (L) [J 55 de
—sx (L) [ TR ¢ de,
respectively. It is not hard to check that a is coercive and continuous and L is continuous. By using

the Lax-Milgram theorem, we find that ¥ (w, ) € H! (0, y) x H' (Iy, L). Then the problem (2.19) has a
unique solution

(2.20)

(u,v) € H} (0,10) x H' (Ip, L) .
Using the classical elliptic regularity and (2.20), we find that

(u,v) € H* (0, lo) x H* (ly, L) .

Then, @wl — A is surjective YO < w. Owing to the Hille-Yosida theorem, the result in Theorem (2.2)
yields.

3. On the strong stability of solution

In this part, as in [4, 11], we use the Arendt-Batty theorem and we see that a Cy-semigroup of
contractions e”™ in a Banach space is strongly stable whenever o (A) N iR contains only a countable
number of elements and A has no pure imaginary eigenvalues. The following theorem is our next main
result.

Theorem 3.1. [3] The Cy-semigroup e is strongly stable in H, i.e, VXy € H, and the solution
of (2.7) satisfies
lim ||e”X,||,, = 0.

t—00

To prove this result, we will have a need of the following lemma.

AIMS Mathematics Volume 8, Issue 11, 27605-27625.
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Lemma 3.1. A has no eigenvalues on iR.

Proof. The proof has two stages. The first one is i@ = 0 and the second one is i@ # 0.

Step 1. It is easy to see, using the boundary conditions in domain (2.9), that the equation AX = 0 leads
to X = 0. Then, i@w = 0 can not be an eigenvalue of A.

Step 2. We will use a contradiction argument. Suppose that there exists @w € R, @ # 0, and X # 0,
such that AX = iwX. Then, we have

imu—¢ =0,
i+ 2)¢ - =0
iwv—y =0, (3.1)

(iw+ %)w - 2y, =0,

im® + (& + ) D @) -y (L)o@ =0.

Using (2.10), we find

o =0.
Using (3.1)5, we get
Y (L) =0.
Hence, applying (3.1); and (2.9),, we obtain
v(L)=0 andv, (L) =0. (3.2)

Inserting (3.1); into (3.1),, we arrive at

—w?y - 2y =0, 13
!, (). (3.3)
P2
The solution of (3.3) is given by
{ v(x) =c cos%x+02sin%x, ry = ;—;. (3.4)
v =0. .

By (3.2), we get
v=0.

Due to the transmission and boundary conditions, we obtain

u(lo) = u,(lp).

Similarly, we deduce that
u=0.

By the Picard Theorem, we get X = 0 . Then, A has no purely imaginary eigenvalues.

Lemma 3.2. For @w # 0, we have the operator iwl — A is surjective. If w = 0 and { # 0, then the
operator iwl — A is surjective.

AIMS Mathematics Volume 8, Issue 11, 27605-27625.
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Proof. Case 1. Suppose that @ # 0.
Let F = (f1, f2, 3, fa, f5) € H. We seek X = (u, p, v, ¥, ®) € D (A) as a solution of

(iwl — A)X = F,

which is equivalent to

o — 90 = fis
(lw + )(P - _uxx f27
lwv—w f3s (3.5)

(l?ﬂ' + %)lﬁ - Z,_zvxx = f47
im® + (&2 + )0 (&) - v (D)o @) = f.

The proof is divided into several steps.
Inserting (3.5); into (3.5), and inserting (3.5); into (3.5)4, we get

(—w +sz”)u—— =fH+ (zw+%)f1,
(—w +zww2)v——vm fi+ (zw+%)f3.

(3.6)

The solving of the system (3.6) is equivalent to find (u, v) € H> N H! (0, ly) x H? (ly, L) such that

folo ((p%w2 + w])uW + TlpluxxW) dx = - foloplfzw dx,
fL 3@ + @2 ) VY + TopaVay ) dx = — pr2f4)?dx,
lo lo

Y (w,x) € H'(0,1) x H' (I, L). By using (3.1)s, (2.2); and (3.5)s, the functions u and v satisfy the
following equation

[ g ) i) s 1 (3 )~ i) e 0

Lo I _ _ Z w0 (3.7)
= — [ pafidx— [ priwdx + p3sx (L) f3 (L) + psi (D) [ =0 (6 d,
where ¢ = ¢ f_ Z:o - ;jgl 7 dé. We can rewrite (3.7) as follows
~(LoX, Yy + (X, V) = L(Y), (3.8)
where
= {(w,v) € H! (0,1) x H' o, L) [u(lo) = v (p)},
with
lo L
X, V) = T1py f UW,dx + Top2 f VX (X,
0 b

and

lo L
(LX, Y)H}{ = (pfwz + wl)f uwdx + (pzw + wz)f vy dx — iwp%ﬁ (LDv(L).
0

lo

Using the principle of compactness embedding from (L2 0, 1) x L? (lo,L)) into (H,‘3 (0, L)) and
from Hj(0,L) into L*(0,lp) x L*(lp, L), we find that L, is compact from L*(0,ly) X L?* (ly, L)
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into L?(0,1ly) x L (lp,L). Consequently, by using the Fredholm alternative, to prove that X is a
solution of (3.8) we will prove that 1 can not be an eigenvalue of L,. Thus, if 1 is an eigenvalue,
then 3X # 0 and

(LoX, Yy = (X, V)1, VY € Hy. (3.9)

In particular, if ¥ = X, then we have

2 _2 2 2_2 2 . 2— 2
(017 + @) lull}2yq,) + (037 + @2) Mg, 1) — @035 IV (DG, 1)

=T1P1 ”MXH%Z(O,IO) + 7202 ”vx”iZ(lO,L) . (310)
From the definition of a null complex number, we find
v(L) =0.

By (3.9), we have
v, (L)=0

and

{ —nju — Sy = 0, 3.11)

—n3v — sV = 0,

where n; = ([p?@2 + @1, np = |[Pi@? + @y, 51 = Tip1. 52 = Topa. We deduce now that the general
solutions of (3.11) are given in the form

— n b ni
u(x) = c; cos X+ e sin =X,
— n in 2
v (x) = c3 cos 75Xt casin =

With the boundary conditions u(0) = 0 and v(L) = v, (L) = 0, we have
cir=c3=c4=0.
Under the transmission conditions, u (ly) = v (lp) and syu, (Iy) = s.v, (lp), we have

¢o Sin ix =0.
S1
Then ¢; = 0. So, X = 0.
In this case the operator iw — A is surjective Yo € R*.
Case 2. Assume that @ = 0 and ¢ # 0.
Then, the problem (3.5) can be reduced to the problem

—¢ = fi,

%‘p - :Tiuxx = f27

- = f, (3.12)
%l// - T_ivxx = ﬁl,

(& + 5@(&) AOIIGENS

AIMS Mathematics Volume 8, Issue 11, 27605-27625.
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which gives the following system

w2

With (3.12), and (3.12),, using that u (x) = 0, we see that

u(x) = —i—: fox fos (fz + %f])(l’) drds + Cx
v = =2 [" [P (fi+ Zf) () drds+C'x+C".

From (2.2),, (3.12);, Lemma 2.1 and (3.12)5, we arrive at

S0h e+ oL +e [ 229

dé =0,
P2 —co §2+§ é‘:

bus
sinanr”®

where 6 = ¢
We have,

Vo (xf) = —@fx(ﬂ+%fg)(r)dr+c'.
lo

L)
We substitute into the equation (3.13) and we find

™ fs0 (&)
oo 2+

L
c=£ [Hfs L)+ f (f4 + @fs)@ dr=¢ df]'
T o P2

Using the boundary transmission conditions, we get

. o1 lo S @
wlo) = v(ly) = IyC' - C :-—f f(f2+—ﬁ)<r)drds+czo,
T1 Jo 0 P1

* o * w
patiity (lo) = p17avy (lg) = C = —pips f (fz + p—llfl) (P dr - p1pa f (f4 + p—;fa) (Pdr+C.
0 lo

Finally, we get that A is surjective and o (A) N iR = ®. The proof is now completed.
4. The absence of exponential stability

This section is devoted to the study of the absence of exponential decay of the solutions associated
with (2.7). We will need some results and useful lemmas.

Theorem 4.1. [11-19] Let S (t) = e™ be a Cy-semigroup of contractions on a Hilbert space. Then S (t)
is exponentially stable if and only if

p(A)2{iB: BER} =R,

and
Jim GBI = A) | gy < +o0-

Our main result is given in the following theorem.

AIMS Mathematics Volume 8, Issue 11, 27605-27625.
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Theorem 4.2. The semigroup generated by the operator ‘A can not be exponentially stable.

Proof. We have the following two cases.

Case 1. Let ¢ = 0. We will show that iw = 0 can not be in the resolvent set of ‘A. Note
that (sinx,0,sinx,0,0) € H, and let (u,,v,y,®) be the image of (sinx,0,sinx,0,0) with the
operator A~'. We see that ®(¢) = —|¢&]*T sinL. Then @ ¢ L?(—oco,+00), since 0 < a < 1.
So (u, p, v, ¥, ®) ¢ D(A).

Case 2. Assume that £ # 0. We aim to show that an infinite number of eigenvalues of A approach the
imaginary axis which prevents the wave system (1.1) from being exponentially stable. Indeed, we first
compute the characteristic equation that gives the eigenvalues of A. Let @ be an eigenvalue of ‘A with

associated eigenvector (u, ¢, v, ¥, ®). Then AX = wX is equivalent to

wu—¢ =0,
(©+2)¢ - 31 =0,
v -y =0, 4.1)

(w+ﬂ)lr//_‘r_2vxx:0’

P2 P2

(o+€+0) 0@ -y We© =0
Inserting (4.1);, (4.1)3 into (4.1),, (4.1)4 and (4.1)s, respectively, we get

(w2 + m)u — Iy, =0,

P1 P1
2 W T _
(@ + =2 )y - 2y, =0, (4.2)

(@+&+) 0@ -mvL)o©) =0.
By (4.2);, Lemma?2.1, (2.2)4 and the boundary conditions, we have

By (L) + 0w @+ v (L) =0, 4.3)
P2
where 6 = ¢ .
By the fact that u(0) = 0, u(ly) = v(ly), T102u, (lp) = 1201y (lp) and (4.3), we get
(w2 + @)u -4y, =0,
2 wp7lﬂz 521
(@ +52)v = Fva =0, (44)

u(0) = 0, uly) = v(lo), T1p2ux (lo) = T2p1vx (o),
2y (LD + 0@ (@ + ) v (L) = 0.
The general solutions of the equations (4.4), and (4.4), are given by

i=2 i=4

u(x) = Z cie™ and v(x)= ) e,
3

i=1 i

24 24
where t; = M h=—t,13 = ,/’%ZW‘, and t, = —ts.

Thus,
c1+c, =0,
eloc, + e e, — eBilcy — g7, = (),
T otilon _ Tig o—tilo. _ T2 1300 4 o Blon —
o He'l'cy o he (o)) p2f3€ c3 + p2l3€ cs =0,
h(t;) €I3LC3 + h(—t3) e"3Lc4 =0,
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where /i (r) = 221 + 0w (@ + O,

and
1 1 0 0 Cq 0
t1lo —t1y 3lp -13ly
e e —e —e c 0
M (w)C (@) = T4 T =
T thh _Tig ,~tilo _T2y o310 T24 ,—13lo
o he pltle 2l3€ p2l3€ Cc3 0
0 0 htz) et h(-t3)e Bt J\ ¢4 0

Hence, a non-trivial solution ¢ exists if and only if the determinant of M(w) vanishes. Let
f(w) = det M(w). Thus, the characteristic equation is f(@) = 0. Our purpose in the sequel is to prove
by Rouché’s theorem that there is a subsequence of eigenvalues for which their real parts tend to O.
Since A is dissipative, we treat the asymptotic behavior of the large eigenvalues @w of A in the
strip —a¢ < Re(w) < 0, for some 0 < a( large enough and for such @, we remark that ¢, i = 1,2
remains bounded.

The operator (A has no exponential decaying branch of eigenvalues. Thus, the proof is now

71 .

completed. Case o T

Lemma 4.1. [2] There exists N € N such that
{AUheze j=n € 0 (A), 4.5)

where

h=it(k+Pr+ i+ S vo(ds). k2 Na@eiR, BeR, <0, r= |2

kl-a |k\1_” I3 T

A = Ay, ifk < —N.

Moreover for all |k| > N, the eigenvalues Ay are simple.

Proof.
e—tllo _etgl() _e—t3lo etl Iy _et3lo _e—t3lo
f(/l) = —;—itle_t'lo —;—itgetﬂ“ ;—§l3€_t3lo — :)—:tletllo —;—ztge”l" ;—§l3€_t3lo
0 h(t;) et h(—t3) e Bt 0 h(t;) e h(—t3) e BL
= e [ =213t (—13) € — Z3e R (1) €L | + Tyt [ e (~13) €L + B (13) enbe b |
= otih —;—§t3ef3(’0—“h(—z3) - ;—;ge”“"")h(@)] + I o1l [_613(10—L)h(_t3) + h(ts) el3(L—lo)]
= —2he "l [—6’3(10‘”;—73 + 014+ )" el 4 e T2t + 0A (A + n*! et3(L‘l°)]
_ﬂtle—lllo [_efs(lo—L)T_Zt3 + 01 (/1 + n)“—l els(lo—L) _ els(L—lo)T_Zt3 + 01 (/l + n)a—l el3(L—lo)]
1 P2 2
_ 2t5(lo—L) e1300=L) 4 p13(L~lg) 4 p13(l0—L) 4 pt3(L~lg)
=nk [(e + 1)] +04 A .
We set
f(/l) — (62t3(lo—L) + 1) + 9/1e’3(’0‘L)+e’3(L‘[0)+e’3([0‘L)+e’3(L"0) + o( 1 )
(/H_n)l—a ﬂl—n (4.6)
= fo () + 52 + o (),
where
fo (1) = ¥ D 4 4.7)
and

eB3lo=L) 4 pt3(Llo) 4 pt3tlo—L) 4 pt3(L—lo)

A+m'

fi () =64
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Note that f; and f; remain bounded in the strip —ay < Re (1) < 0.
Setep 2. We look at the roots of fy. From (4.7), f, has one familie of roots that we denote /l’(‘).

fo) =0 0t =1,

Hence
lo2 2 + 1
2 | = i@k + D
L)
1.e.,
(2K + 1
A = {@k+ D , keZ

2 (25 (g~ L)

Now with the help of Rouche’s Theorem, we will show that the roots of fare close to those of fj.
Changing in (4.6) the unknown A by u = 2 f—:/lL then (4.6) becomes

1 1
T =("+1)+ O(W) = fo(w) + o(u(l_a)). 4.8)

i(k+ 1 . ; .
The roots of fy are u; = %7‘[, k € Z., and setting u = u; + re",t € [0,2n], we can easily check that

there exists a constant C > 0 independent of k such that |e” + 1| > Cr for r small enough. This allows
to apply Rouche’s Theorem. Consequently, there exists a subsequence of roots of f which tends to
the roots u; of fo. Equivalently, it means that there exists N € N and a subsequence {4}y of roots

of f (1), such that 4, = 1%+ o (1) which tends to the roots "2 of f;. Finally for k| > N, A, is simple
since A) is.
Setep3. From Step 2, we can write

1 1
/l]c = lr—ll (k + E)ﬂ' + €. (49)
Using (4.9), we get
b = —1 - 2rLg — 2rL2€} + o (&), (4.10)

Substituting (4.10) into (4.6), using the fact that f(ﬂk) = 0,, we get:
~ 2 1
F = -2rLe - —F=—
\/7'1//01 (T)

+o(g) =0, 4.11)

and hence
l-a

—W + o (&)

€ =

(4.12)

S 7 oNr i1 o
= La((m%)n)l_a(cos(l a) —isin(l a)2)+o(ek) fork > 0.

From (4.12) we have in that case |k|'™® Red; ~ B, with
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Case &L # 2
P1 P2
Lemma 4.2. [2] There exists N € N such that
{Ukeze,jg=n € 0 (A), (4.13)

where ~
/lk:i,uk+lkl%ﬂklli_a+o(ﬁ),k2N,&'eiR,ﬁeR,,B<O.

Moreover for all |k| > N, the eigenvalues Ay are simple.

Proof.
e b —et3h —e Bl el —ef3h —e B3l
_ | T tilo _T24 o030 T24 13l _ | Tigptilo T2 o3l T24 ,—B3lo
f(/l) = ” te p2t3e p2t3€ o he p2l3€ 2l3€
0 I’L(t3) ehl h(—f3)€_t3L 0 I’l(f3) et I’l(—t3) e Bl
= e [ =213t h (—13) €L — Zaye R (1) €L | + Tyt [ e (~13) €L + B (13) el b |
L) —;—§t3e’3(10‘”h(—t3) - ;_zt3ela(L—lo)h(t3)] + o o1 [_ela(lo—L)h(_t3) + h(t3) ela(L—lo)]
= —Zpze7ih [—6’3(10‘” 26404+ B0 4 BT Ry 4 ga (A4 ) et3(L"°)]
~Lpe lo [_et3(lo—L) 243+ 04 (1 + )" etsto-l) _ 2y 1 gA (A + ! ela(L—lo)]
_ 263(Ip—L) e3(0=L) 4 p13(L~lg) 4 13 (l0—L) 4 pt3(L~lp) 1
= -rnt [(e + 1)] + 61 e + o0 (ﬁl_(,).
We set
= 2242 _ 13(lp=L) 4 ¢13(L~10) 4 ¢13(l0~L) 413 (L~1p) 1
f(/l) — _r1r292 — 1 [(e2t3(lo L) 4 1)] + 0.8 +¢ (,1+:;)elﬂ +e +o (/117(1)
1 (A 1
= fo(D) + J/;ll(—a) + O(&l—w)’
where )
2/1 + /1/11 _
fo(d) = —r1r2p—T (2200 4+ 1)), (4.14)
2
and

fi (D) =64

elo=L)  ot3(L~lo) 4 pt3tlo=L) 4 ot3(L~lo) 1
+o0 .
(/l + n)l—a (/ll—w)
We look at the roots of f;. From (4.14), f, has one familie of roots that we denote /115. Indeed, fo (1) =0
corresponds to the eigenvalues problem to the conservative problem associated with (P'):

Pruy(x,1) — T (x, 1) + ju(x, 1) =0 in (0, [y) X (0, +0c0),
P2V (X, 1) — TV (x, 1) + Lv(x, 1) =0 in (Iy, L) x (0, +00),
dp €D+ (E+n)¢ED - v (LOuE =0 inRx(0,+00),
u(lo,t) = v (lo, 1), pat1ux (lo, 1) = p172v, (lo, 1) 0n (0, +c0)

u0,t) =0 on (0, +00) .15
T (L) + 602 [ p (@@ (€1)dE =0 on (0, +00),

u(x,0) = ug(x), u(x,0) = ui(x) on (0, ly),

v(x,0) = vp(x),  vi(x, 0) = vy (x) on (ly, L),

where ¢ = ()" sin (ar) v. For a solution (u, v, ¢) of (4.15). The abstract formulation of (P’) is
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4 A
71 1
p_luxx - ,0_1"0
- v ) (4.16)
T A
p_zvxx - p_i'vll

~(E+n)s@ +yDu@)

Ao

S & =6 =

The domain of A

(u, o, v, ¥, )" € H :ue H*(0,1) N H} (0,1),

eeH (0,lp),ve H* (o, L),y € H (Ip, L),

u(lp) =v ), patiuy (ly) = p112vy (lo) ,

v (L) + 62 [ (&) ¢ (&) dé = 0,1¢] ¢ € L (—o00, +00)

We introduce the following Hilbert space (the energy space):

D(Ay) = (4.17)

H! ={ue H" (0.1 : u(0) = 0}. (4.18)

H = {H! (0.1o) X L*(0,lo) X H" (lo, L) X L*(Ip, L) X L*(=c0, +00) : u (Io) = v (lo)} (4.19)

Ay is clearly a skew adjoint operator with a compact resolvent, then there is an orthonormal system of
eigenvectors of Ay which is complete in H,. All eigenvalues of Ay are of the form. Now iy, € R

) .
folim) =0 & \/p 2 (l“")T; Wt gy =ik + D (4.20)

By representation of graph of the functions tan and cot, we easily have y;, =~ ck for large k and a
constant ¢ depending on parameters p1, o1, T1, T2, lop and L. Moreover, the algebraic multiplicity of w
is one. Then, we follow exactly as the case ;—i = ;—1. The operator A has a non exponential decaying
branche of eigenvalues. Thus the proof is completed.

5. Polynomial stability for £ # 0

In this part, we prove that (2.2) is polynomially stable when ¢ > 0.

Theorem 5.1. The semigroup S # (t)s¢ is polynomially stable and

1
IS & () Xollyr < —— [1Xollpeay -

132«

Proof. We have a need to study the resolvent equation (iwl — A) X = F, for @ € R, namely,

iou — ¢ = fi,
iwp — ;—:uxx + %tp = f,
wv —y = fi, (5.1)

oy — ;—zvxx + %1// = fu,

im® + (& + ) D (&) - v (L)o@ = f,

AIMS Mathematics Volume 8, Issue 11, 27605-27625.
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where F = (fi, fo. fos fa f5)| -

The proof is divided into several steps
Step 1. Inserting (5.1), into (5.1), and (5.1); into (5.1),, we get

{ Uyx + MU = —[[(%fl +h)+ inl]],

Vax + MoV = — (%fg+f4)+iwf3

b

where m; = wjj_ﬂj - le—sz’ with j € {1,2}. We have
ulx) =C (em~“‘ - e‘"Tlx) ~ 5 fo [(mlfl (o) + fo (0')) +iwfi (0')] [ o) — e_ﬁl(x_a)] do,
v(x) = % (e%(x—lo) + e—mz(x—lo)) v(lp) + —~ (e_’"Z(x_ZU) — emZ(x_lo)) vy (o), (5.2)

2m2 flo [( ZhH0)+ fu (0')) + iwf3 (0')] [ my(x—=0) _ e"?’i(x“r)] do,

and hence,
u,(x) = =3 (2 (@) + f(@) + iwfi ()] [0 = D] dor + Ciriy (€7 + 7).
v (x) = % (e"Tz(x—lo) - e—%(x—lo))v(lo) -1 (e—n“w—lo) + en“ﬁ(x—l()))vx (o),

LI [(25@) + fi(@) + iwfs (@) [0 - ™00 do.

(5.3)
Step2. With the fifth equation of (5.1), we get
Yy (L)o@ + s
PO =—— 54
© iT+&+/( (5.4)
Inserting (5.4) into the boundary condition (2.2)¢ and using Lemma 2.1, we deduce that
I’ZVx(L,t)+’}’W(l.w+{)a_lv(L) :’)/(iw'ké’)a_lf},(ll)—g Q(f)f;(f) f
o T HE+L
Using the Eq (5.2) and the Eq (5.3), we arrive at
(o) [rzfﬁg (enTz(L—zo) _ e—ﬁ?z(L—lo)) + ﬁ(enTz(L—zo) + e—nTz(L—lO))
—lvx (lo) [,,2( —imy(L~lo) 4 pma(L~lo)) _ _B_ (er’r‘lz(L—lo) _ oLl ]
i o - [ R e 59
+5 [(“ [0+ fi (@) + iwfs (@) (7 + &00) dor
+2512 o [(w2f3 (o) + fa(o )) + iw f3 (0')]( m(l-0) _ e'WL—”)) do,
where 8 = y@ (iw + )*™". By u(lp) = v (lp) and ryu, (Ip) = r,v, (), we get
vo) = 2ml [(wl fi(o)+ fo (U)) +iwf (O’)] millo=o) dor
5 fo [(WE @)+ (@) +iwfi ()| W do + C (€7 — ¢7h) 56

vi(lo) = 2r2 o [(%fl o)+ fo (O')) +iwfi (o’)] ™M= Jo
2r2 fO [(Zl filo)+ 1o (O')) +iwfi (O')] M@= g 4+ %zm (enTl[O " e—ﬁlvllo) .
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By (5.6), we note that we can rewrite (5.5) as an equation in the unknown C

1 (C (enTllo _ e—YTﬁlo)) [rz% (e%(L—lo) _ e—%(L—lo)) " ,6’( (L) | e—nTz@_zo))]

2
L (Cmir milo ~milo —maz(L~lo iy (L—Io B —ma(L—ly ma(L—ly
_ 5(%@ b o ’))[rz(e L-lo) 4 (Ll))_mzz(e (Ll _ , (Ll))]
e F
- yiwr o pw-¢ [ 28B4

L
- 2 [Br@+ @) +imfs @ | (€™ + e ) dor
2 I P2
B (@ - -
+ = f [(—2 H@)+fi (0'))+iwf3 (0')] (€™ — ) dor
2my Ji, |\ P2
1 lo w1 — —
+ _~f [(_fl (O') + f2 (0_)) + lwf[ (O')] (eml(lo—(r) _ e—ml(lo—(r)) do
dmy Jo [\ p1
[rz% (enTz<L—lo) _ e—%(L—lo)) " ﬁ(enTz<L—lo) + e—%(L—lo))]
ry lo (OB} — —
+ [(— fi@+f (0')) +iwfi ()| (MO + e 0) dor
2ro Jo [\ p1
—my(L=lp) 4 ,ma(L=lo)) _ ﬁ —my(L—lo) _ ,ma(L~lo)
(e ) - L (, i)

Step 3. We set
g (@) = % (C (eﬁlo _ e—lmlo)) [Q% (e%(L—lo) _ e—%(L—lo)) +,3(€%(L_IO) + e—%(L—lo))]

1 %(eﬁﬁlo 4 )1,y () 4 ) B (7 - )
2 r )

and we have

g (@) = lc (eflelo _ e—nTllo) [rﬂ’ﬁi (e%(L—lo) _ e—%(L—lo)) +18(en7§(L—lo) + e—%(L—lo))]
2

Cmir | ~ _ — _ _ _
——,J 1 (emllo + e—mllo) [rzmz (e—mz(L—lo) + emz(L—lo)) _ﬁ(e—mz(L—lo) _ emz(L—lo))] )
217121"2

2 2
As (fi. f2) € (H!) and (5. fu) € (H' (ly, L))", we have

P2

(& + 2L (A0 @)+

(= + ) [ £ [(22: @ + fo@) + i fi o | T |
(3 - =)L [(EA @+ £@) +iwh @] 0 do|

2 )

IA IA

IA

We can easily prove that
|g(@)| > c|w|® for w large.

b

e (2l 2000 + W1l c0,)

(

1) (||f4||L2(10,L) + ||f3||H‘(lo,L))
(
(

)
)

C4 ||f2||L2(0,10) + ”fl”Hl(Q,]O) .

(£ -2) [ flOL [(Z£: (@) + fi (@) + i fs ()| ™4 da]' < ¢ (Ifallzoy + 1Al )
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Then, we deduce that
el 2045 < cl]'™ for @ large.

Moreover, the transmission conditions are as follows
u(lo, t) = v(lo, 1), patiu, (lo, 1) = p17avy (o, 1), VYt € (0, +00).

We obtain
V(o) < o™ and  |v.(l)l < clw]'™ as |@| — .

Hence,
1_
Villr2ge.r) < clw| ™ as @] — 0.

From (5.1), (5.1)3 and (5.2), we get

l_
el 20,10 Wl 2200.0) < clw] ™ as @] — oo

From (5.4), we have

(&) S5()
19l < WL (s N == I
< clal? (||f2||L2(10,L) + ||f1||H1(0,10)) + é”fs”ﬁ(—oo&oo),
for @ # 0. If || > 1, we get
1-
IXlge < clal ™ [[Fllg -
Thus, we conclude that
||(iwl - ‘70_1”13(71) < c|w|'™ as |w] — . 5.7

6. Conclusions

In this work, the existence and uniqueness result for the transmission problem is proved in a
functional framework by means of the semigroup theory, after a reformulation of the system above
into an augmented system according to the transformation introduced in reference [14]. Besides this,
in a series of results concerning the asymptotic behavior the following are proved: (i) the strong
stability of the semigroup, by using a criteria of Arendt-Batty [4], (i1) the impossibility of exponential
decay, and (ii1) a polynomial decay by means of the Borichev-Tomilov theorem [10].

Some of previous recent works prove exponential decay but without a fractional derivative in the
boundary condition. The recently published article [2] has a very strong relationship with our paper.
Indeed, the results here are the same than those proved in [2] with @; = 0, j = 1,2; that is without
inner damping. Moreover, the same techniques are employed.

The authors in [2] proved that the fractional derivative in time can not ensure the exponential
stability of the total system, however they shown polynomial stability. In this paper even with the
inclusion of linear damping terms in the equations for u, v, the exponential stability of the total system
is not achieved under an appropriate conditions.
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