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Abstract: Continuous semigroup theory is applied to proof the existence and uniqueness of a solution
to a fluid-structure interaction (FSI) problem of non-stationary Stokes flow in two bulk domains,
separated by a 2D elastic, permeable plate. The plate’s curvature is proportional to the jump of fluid
stresses across the plate and the flow resistance is modeled by Darcy’s law. In the weak formulation
of the considered physical problem, a linear operator in space is associated with a sum of two bilinear
forms on the fluid and the interface domains, respectively. One attains a system of equations in operator
form, corresponding to the weak problem formulation. Utilizing the sufficient conditions in the Lumer-
Phillips theorem, we show that the linear operator is a generator of a contraction semigroup, and give
the existence proof to the FSI problem.
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1. Introduction

The concept of strongly continuous semigroups has proven to be an elegant method for the
derivation of the well-posedness of time-dependent PDE that can be interpreted as abstract Cauchy
problems on Banach spaces. Utilizing the well-known generation theorems by Hille-Yosida [1, 2]
and Lumer-Phillips [3], the existence of mild, as well as classical solutions to linear and non-linear
evolution equations can be efficiently verified. Thereby, in various pure and applied mathematical
problems, the methodology is a valid alternative to existing proof strategies based on Galerkin
approaches. In this paper, we present the application of a semigroup approach in the context of a
fluid-structure interaction (FSI) problem.

We consider the setting of two domains occupied with fluid governed by the non-stationary Stokes
equations, separated by a porous, thin linear elastic plate with a small in-plane period ε. The structure’s
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displacement is governed by linear elasticity with regularized contact conditions. Linearized coupling
conditions, namely the continuity of velocity and normal stresses are imposed at the fluid-structure
interface. Comparable FSI problems typically arise in biological, as well as in filtration modeling,
see e.g., [4–7]. The arising microscopic FSI system was recently analyzed in [8, 9] in terms of its
well-posedness and the scale-limit ε→ 0 in the context of two-scale convergence (see e.g., [10]).

The stationary form of the microscopic structure equations under consideration were first proposed
in [11]. For the proof of existence and uniqueness of a solution to the non-stationary formulation, the
sufficient conditions of the Lumer-Phillips theorem are verified, which ensure that the linear operator
associated to the spatial bilinear form of the problem generates a contraction semigroup.

Afterwards, the homogenized and dimension reduced macroscopic FSI problem for the limit ε→ 0
from [8, 9] is recalled. In the limit, the porous plate shrinks to a manifold, a 2D interface between
the two fluid domains with a coupling condition between the jump of fluid stresses and the interface
curvature. The governing equations of the macroscopic structure have been derived outside the FSI
context in [12, 13], utilizing the periodic unfolding method (see e.g., [14]).

Unintuitively, in the asymptotic limit, the interface is no-longer permeable. Since, for our modeling
purpose, the mass transport through the interface is essential, we propose a novel, heuristic asymptotic
model that extends the rigorously derived macroscopic FSI problem by a flow resistance term obeying
Darcy’s law. Well-posedness of the new model is first verified by a classical Galerkin approach. Under
frequently met assumptions on the symmetry of the microscopic structure, a much simpler proof can be
performed utilizing a semigroup approach, guaranteeing existence and uniqueness of mild and classical
solutions to the new FSI model with the Lumer-Phillips theorem.

2. Microscopic structure model

In this section, we introduce the governing equations for the displacement of the periodic
microscopic structure. A linear elasticity model on domains in contacts is formulated. At contact
surfaces, a linearized contact condition is prescribed. The model corresponds to the non-stationary
case of the system considered in [11]. Existence and uniqueness of a solution to the structure model is
verified utilizing a semigroup approach.

2.1. Domain description

In this paper, we utilize the microscopic structure description as periodic, 2D-like filters consisting
of slender yarns in contact established in [11]. For notation, in particular the description of spatial
domains, we mainly adopt the notation of the FSI problem considered in [9].

For our modeling purposes, we deal with domains of the following type.

Definition 2.1. We say the tuple (Ω, S ) with open set Ω ⊂ R3 and S ⊂ ∂Ω is a chain of domains in
contact if there exist finitely many bounded Lipschitz domains Ωi ⊂ R

3 fulfilling

(1) Ω =
⋃

i Ωi,

(2) Ωi ∩Ω j = ∅ for i , j,

(3) int
⋃

i Ωi = int Ω is a connected set and

(4) S =
⋃

i, j S i j, where S i j B Ωi ∩Ω j.
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In general, we say a subset Ω of Rn is a domain if it is non-empty, open and connected. We call
it a Lipschitz domain if additionally the boundary ∂Ω is locally the graph of a Lipschitz continuous
function.

For domains in contact as described, we require the following functional space.

Definition 2.2. Let (Ω, S ) be a chain of domains in contact. The broken Sobolev space Ĥ1(Ω) is given
by

Ĥ1(Ω) B {u ∈ L2(Ω) : u|Ωi ∈ H1(Ωi) for all i}

equipped with the inner product

(u, v)Ĥ1(Ω) B
∑

i

(u|Ωi , v|Ωi)Ĥ1(Ωi)

and induced norms ‖ · ‖Ĥ1(Ω), respectively. In notation, the hat is omitted, as it is clear from context.

For general open sets and union of open sets Ω, we denote the standard inner product on L2(Ω) by
(u, v)Ω.

Next, we introduce the microscopic filter domain. Consider a thin, cuboidal domain

ΩM
ε B (0, L1) × (0, L2) × (−ε/2, ε/2) ⊂ R3

of thickness ε � L1, L2 being an enclosing box for a solid domain ΩM,s
ε , which we also refer to as

structure or filter. The solid domain is chosen as a chain of domains in contact (ΩM,s
ε , S c

ε) with

ΩM,s
ε =

⋃
i

ΩM,s
ε,i ⊂ ΩM

ε ,

where the bounded Lipschitz domains ΩM,s
ε,i are representing individual yarns. The common interfaces

of the closures of the yarn domains are denoted by S c
ε, i.e.,

S c
ε =

⋃
i, j

ΩM,s
ε,i ∩ΩM,s

ε, j ,

which we refer to as contact surfaces. A visual reference of the introduced domains is given in Figure 1.
The general description of the yarn domains ΩM,s

ε,i is arbitrary for what follows. However, the domains
in mind in filtration application with textile-like filters are slender curved rods with constant cross-
section.
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Figure 1. Illustration of the enclosing box ΩM
ε (left), two yarn domains with common contact

surface (center) and an exemplary structure domain (right). The structure represent a so
called 2/2 twill woven filter.

We refer to ΩM
ε as membrane domain and define the complement Ω

M, f
ε B ΩM

ε \ ΩM,s
ε , assumed to

be connected, which is occupied with viscous fluid in the FSI model. The abbreviations s and f in the
domains are for structure/solid and fluid, respectively.

The exposed part ∂ΩM,s \S c
ε of the boundary ∂ΩM,s is assumed to be the disjoint union of a Dirichlet

boundary ∂fixΩM,s and a Neumann boundary ∂fsΩM,s. The abbreviation fs is for fluid-structure, which
we motive as follows: For later modeling purposes, the Dirichlet boundary is chosen as

∂fixΩM,s = ∂ΩM
ε ∩

(
∂ΩM,s \ S c

ε

)
,

where we assume that this set is of non-zero measure and does not contain any part of the lateral
surfaces {x3 = ±ε/2}. The modeling intuition is the fixation of the outer edges of the filter. By
this choice, ∂fsΩM,s describes the entire interface between ΩM,s and ΩM, f , which corresponds to the
microscopic fluid-structure interface in the FSI model.

For an x = (x1, x2, x3)T ∈ R3, we write x̄ B (x1, x2) denoting the in-plane direction. We refer to x3

as the normal or outer-plane direction. The structure is expected to be periodic in in-plane direction
with a period ε.

Due to the above periodicity assumption, the structure can be efficiently characterized by its smallest
periodic unit Y s

ε = εY s contained in a reference cell Yε = εY , where Y = (0, 1)2× (−1/2, 1/2) is referred
to as unit cell. We follow the convention of denoting the spatial variable in the reference cell by y.

To avoid dealing with dissected cells near the boundary of ΩM
ε , we make the technical assumption

L1,2/ε ∈ N.
Furthermore, to ensure an overall connected domain, we assume that Y s

ε intersects the in-plane
boundaries {y1 = 0}, {y1 = ε} as well as {y2 = 0}, {y2 = ε} and is periodic in the sense that

Y s
ε ∩ {yi = ε} = Y s

ε ∩ {yi = 0} + εei, i = 1, 2.

We denote the contact interfaces in Yε with S c
Y,ε = εS c

Y and write Y f
ε = εY f = Yε \ Y s

ε . We
emphasize the important observation that by construction, the periodic units (Y s

ε , S
c
Y,ε), (Y

s, S c
Y) also

describe chains of domains in contact.

AIMS Mathematics Volume 8, Issue 12, 29490–29516.



29494

One exemplary reference cell is illustrated in Figure 2 for visual reference. The membrane domain
ΩM
ε can be imagined as periodic repetition of Yε in the in-plane direction.
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Figure 2. Illustration of a reference cell Yε for a so called 2/2 twill woven filter.

2.2. Governing equations

Let T > 0 denote some finite time. The microscopic displacement of the structure

uε : (0,T ) ×ΩM,s
ε → R3

is governed by linear elasticity with additional regularized contact conditions, see [11]. Let

D(uε) B
1
2

(∇uε + (∇uε)T )

denote the symmetric strain tensor and let

Aε(x) = A(x/ε)

with A ∈ L∞per(Y
s)3×3×3×3 be the fourth-order microscopic stiffness tensor. According to Hooke’s law,

there exists a linear relation between the Cauchy stress tensor σε
s(uε) and the strain tensor reading

σε
s(uε) = AεD(uε),

with which the governing equation of motion for the structure becomes

ρs∂ttuε − ∇ ·
(
AεD(uε)

)
= gε in (0,T ) ×ΩM,s

ε . (2.1)

Here, ρs > 0 denotes a (constant) solid density and gε is some body force density. For notational
convenience, we assume ρs = 1.

AIMS Mathematics Volume 8, Issue 12, 29490–29516.
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Furthermore, we impose zero Dirichlet and zero Neumann conditions reading

uε = 0 on (0,T ) × ∂fixΩM,s
ε ,

σε
s(uε)η = 0 on (0,T ) × ∂fsΩM,s

ε

(2.2)

with η denoting the unit outward normal. It is clear how to extend the subsequent results to in-
homogeneous boundary conditions.

Since the contact surfaces S c
ε are interior boundaries, we need to fix an orientation of their normal

vector η, respectively. The choice on each surface is arbitrary. With this preliminary step, we can
prescribe regularized contact conditions given by the Robin-type condition

~σε
s(uε)η� = 0 on (0,T ) × S c

ε,

σε
s(uε)η =

1
ε

Rε~uε� on (0,T ) × S c
ε

(2.3)

with a contact matrix Rε(x) = R(x/ε) ∈ L∞per(S
c
Y)3×3.

Here, and in the following, we utilize the notation ~·� for the jump operator across a given interface
with fixed orientation η, i.e.,

~w�(x) B w+ − w− B lim
λ↓0

w(x + λη) − lim
λ↓0

w(x − λη)

for a given function w defined on the left and right side of the interface. According to (2.3), normal
stresses at the contact surfaces are continuous but the displacement is allowed to differ in-between two
adjacent yarns, e.g., due to shearing.

The choice of scaling w.r.t. ε in (2.3) is crucial for the asymptotic analysis. If one considers the
scaling of ε0 instead of ε−1, the contacts are too weak and they will vanish in the asymptotic limit.
The resulting structure will disassemble. On the other-hand, a scaling of ε−2 or larger corresponds to
too strong or glued contacts that would dominate the macroscopic displacement such that the resulting
structure is rigid.

Summarizing all equations, the microscopic structure model reads

∂ttuε − ∇ ·
(
AεD(uε)

)
= gε in (0,T ) ×ΩM,s

ε ,

uε = 0 on (0,T ) × ∂fixΩM,s
ε ,(

AεD(uε)
)
η = 0 on (0,T ) × ∂fsΩM,s

ε ,

~AεD(uε)�η = 0 on (0,T ) × S c
ε,(

AεD(uε)
)
η =

1
ε

Rε~uε� on (0,T ) × S c
ε,

(2.4)

which we accompany with initial conditions uε(0) = u0, ∂tuε(0) = w0. In the case of glued yarns, that
is Rε → ∞, problem (2.4) coincides with a classical elasticity problem on a single connected domain.

Further assumptions on the arising model parameters have to be prescribed. The first of the
following are standard in linear elasticity modeling (see e.g., Chapter 1 of [15]), while the assumptions
on the Robin condition matrix are intuitive.

Assumption 2.3. The stiffness tensor A = (ai jkl)3
i, j,k,l=1 satisfies Hooke’s law, meaning it is

AIMS Mathematics Volume 8, Issue 12, 29490–29516.
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• symmetric, i.e., for almost every y ∈ Y s we have ai jkl(y) = a jikl(y) = a jkil(y),
• coercive on the space of symmetric matrices, i.e., there exists a constant c > 0, such that for all

P ∈ R3×3 with PT = P the bound (A(y)P) : P ≥ c‖P‖F holds for almost every y ∈ Y s.

Furthermore, the Robin condition matrix R is

• symmetric, i.e., for almost every y ∈ S c
Y we have R(y) = (R(y))T ,

• coercive, i.e., there exists a constant c > 0 such that for all a ∈ R3 the bound R(y)a · a ≥ c|a| holds
for almost every y ∈ S c

Y .

Example 2.4. The above assumptions on A are fulfilled e.g., for yarns made out of an isotropic,
homogeneous material with Young’s modulus E > 0 and Poisson’s ratio ν ∈ (0, 1/2), respectively. The
entries of the stiffness tensor for this choice are the constants

ai jkl =
E

2(1 + ν)

(
2ν

1 − 2ν
δi jδkl + δikδ jl + δilδk j

)
with the Dirac-delta δi j, see e.g., Chapter 3 in [16].

As proposed in [11], one possible choice for R reads

R = Rnη ⊗ η + Rt(I − η ⊗ η)

for the 3 × 3 unit matrix I and two parameters Rn,Rt > 0, penalizing normal and tangential deviations
of displacements, respectively.

2.3. Existence proof utilizing semigroup theory

The existence and uniqueness of solutions to (2.4) is derived utilizing continuous semigroup theory.
This aproach is applicable to general linear Cauchy problems in Banach spaces Y of the form

d
dt

y(t) = Φy(t) + F(t), y(0) = y0, (2.5)

where y : (0,T )→ Y, F : (0,T )→ Y and Φ : Y → Y is a linear operator on Y.
We recall the fundamental concepts and results from literature that are required for our considered

systems.

Definition 2.5. (Strongly continuous semigroups) Let G(t) be a family of continuous linear operators
on a Banach space Y depending on a parameter t ≥ 0. We call G(t) a strongly continuous semigroup
in Y if and only if

(1) ‖G(t)‖L ≤ M(t) for some M(t) > 0,

(2) G(0) = I, where I is the identity operator on Y,

(3) for all t, s ≥ 0 the equality G(t + s) = G(t) ◦G(s) holds, and

(4) for all y ∈ Y we have ‖G(t)y − y‖Y → 0 as t → 0.

We follow the usual convention of writing C0-semigroup for strongly continuous semigroups.

AIMS Mathematics Volume 8, Issue 12, 29490–29516.
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Definition 2.6. We call the potentially unbounded operator Φ : Y → Y defined by

Φy B lim
t→0

G(t)y − y
t

generator of the C0-semigroup G(t). The domain D(Φ) is the set of all y ∈ Y for which the expression
above is well-defined.

The fundamental existence result of solutions to problems of the form (2.5) can e.g., be found in
Section 12.1.3 of [17]. It can be interpreted as the generalization of the classical variation of constants
method for finite dimensional Cauchy problems.

Theorem 2.7. Let G(t) be a C0-semigroup in Y with generator Φ. Assume that y0 ∈ Y and let
F ∈ L1((0,T ),Y). Then

y(t) = G(t)y0 +

∫ t

0
G(t − s)F(s) ds ∈ C0([0,T ],Y)

is the unique mild solution to (2.5).
If additionally y0 ∈ D(Φ) as well as F ∈ C0([0,T ],Y) and additionally either

F ∈ W1,1((0,T ),Y) or F ∈ L1((0,T ),D(Φ)),

then y ∈ C0([0,T ],D(Φ)) ∩C1((0,T ),Y) is the unique classical solution to (2.5).

For Hilbert spaces, one of the most versatile tools for the characterization of generators is the Lumer-
Phillips theorem, see [3].

Theorem 2.8. (Lumer-Phillips) Consider a linear operator Φ : D(Φ) ⊂ Y → Y defined on a linear
subspace D(Φ) of a Hilbert space Y. Then Φ is generator of a contraction semigroup, that is a
C0-semigroup G(t) with ‖G(t)‖L ≤ 1 for all t ≥ 0, if and only if

(1) D(Φ) is dense in Y,

(2) Φ is dissipative, that is Re (Φy, y) ≤ 0 for all y ∈ D(Φ), and

(3) there exist λ > 0 such that λ −Φ is surjective.

Our goal is to verify the sufficient conditions of the Lumer-Phillips theorem for (2.4). For this
purpose, we start with a Korn inequality for chains of domains in contact.

Theorem 2.9. (Korn’s inequality for domains in contact) Let (Ω, S ) be a chain of domains in contact.
Assume thatU is a closed subspace of H1(Ω)3 and assume that

Ũ B {u ∈ U : ~u� = 0 on S }

fulfills Ũ ∩ R(int Ω) = {0}, where R(int Ω) denotes the space of rigid displacements, that is

R(int Ω) B{u ∈ H1(int Ω)3 : D(u) = 0}.

Then there exists a Korn constant c = c(Ω) > 0 such that

‖u‖2H1(Ω) ≤ c
(
‖D(u)‖2L2(Ω) + ‖~u�‖2L2(S )

)
for all u ∈ U.
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Proof. See [11], Theorem 1. The proof utilizes the same contradiction argument as that of Korn’s
second inequality, see e.g., Theorem 2.5 in [15], for a single Lipschitz domain. In fact, both statements
coincide for the special case that Ω is a single Lipschitz domain. �

Note that the expression ~u� on the surfaces S in Theorem 2.9 is well-defined by the standard Trace
theorem for H1(Ωi)3 for every sub-domain Ωi of (Ω, S ).

Example 2.10. We provide two examples of functional spaces for which the assumptions of
Theorem 2.9 are fulfilled. They are required in upcoming proofs.

(1) Consider the spatial solution space

Uε B {uε ∈ H1(ΩM,s
ε )3 : uε = 0 on ∂fixΩM,s

ε }

such that
Ũε = {uε ∈ H1(int ΩM,s

ε )3 : uε = 0 on ∂fixΩM,s
ε }

by construction. Note that the space Ũε is the classical Sobolev space on the single connected
domain int ΩM,s

ε .

Let uε ∈ Ũε ∩R(int ΩM,s
ε ) be arbitrarily chosen. According to Theorem 1.6-1 in [18], we can write

uε(x) = a × x + b for some a, b ∈ R3, where × denotes the standard cross product. We will prove
that uε = 0: By choice of the Dirichlet boundary and the periodicity of the structure domain, there
exists a Dirichlet boundary point x on the plane (0, L1) × {0} × (−ε/2, ε/2) such that

a × x + b = a × (x + L2e2) + b = 0

from which we directly deduce a1 = a3 = 0. Similarly, we can choose a Dirichlet boundary point
from the plane {0} × (0, L2) × (−ε/2, ε/2) to derive a2 = 0 and consequently also b = 0.

(2) Consider the solid part Y s of the unit periodicity cell which is a chain of domains in contact by
construction. Let U = H1

per,0(Y s)3 such that Ũ = H1
per,0(int Y s)3 and let u ∈ Ũ ∩ R(int Y s). Then

again u(y) = a × y + b for some a, b ∈ R3. Due to periodicity of u and construction of Y s, we
can derive a = 0 as in the first example. Hence, u is a constant displacement field. Further, by
vanishing mean value, we deduce b = 0.

With the first example in mind, we can prove an auxiliary lemma covering symmetry, boundedness
and coercivity of the spatial bilinear form associated with (2.4).

Lemma 2.11. The bilinear form aε : Uε ×Uε → R with

aε(u,U) B
(
AεD(u),D(U)

)
Ω

M,s
ε

+
1
ε

(Rε~u�, ~U�)S c
ε

is symmetric, continuous and coercive. The norm ‖u‖Uε associated to the inner product (u,U)Uε B

aε(u,U) is equivalent to the H1(ΩM,s
ε )-norm.

Proof. The statement can be directly verified with the Trace theorem for continuity and the
Korn inequality from Theorem 2.9 for coercivity in combination with the material properties in
Assumption 2.3. �
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We have gathered all necessary preliminary results to conclude this section with the well-posedness
of (2.4).

Theorem 2.12. Let gε ∈ L1
(
(0,T ), L2(ΩM,s

ε )3
)

and (u0,w0)T ∈ Uε × L2(ΩM,s
ε )3. Then there exists a

unique mild solution uε ∈ C0 ([0,T ],Uε) to (2.4).
If additionally (u0,w0)T ∈

(
H2(ΩM,s

ε )3 ∩Uε
)
×Uε and gε ∈ C0

(
[0,T ], L2(ΩM,s

ε )3
)
, as well as either

gε ∈ W1,1
(
(0,T ), L2(ΩM,s

ε )3
)

or gε ∈ L1 ((0,T ),Uε) ,

then there exists a unique classical solution

uε ∈ C0
(
[0,T ],H2(ΩM,s

ε )3 ∩Uε
)
∩C1 ((0,T ),Uε)

to (2.4).

Proof. To begin, we introduce the auxiliary structure velocity variable wε = ∂tuε and write y(t) B
(uε(t),wε(t))T . We consider the spatial solution spaceY B Uε× L2(ΩM,s

ε )3, whereUε is equipped with
the inner product (·, ·)Uε from Lemma 2.11.

With the presupposition above, system (2.4) can be expressed in operator notation as

d
dt

y(t) = Φy(t) + G(t), y(0) = (u0,w0)T , (2.6)

where

Φ : Y → Y, Φ B

(
0 I
−A 0

)
with G(t) = (0, gε(t))T and identity operator I, as well as A being the operator associated to the bilinear
form aε from Lemma 2.11. We have D(Φ) = (H2(ΩM,s

ε )3 ∩Uε) ×Uε.
We verify the sufficient conditions of the Lumer-Phillips theorem to deduce thatΦ is generator of a

contraction semigroup in Y.

(1) Clearly, D(Φ) is dense in Y.

(2) The operator Φ is dissipative: Let y = (u,w)T ∈ D(Φ). Then

(Φy, y) = (w,u)Uε
− aε(u,w) = 0.

(3) There exists λ > 0 such that λ − Φ is surjective: We can choose any λ > 0. For a given f =

( f1, f2)T ∈ Y consider the equation
(λ −Φ)y = f

which is equivalent to

w = λu − f1, (2.7)
Au + λ2u = f2 + λ f1. (2.8)

With Lemma 2.11, we can verify that the left-hand side of (2.8) is associated to a continuous and
coercive bilinear form onUε. Moreover, the right-hand side is associated to a linear and bounded
functional on Uε. Hence, we can apply the Lax-Milgram theorem to derive the existence and
uniqueness of a solution u ∈ Uε. Standard elliptic regularity results further guarantee u ∈ D(A) =

H2(ΩM,s
ε )3 ∩Uε. By plugging u into (2.7), we attain the desired existence of w ∈ Uε.

Hence,Φ is generator of a contraction semigroup inY and the statement follows with Theorem 2.7. �
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3. Macroscopic FSI model

In this section, a macroscopic FSI model for the flow-induced displacement of the filter structure
from the previous section is presented and analyzed. For this purpose, the derived homogenized FSI
model from [8, 9] for Stokes flow through the flexural filter is recalled and afterwards extended by
an interface flux term obeying Darcy’s law. Existence and uniqueness of solutions to the new model
problem are verified utilizing a semigroup approach.

3.1. Homogenized FSI model

Utilizing the mathematical method of two-scale convergence, the authors in [8,9] rigorously derived
a macroscopic FSI system for the underlying microscopic problem of incompressible Stokes flow in a
cuboidal channel, that is separated in half by a thin, periodic filter structure. The considered scale limit
ε→ 0 corresponds to the simultaneous homogenization and dimension reduction of the filter.

In the microscopic model of [8], the microscopic structure is a single connected plate, while the
model of [9] describes the more general case with a globally connected fluid domain. The latter is
directly applicable to our microscopic structure description in the case of glued yarns, that is Rε → ∞.
Both models result in comparable limit systems.

In both models, fluid and structure equations are formulated on time-independent domains and
coupled via linearized coupling conditions, namely the continuity of velocity and the continuity of
normal stresses at the fluid-structure interface ∂fsΩM,s

ε . Thereby, the models cover the fundamental
case of small structure displacements. For further details, we refer to the cited articles.

A sketch of the considered microscopic model setup is given in Figure 3.

𝜀

𝐿1

𝐿2

𝐿3/2

𝐿3/2

𝑥1

𝑥2

𝑥3

Figure 3. Illustration of the model domain for the microscopic fluid-structure interaction
problem.

Recalling the derived macroscopic FSI system, we consider incompressible Stokes flow in two
disjoint cuboidal domains
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Ω−0 = (0, L1) × (0, L2) ×
(
−

L3

2
, 0

)
,

Ω+
0 = (0, L1) × (0, L2) ×

(
0,

L3

2

)
.

The entire model domain is denoted as

Ω0 = (0, L1) × (0, L2) ×
(
−

L3

2
,

L3

2

)
.

Its boundary is composed of three sets, namely

∂inΩ0 = (0, L1) × (0, L2) ×
{
−

L3

2

}
,

∂outΩ0 = (0, L1) × (0, L2) ×
{L3

2

}
,

∂no-slipΩ0 = ∂Ω0 \
(
∂inΩ0 ∪ ∂

outΩ0

)
.

In the scale limit, the membrane domain ΩM
ε is reduced to the structure’s mean-plane, denoted by

Σ = (0, L1) × (0, L2) × {0}.

The orientation of the interior boundary Σ is chosen as e3. The displacement of Σ is governed by the
clamped Kirchhoff-Love plate equations. As coupling conditions, the jump of fluid stresses across Σ

enters as a right-hand side of the plate equations, while the normal fluid and plate velocities coincide.
The tangential fluid velocity vanishes.

Concretely, the homogenized and dimension reduced problem is to find the macroscopic fluid
velocity and pressure

v : (0,T ) ×Ω−0 ∪Ω+
0 → R

3,

p : (0,T ) ×Ω−0 ∪Ω+
0 → R,

as well as the in-plane displacement and deflection of the structure’s mean-plane

ū : (0,T ) × Σ→ R2,

u3 : (0,T ) × Σ→ R

satisfying

AIMS Mathematics Volume 8, Issue 12, 29490–29516.



29502

ρ f∂tv − 2µ∇ · D(v) + ∇p = f in (0,T ) ×Ω−0 ∪Ω+
0 ,

∇ · v = 0 in (0,T ) ×Ω−0 ∪Ω+
0 ,

v = vin on (0,T ) × ∂inΩ0,

v = 0 on (0,T ) × ∂no-slipΩ0,

(2µD(v) − pI)η = 0 on (0,T ) × ∂outΩ0,

~v� = 0 on (0,T ) × Σ,

v1 = v2 = 0 on (0,T ) × Σ,

v(0) = v0 in Ω−0 ∪Ω+
0 ,

−∇x̄ · (AhomDx̄(ū) + Bhom∇2
x̄u3) = 0 on (0,T ) × Σ,

∂ttu3 + ∇2
x̄ : (BhomDx̄(ū) + Chom

∇2
x̄u3) = ~2µD(v) − pI�e3 · e3 + g3 on (0,T ) × Σ,

v3 = ∂tu3 on (0,T ) × Σ,

u3 = ∇x̄u3 · η = 0 on (0,T ) × ∂Σ,

ū = 0 on (0,T ) × ∂Σ,

u3(0) = ∂tu3(0) = 0 on Σ

(3.1)

for some given force densities f : (0,T ) × Ω−0 ∪ Ω+
0 → R

3, g3 : (0,T ) × Σ→ R and initial condition v0.
Here, and in the following, we write Dx̄,∇

2
x̄ for the symmetric strain tensor and the Hessian operator

with respect to the in-plane variables, respectively. The parameters µ and ρ f are the fluid’s dynamic
viscosity and density, respectively.

The arising macroscopic model parameters are the fourth-order tensors Ahom, Bhom and Chom
∈

R2×2×2×2. They denote the homogenized elasticity tensors of the structure that are attained from
membrane and bending (elasticity) cell problems formulated on the unit cell Y .

Augmenting the standard elasticity cell problems by the Robin-type contact conditions of our
structure model, the cell problems are to find Y-periodic cell solutions χM,B

i j , i, j = 1, 2 such that

−∇ ·
(
A(D(χM

i j ) + Mi j)
)

= 0 in Y s,

A(D(χM
i j ) + Mi j)η = 0 on ∂Y s \ ∂Y,

~A(D(χM
i j ) + Mi j)η� = 0 on S c

Y ,

A(D(χM
i j ) + Mi j)η = R~χM

i j � on S c
Y ,

χM
i j is Y-periodic

(3.2)

and
−∇ ·

(
A(D(χB

i j) − y3 Mi j)
)

= 0 in Y s,

A(D(χB
i j) − y3 Mi j)η = 0 on ∂Y s \ ∂Y,

~A(D(χB
i j) − y3 Mi j)η� = 0 on S c

Y ,

A(D(χB
i j) − y3 Mi j)η = R~χB

i j� on S c
Y ,

χB
i j is Y-periodic,

(3.3)
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where Mi j = 1
2 (ei ⊗ e j + e j ⊗ ei) ∈ R3×3 are the unit matrices in the space of symmetric matrices.

Note that since Mi j = M ji, we have χM,B
i j = χM,B

ji and hence we attain a total of six independent cell
problems.

The same cell problems have been derived with the periodic-unfolding method outside of the FSI
context in [12, 13] for the homogenization and dimension reduction of periodic, perforated structures.
In the linear case, the corresponding macroscopic problems coincide with the plate Eqs (3.1) (9)-(10).

With the Korn inequality from Theorem 2.9 and the second case of Example 2.10, the proof of
well-posedness of the cell problems can be easily performed.

Proposition 3.1. For each of the cell problems (3.2), (3.3), there exists a unique weak solution χM,B
i j ∈

H1
per,0(Y s)3. Here, H1

per,0(Y s) denotes the Sobolev space of Y-periodic functions with vanishing mean
value on Y s.

Having established the existence and uniqueness of cell solutions, we can conclude that the
homogenized stiffness tensors Ahom, Bhom and Chom with entries reading

ahom
i jkl B

1
|Y s|

[(
A

(
D(χM

i j ) + Mi j
)
,D(χM

kl ) + Mkl
)

Y s
+

(
R~χM

i j �, ~χ
M
kl �

)
S c

Y

]
,

bhom
i jkl B

1
|Y s|

[(
A

(
D(χB

i j) − y3 Mi j
)
,D(χM

kl ) + Mkl
)

Y s
+

(
R~χB

i j�, ~χ
M
kl �

)
S c

Y

]
,

chom
i jkl B

1
|Y s|

[(
A

(
D(χB

i j) − y3 Mi j
)
,D(χB

kl) − y3 Mkl
)

Y s
+

(
R~χB

i j�, ~χ
B
kl�

)
S c

Y

] (3.4)

are well defined.
In literature, a common terminology for these tensors in classical plate theory are extensional,

coupling and bending stiffness tensor. Formally speaking, the entries of the tensor Ahom determine
the resistance to tensional and shearing loads, while the entries of Chom describe the flexural and
torsional stiffness of the structure. The tensor Bhom introduces an additional coupling between in-
plane displacements and bending. In the case of glued yarns Rε → ∞, we attain the homogenized
tensors denoted by a?, b?, c? in [9].

Even though the FSI system (3.1) was rigorously derived in [8, 9], its direct application for our
modeling purposes is highly troublesome. This is due to the coupling condition (3.1) (11): Since the
normal fluid velocity coincides with the plate’s normal velocity ∂tu3 at the interface, we can deduce
that there is no mass transport through the latter. For our application purposes with main flow direction
being normal to the structure, the mass transport is vital, as one can easily verify that e.g., in the
stationary case, system (3.1) does not posses a solution for standard inflow conditions.

Unfortunately, up to this day it is an open question if and how it is possible to derive an
asymptotic model starting from the microscopic FSI problem in [9], which incorporates both structure
displacement and mass transport (see also the conclusion of [9]). An extended asymptotic analysis
to close this gap is in current process in [19]. For the time being, we fall back to a heuristic model
formulation that we motivate in the following section.

3.2. Extended homogenized FSI model

In order to perform meaningful FSI simulations in the macroscopic setting, we propose a novel
heuristic model. It is an extension of system (3.1) by incorporating an additional porous interface
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condition obeying Darcy’s law. The proposed modified FSI system requires to find

v : (0,T ) ×Ω−0 ∪Ω+
0 → R

3,

p : (0,T ) ×Ω−0 ∪Ω+
0 → R

and

ū : (0,T ) × Σ→ R2,

u3 : (0,T ) × Σ→ R

that satisfy

ρ f∂tv − 2µ∇ · D(v) + ∇p = f in (0,T ) ×Ω−0 ∪Ω+
0 ,

∇ · v = 0 in (0,T ) ×Ω−0 ∪Ω+
0 ,

v = vin on (0,T ) × ∂inΩ0,

v = 0 on (0,T ) × ∂no-slipΩ0,

(2µD(v) − pI)η = 0 on (0,T ) × ∂outΩ0,

~v� = 0 on (0,T ) × Σ,

v(0) = v0 in Ω−0 ∪Ω+
0 ,

−∇x̄ · (AhomDx̄(ū) + Bhom∇2
x̄u3) = 0 on (0,T ) × Σ,

∂ttu3 + ∇2
x̄ : (BhomDx̄(ū) + Chom

∇2
x̄u3) = ~2µD(v) − pI�e3 · e3 + g3 on (0,T ) × Σ,

µK−1(v − ∂tu3e3) = ~2µD(v) − pI�e3 on (0,T ) × Σ,

u3 = ∇x̄u3 · η = 0 on (0,T ) × ∂Σ,

ū = 0 on (0,T ) × ∂Σ,

u3(0) = ∂tu3(0) = 0 on Σ.

(3.5)

The modification of system (3.1) comes in form of the dissipative surface term (3.5) (10) with inverse
permeability (i.e., resistivity) tensor K−1. The tensor K ∈ R3×3 itself is assumed to be symmetric and
positive definite. In particular, K−1 exists and is symmetric and positive definite as well. For notational
convenience, we will write K̂ = 1

µ
K.

It is important to note that the no-slip condition for the tangential velocity on Σ from (3.1) is no-
longer present. Furthermore, we remark that in the left-hand side of (3.5) (10), we consider the fluid
velocity corrected by the normal velocity of the plate, compare e.g., with the Darcy interface condition
in [20].

As a consequence, the dissipative term can be interpreted as a generalization of the term (3.1) (11):
For the limit case K̂ → 0, i.e., a non-permeable interface, we recover the original coupling of fluid and
plate normal velocity, as well as the no-slip condition for v1,2. On the other hand, if K̂ → ∞, i.e., no
flow resistance at the interface, the jump of stresses ~2µD(v) − pI�e3 vanishes and we attain regular
Stokes flow in the entire domain Ω0.

In the stationary case, the fluid and structure equations are only one-way coupled. The resulting
Stokes-Stokes problem is actually reminiscent of the system considered in [21] to model the blood
flow through immersed (rigid) stents. The mentioned model is based on the asymptotic Stokes-Sieve
results in [22, 23].
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3.3. Preliminary results

For the derivation of well-posedness of problem (3.5), we recall some established results from
literature regarding the macroscopic model parameters.

Lemma 3.1. The homogenized stiffness tensors Ahom,Chom posses the same symmetry properties as the
microscopic stiffness tensor A. In general, Bhom only satisfies

bhom
i jkl = bhom

jikl = bhom
i jlk , i, j, k, l = 1, 2.

The next statement is a vital auxiliary Lemma required for derivation of coercivity bounds, whose
proof can be found e.g., in Theorem 2 of [13] and references therein.

Lemma 3.2. There exists a positive constant c > 0 such that for all symmetric matrices PM, PB ∈ R2×2

we have

(Ahom PM) : PM + (Bhom PM) : PB + (Bhom PB) : PM + (Chom PB) : PB

≥ c(‖PM‖2F + ‖PB‖2F).

We emphasize that with the choices of PB = 0 (respectively PM = 0) in Lemma 3.2, we can in
particular directly verify that Ahom and Chom are coercive on the space of symmetric matrices.

Definition 3.3. Let Ū B H1
0(Σ)2,U3 B H2

0(Σ) and set U B Ū × U3 as the space of admissible
macroscopic displacements equipped with the standard norm

‖(ū, u3)‖2U B ‖ū‖
2
H1(Σ) + ‖u3‖

2
H2(Σ).

We define the bilinear form ahom : U ×U → R induced by Ahom, Bhom,Chom as

ahom((ū, u3), (Ū,U3)) B (AhomDx̄(ū),Dx̄(Ū))Σ + (Bhom∇2
x̄u3,Dx̄(Ū))Σ

+ (BhomDx̄(ū),∇2
x̄U3)Σ + (Chom

∇2
x̄u3,∇

2
x̄U3)Σ.

The gathered knowledge about the homogenized stiffness tensors is sufficient to verify the following
statement.

Lemma 3.4. The bilinear form ahom is bounded and coercive onU. It is symmetric if and only if Bhom

satisfies bhom
i jkl = bhom

kli j for all i, j, k, l = 1, 2.
In particular, the bilinear form

1
2

(
ahom((ū, u3), (Ū,U3)) + ahom((Ū,U3), (ū, u3))

)
defines an inner product onU and the induced norm

‖(ū, u3)‖2hom B ahom((ū, u3), (ū, u3))

is equivalent to the norm ‖ · ‖U.
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3.4. Existence proof utilizing Galerkin approach

We begin with a classical Galerkin approach, which can be applied to ensure existence of solutions
for the most general form of (3.5). Uniqueness in general is only achievable under further restricting
assumptions. For the overall strategy, we can adapt the provided framework for a similar FSI problem
in [20]. The existence proof utilizes the main idea of Rothe’s method or horizontal line method from
numerical methods for parabolic PDE.

Recall the definition of solely space-dependent function spaces for the displacements

Ū = H1
0(Σ)2 and U3 = H2

0(Σ)

from the previous subsection. We let

V B {v ∈ H1(Ω−0 ∪Ω+
0 )3 : ~v� = 0 on Σ, v = 0 on ∂inΩ0 ∪ ∂

no-slipΩ0},

Vdiv B {v ∈ V : ∇ · v = 0 in Ω−0 ∪Ω+
0 },

Ydiv B Vdiv × Ū ×U3.

We equip the space Ydiv with the standard norm

‖y‖2
Ydiv
B ‖v‖2H1(Ω−0∪Ω+

0 ) + ‖ū‖2H1(Σ) + ‖u3‖
2
H2(Σ).

Furthermore, we define the time-dependent solution spaces in the Galerkin setting as

HVdiv B L2((0,T ),Vdiv) ∩ L∞((0,T ), L2(Ω−0 ∪Ω+
0 )3),

HŪ B L2((0,T ), Ū),
HU3 B L∞((0,T ),U3) ∩W1,∞((0,T ), L2(Σ)),

HYdiv B HVdiv × HŪ × HU3 .

The test space in the Galerkin setting is defined as

Htest
Ydiv
B C1

c ([0,T ),Ydiv)

with C1
c denoting the space of continuously differentiable functions with compact support. We denote

functions in the solution space as y = (v, ū, u3) ∈ HYdiv and use capital letters Y = (V, Ū,U3) ∈ Htest
Ydiv

for test functions.
For the rest of this subsection, we denote the inner product in L2((0,T ), L2(Ω)) for some domain Ω

by 〈·, ·〉Ω. With this notation, we can derive the variational formulation by standard means.

Proposition 3.2. The variational formulation of (3.5) in the Galerkin setting is to find y ∈ HYdiv such
that for all Y ∈ Htest

Ydiv
the equation

− ρ f 〈v, ∂tV〉Ω−0∪Ω+
0

+ 2µ〈D(v),D(V)〉Ω−0∪Ω+
0

+ 〈K̂−1(v − ∂tu3e3),V〉Σ

− 〈∂tu3, ∂tU3〉Σ +

∫ T

0
ahom((ū, u3), (Ū,U3)) dt − 〈K̂−1(v − ∂tu3e3),U3e3〉Σ

= 〈 f ,V〉Ω−0∪Ω+
0

+ 〈g3,U3〉Σ + (v0,V(0))Ω−0∪Ω+
0

(3.6)

is solved.
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Proof. We briefly summarize the derivation of the fluid part to show how the interface term arises. By
testing (3.5) (1) with V and performing partial integration in the time, as well as in the space variable,
we attain

− ρ f 〈v−, ∂tV〉Ω−0 + 2µ〈D(v−),D(V)〉Ω−0 − 〈p
−,∇ · V〉Ω−0 − 〈(2µD(v−) − p−I)e3,V〉Σ

− ρ f 〈v+, ∂tV〉Ω+
0

+ 2µ〈D(v+),D(V)〉Ω+
0
− 〈p+,∇ · V〉Ω+

0
+ 〈(2µD(v+) − p+I)e3,V〉Σ

= −ρ f 〈v, ∂tV〉Ω−0∪Ω+
0

+ 2µ〈D(v),D(V)〉Ω−0∪Ω+
0

+ 〈~2µD(v) − pI�e3,V〉Σ
= 〈 f ,V〉Ω−0∪Ω+

0
+ (v0,V(0))Ω−0∪Ω+

0

utilizing the vanishing divergence of V, as well as V vanishing at time T . Furthermore, by plugging in
the interface coupling condition (3.5) (10), we attain

− ρ f 〈v, ∂tV〉Ω−0∪Ω+
0

+ 2µ〈D(v),D(V)〉Ω−0∪Ω+
0

+ 〈K̂−1(v − ∂tu3e3),V〉Σ
= 〈 f ,V〉Ω−0∪Ω+

0
+ (v0,V(0))Ω−0∪Ω+

0
.

By the choice of solution space, (3.5) (2) is fulfilled by default. �

For the rest of this subsection, we assume the following regularity of the right-hand side functions.

Assumption 3.5. We have that f ∈ L2((0,T ), L2(Ω−0 ∪Ω+
0 )3) and g3 ∈ L2((0,T ), L2(Σ)).

In a next step, we derive a semi-discrete formulation of (3.5). Let N > 1 be a fixed number of
discrete time steps and let [∆t] = T/N > 0 denote a constant step size in time. We perform a semi-
discretization of (3.5) using the backwards difference quotients

∂tw(tn+1) ≈ ẇn+1 B
wn+1 − wn

[∆t]
, ∂ttw(tn+1) ≈

ẇn+1 − ẇn

[∆t]

for approximation of time derivatives with (vn, ūn, un
3) ∈ Ydiv, n = 0, . . . ,N being solely space

dependent functions approximating (v, ū, u3) at time tn = n[∆t]. For n = 0, this approximation is
given by the initial conditions.

By plugging in the backwards approximation into (3.5), testing the system and performing partial
integration solely w.r.t. the space variable, we can verify that for step n + 1, the semi-discrete system
reads as follows.

Proposition 3.3. For a time-step n + 1, n ∈ {0, . . . ,N − 1}, the semi-discrete formulation of (3.5) is to
find yn+1 = (vn+1, ūn+1, un+1

3 ) ∈ Ydiv such that

ρ f (v̇n+1,V)Ω−0∪Ω+
0

+ 2µ(D(vn+1),D(V))Ω−0∪Ω+
0

+ (K̂−1(vn+1 − u̇n+1
3 e3),V)Σ

+ (ün+1
3 ,U3)Σ + ahom((ūn+1, un+1

3 ), (Ū,U3)) − (K̂−1(vn+1 − u̇n+1
3 e3),U3e3)Σ

= ( f n+1,V)Ω−0∪Ω+
0

+ (gn+1
3 ,U3)Σ

(3.7)

for all (V, Ū,U3) ∈ Ydiv, where we choose

f n+1 B
1

[∆t]

∫ tn+1

tn
f (t) dt,

gn+1
3 B

1
[∆t]

∫ tn+1

tn
g3(t) dt.
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Lemma 3.6. For all n = 0, . . . ,N − 1, there exists a unique solution (vn+1, ūn+1, un+1
3 ) ∈ Ydiv to the

semi-discrete system (3.7).

Proof. For clearer notation, we can assume that all arising scalar constants, apart from [∆t], are equal
to 1.

The statement follows by induction. For a given n, we start by rearranging (3.7) to

[∆t](vn+1,V)Ω−0∪Ω+
0

+ [∆t]2(D(vn+1),D(V))Ω−0∪Ω+
0

+ [∆t]2(K̂−1vn+1,V)Σ

− [∆t](K̂−1un+1
3 e3,V)Σ + (un+1

3 ,U3)Σ + [∆t]2ahom((ūn+1, un+1
3 ), (Ū,U3))

− [∆t]2(K̂−1vn+1,U3e3)Σ + [∆t](K̂−1un+1
3 e3,U3e3)Σ

= [∆t]2( f n+1,V)Ω−0∪Ω+
0

+ [∆t]2(gn+1
3 ,U3)Σ + [∆t](vn,V)Ω−0∪Ω+

0

− [∆t](K̂−1un
3e3,V)Σ + (un

3,U3)Σ + [∆t](u̇n
3,U3)Σ + [∆t](K̂−1un

3e3,U3e3)Σ

(3.8)

using the definition of the backwards difference quotients and by multiplying with [∆t]2 to remove
all denominators. Our overall goal is to apply the Lax-Milgram theorem to ensure existence and
uniqueness of solutions.

As the bilinear form associated to the left-hand side of (3.8) is not coercive due to improper scaling
in [∆t], it is mandatory to consider the scaled test functions [∆t]−1Ū, [∆t]−1U3, which results in the
equivalent system

aN((vn+1, ūn+1, un+1
3 ), (V, Ū,U3))

B [∆t](vn+1,V)Ω−0∪Ω+
0

+ [∆t]2(D(vn+1),D(V))Ω−0∪Ω+
0

+ [∆t]2(K̂−1vn+1,V)Σ

− [∆t](K̂−1un+1
3 e3,V)Σ + [∆t]−1(un+1

3 ,U3)Σ + [∆t]ahom((ūn+1, un+1
3 ), (Ū,U3))

− [∆t](K̂−1vn+1,U3e3)Σ + (K̂−1un+1
3 e3,U3e3)Σ

= [∆t]2( f n+1,V)Ω−0∪Ω+
0

+ [∆t](gn+1
3 ,U3)Σ + [∆t](vn,V)Ω−0∪Ω+

0

− [∆t](K̂−1un
3e3,V)Σ + [∆t]−1(un

3,U3)Σ + (u̇n
3,U3)Σ + (K̂−1un

3e3,U3e3)Σ.

(3.9)

Note that the formulation with scaled test functions is in fact equivalent, as we require systems (3.8)
and (3.9) to be fulfilled for all possible test functions in Ydiv.

To prove coercivity of the bilinear form aN : Ydiv × Ydiv → R, we estimate

aN((vn+1, ūn+1, un+1
3 ), (vn+1, ūn+1, un+1

3 ))
= [∆t]‖vn+1‖2L2(Ω−0∪Ω+

0 ) + [∆t]2
‖D(vn+1)‖2L2(Ω−0∪Ω+

0 )

+ [∆t]2(K̂−1vn+1, vn+1)Σ − 2[∆t](K̂−1vn+1, un+1
3 e3)Σ + (K̂−1un+1

3 e3, un+1
3 e3)Σ

+ [∆t]−1
‖un+1

3 ‖
2
L2(Σ) + [∆t]‖(ūn+1, un+1

3 )‖2hom

= [∆t]‖vn+1‖2L2(Ω−0∪Ω+
0 ) + [∆t]2

‖D(vn+1)‖2L2(Ω−0∪Ω+
0 )

+ ‖K̂−
1
2 ([∆t]vn+1 − un+1

3 e3)‖2L2(Σ) + [∆t]−1
‖un+1

3 ‖
2
L2(Σ) + [∆t]‖(ūn+1, un+1

3 )‖2hom

≥ c‖(vn+1, ūn+1, un+1
3 ‖

2
Ydiv

for some constant c = c([∆t]) > 0. Here, the first equality is due to the symmetry of K̂−1. In the
second equality we additionally utilized the positive definiteness of K̂−1, guaranteeing the existence of
the (unique) square root K̂− 1

2 . The last estimate utilizes the standard Korn inequality for vn+1.
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Moreover, the continuity of aN follows from application of the Trace theorem to the interface terms
involving vn+1,V.

With the same argument, one can verify that the right-hand side of (3.9) is a bounded linear
functional when we treat solutions at the prior time step as given data. Here, we require that
f n+1 ∈ L2(Ω−0 ∪Ω+

0 )3, gn+1
3 ∈ L2(Σ), which is guaranteed by Assumption 3.5.

By inductive application of the Lax-Milgram theorem, we can deduce that there exists a unique
solution (vn+1, ūn+1, un+1

3 ) ∈ Ydiv to (3.9) and hence also to (3.7) for all n = 0, . . . ,N − 1. �

As a next step, from the solutions of the semi-discrete systems for given N, we construct a sequence
{y[N]}N∈N of piecewise constant functions in time defined by

y[N] : (0,T )→ Ydiv,

y[N](t) B (v[N], ū[N], u[N]
3 )(t) B

N∑
n=1

(vn, ūn, un
3)χ(tn−1,tn](t).

Similarly, we approximate the right-hand side functions by

f [N](t) B
N∑

n=1

f nχ(tn−1,tn](t), g[N]
3 (t) B

N∑
n=1

gn
3χ(tn−1,tn](t).

With the above constructions, we can verify the following statement.

Proposition 3.4. For given N, the function y[N] is solution to the system

ρ f 〈v̇[N],V〉Ω−0∪Ω+
0

+ 2µ〈D(v[N]),D(V)〉Ω−0∪Ω+
0

+ 〈K̂−1(v[N] − u̇[N]
3 e3),V〉Σ

+ 〈ü[N]
3 ,U3〉Σ +

∫ T

0
ahom((ū[N], u[N]

3 ), (Ū,U3)) dt − 〈K̂−1(v[N] − u̇[N]
3 e3),U3e3〉Σ

= 〈 f [N],V〉Ω−0∪Ω+
0

+ 〈g[N]
3 ,U3〉Σ

(3.10)

for all Y = (V, Ū,U3) ∈ Htest
Ydiv

, where ẇ[N], ẅ[N] denote the backwards difference quotients

ẇ[N](t) B
wn − wn−1

∆t
, ẅ[N](t) B

ẇn − ẇn−1

∆t
, t ∈ (tn−1, tn]

for piecewise constant w[N].

Proof. For a given n, we have that y[N]|(tn−1,tn] = (vn, ūn, un
3) solves the semi-discrete system (3.7) for

all test functions in Ydiv. By construction, we further have that Y(t) ∈ Ydiv for any given Y ∈ Htest
Ydiv

.
Hence, we can utilize Y(t) as a test function of (3.7) and integrate in time over (tn−1, tn]. The statement
then follows by adding all attained equations for n = 1, . . . ,N. �

Moreover, we have the following convergence result for the right-hand side functions from
Assumption 3.5.

Lemma 3.7. There exists a subsequence of the sequence {( f [N], g[N]
3 )}N∈N, denoted with the same index,

such that

f [N] ⇀ f weakly in L2((0,T ), L2(Ω−0 ∪Ω+
0 )3),

g[N]
3 ⇀ g3 weakly in L2((0,T ), L2(Σ)).
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Proof. One can directly compute that the respective norms of f [N], g[N]
3 are bounded by that of

the original functions f , g3 and we can utilize weak compactness to extract a weakly converging
subsequence, respectively. �

Our main goal is to extract a subsequence of {y[N]}N∈N that weakly converges to a solution of (3.6)
in the limit N → ∞. For this purpose, we first derive uniform bounds for y[N] in the following lemma.
In the statement, we writeU?

3 for the dual space ofU3.

Lemma 3.8. There exists a uniform constant c > 0 independent of N such that

‖v[N]‖2L∞((0,T ),L2(Ω−0∪Ω+
0 )) + ‖D(v[N])‖2L2((0,T ),L2(Ω−0∪Ω+

0 )) ≤ c,

‖u̇[N]
3 ‖

2
L∞((0,T ),L2(Σ)) + ‖Dx̄(ū[N])‖2L∞((0,T ),L2(Σ)) + ‖∇2

x̄u
[N]
3 ‖

2
L∞((0,T ),L2(Σ))

+ ‖K̂−
1
2 (v[N] − u̇[N]

3 e3)‖2L2((0,T ),L2(Σ)) ≤ c,

‖ü[N]
3 ‖U?

3
≤ c.

Proof. Similar to the previous proof, we will assume that all arising scalar constants, apart from [∆t],
are equal to 1.

We consider a fixed N and choose n ≤ N − 1. By testing the semi-discrete system (3.7) with the
solution variables V = vn+1, Ū = ˙̄un+1,U3 = u̇n+1

3 and multiplying with [∆t], we attain

‖vn+1‖2L2(Ω−0∪Ω+
0 ) − (vn+1, vn)Ω−0∪Ω+

0
+ [∆t]‖D(vn+1)‖2L2(Ω−0∪Ω+

0 )

+ [∆t]‖K̂−
1
2 (vn+1 − u̇n+1

3 e3)‖2L2(Σ) + ‖u̇n+1
3 ‖

2
L2(Σ) − (u̇n+1

3 , u̇n
3)Σ

+ ‖(ūn+1, un+1
3 )‖2hom − ahom((ūn+1, un+1

3 ), (ūn, un
3))

= [∆t]( f n+1, vn+1)Ω−0∪Ω+
0

+ [∆t](gn+1
3 , u̇n+1

3 )Σ.

After application of Young’s inequality to all mixed terms and absorbing all appearing constants apart
from [∆t], we can derive the estimate

‖vn+1‖2L2(Ω−0∪Ω+
0 ) − ‖v

n‖2L2(Ω−0∪Ω+
0 ) + [∆t]‖D(vn+1)‖2L2(Ω−0∪Ω+

0 )

+ [∆t]‖K̂−
1
2 (vn+1 − u̇n+1

3 e3)‖2L2(Σ) + (‖u̇n+1
3 ‖

2
L2(Σ) − ‖u̇

n
3‖

2
L2(Σ))

+ ‖(ūn+1, un+1
3 )‖2hom − ‖(ū

n, un
3)‖2hom

≤ c1[∆t]
(
‖ f n+1‖2L2(Ω−0∪Ω+

0 ) + ‖gn+1‖2L2(Σ)

) (3.11)

for some constant c1 > 0 independent of N.
Next, by summation of the inequalities (3.11) for k = 0, . . . , n, we attain

‖vn+1‖2L2(Ω−0∪Ω+
0 ) + [∆t]

n∑
k=0

(
‖D(vk+1)‖2L2(Ω−0∪Ω+

0 ) + ‖K̂−
1
2 (vn+1 − u̇n+1

3 e3)‖2L2(Σ)

)
+ ‖u̇n+1

3 ‖L2(Σ) + ‖(ūn+1, un+1
3 )‖2hom

≤ ‖v0‖2L2(Ω−0∪Ω+
0 ) + ‖u̇0

3‖
2
L2(Ω−0∪Ω+

0 ) + ‖(ū0, u0
3)‖2hom + c1[∆t]

n∑
k=0

(
‖ f k+1‖2L2(Ω−0∪Ω+

0 ) + ‖gk+1
3 ‖

2
L2(Σ)

)
= ‖v0‖

2
L2(Ω−0∪Ω+

0 ) + c1

(
‖ f [N]‖2L2((0,T ),L2(Ω−0∪Ω+

0 )) + ‖g[N]
3 ‖

2
L2((0,T ),L2(Σ))

)
(3.12)
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for all n = 0, . . . ,N − 1. With Lemma 3.7, the right-hand side of (3.12) is uniformly bounded with a
constant solely dependent on initial data, applied forces and the constant c1.

From the definition of y[N] as piecewise constant function in time and Lemma 3.4 we deduce
that (3.12) implies

‖v[N]‖2L∞((0,T ),L2(Ω−0∪Ω+
0 )) + ‖D(v[N])‖2L2((0,T ),L2(Ω−0∪Ω+

0 )) ≤ c2,

‖u̇[N]
3 ‖

2
L∞((0,T ),L2(Σ)) + ‖Dx̄(ū[N])‖2L∞((0,T ),L2(Σ)) + ‖∇2

x̄u
[N]
3 ‖

2
L∞((0,T ),L2(Σ)) + ‖K̂−

1
2 (v[N] − u̇[N]

3 e3)‖2L2((0,T ),L2(Σ)) ≤ c2

(3.13)
for some constant c2 > 0 independent of N.

Finally, by setting all test functions apart from U3 in (3.7) to zero, we attain the equality

(ün+1
3 ,U3)Σ = (gn+1

3 ,U3)Σ − (Chom
∇2

x̄u
n+1
3 ,∇2

x̄U3)Σ + (K̂−1(vn+1 − u̇n+1
3 e3),U3e3)Σ

for all n = 0, . . . ,N − 1. Summation over all n together with (3.13) directly delivers the uniform
estimate

‖ü[N]
3 ‖U?

3
≤ c3

for a constant c3 > 0 independent of N as desired. �

We have gathered all necessary tools to derive the existence of solutions.

Theorem 3.9. There exists at least one solution (v, ū, u3) ∈ HYdiv to (3.6).

Proof. The uniform bounds from Lemma 3.8 are sufficient to ensure the convergence

y[N] ⇀ y = (v, ū, u3) weakly in HYdiv ,

ü[N]
3

∗
⇀ ü3 weakly-∗ inU3

for a subsequence of {y[N]}N∈N in HYdiv denoted with the same index.
For a given N, we test equation (3.10) with an arbitrary test function Y ∈ Htest

Ydiv
. Due to linearity and

the above weak convergences of y[N], we can go to the limit N → ∞ to directly attain that y ∈ HYdiv is
solution to the variational formulation (3.6). �

In general, we are not be able to derive uniqueness of solutions without additional assumptions on
the regularity of the displacements w.r.t. time.

Assumption 3.10. We assume that ∂tū, ∂tu3 are admissible test functions in the sense that

(∂ttu3, ∂tu3)Σ =
1
2

d
dt
‖∂tu3‖

2
L2(Σ), ahom((ū, u3), (∂tū, ∂tu3)) =

1
2

d
dt
‖(ū, u3)‖2hom.

Note that this assumption is for example fulfilled for classical solutions of (3.5).

Theorem 3.11. If the solutions to (3.6) fulfill Assumption 3.10, then there exists a unique solution.

Proof. The statement follows with a standard energy estimate. Consider the difference (v, ū, u3) ∈ HYdiv

of two solutions to (3.6), which itself solves the system for zero right-hand side and initial conditions.
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Let t ∈ (0,T ) and test (3.5) with (v, ∂tū, ∂tu3). Together with the coercivity of ahom from Lemma 3.4
we attain

ρ f

2
d
dt
‖v‖2L2(Ω−0∪Ω+

0 ) + 2µ‖D(v)‖2L2(Ω−0∪Ω+
0 ) +

1
2

d
dt
‖∂tu3‖

2
L2(Σ) +

c
2

d
dt

(
‖∇x̄ū‖2L2(Σ) + ‖∇2

x̄u3‖
2
L2(Σ)

)
≤
ρ f

2
d
dt
‖v‖2L2(Ω−0∪Ω+

0 ) + 2µ‖D(v)‖2L2(Ω−0∪Ω+
0 ) + ‖K−

1
2 (v − ∂tu3e3)‖2L2(Σ) +

1
2

d
dt
‖∂tu3‖

2
L2(Σ) +

1
2

d
dt
‖(ū, u3)‖2hom

≤ 0

for some constant c > 0.
Integrating with respect to time delivers

1
2

(
ρ f ‖v‖2L2(Ω−0∪Ω+

0 ) + ‖∂tu3‖
2
L2(Σ) + c‖∇x̄ū‖2L2(Σ) + c‖∇2

x̄u3‖
2
L2(Σ)

)
+ 2µ‖D(v)‖2L2((0,t)×Ω−0∪Ω+

0 ) ≤ 0

for all t and Gronwall’s inequality implies (v, ū, u3) = 0 which concludes the proof. �

3.5. Existence proof utilizing semigroup theory

As seen, the existence proof utilizing a classical Galerkin approach is quite tedious. Hence, we
provide a secondary proof utilizing semigroup theory. It is applicable for the case Bhom = 0, which is a
frequently met case for symmetric microstructures such as woven filters, see e.g., Lemma 6.9 in [12].

For this subsection, we consider the space-dependent functional spaces

U3 B H2
0(Σ),

L2
div(Ω−0 ∪Ω+

0 ) B {v ∈ L2(Ω−0 ∪Ω+
0 )3 : ∇ · v = 0 in Ω−0 ∪Ω+

0 },

V B H2(Ω−0 ∪Ω+
0 ) ∩ L2

div(Ω−0 ∪Ω+
0 )

∩ {v ∈ H1(Ω−0 ∪Ω+
0 )3 : ~v� = 0 on Σ, v = 0 on ∂inΩ0 ∪ ∂

no-slipΩ0}.

Theorem 3.12. Assume that Bhom = 0. Let v0 ∈ L2
div(Ω

−
0 ∪ Ω+

0 ) and f ∈ L1((0,T ), L2
div(Ω

−
0 ∪ Ω+

0 )),
as well as g3 ∈ L1((0,T ), L2(Σ)). Then (3.5) has a unique mild solution with ū = 0 and (v, u3) ∈
C0([0,T ], L2

div(Ω
−
0 ∪Ω+

0 ) × H2
0(Σ)).

If additionally v0 ∈ V, as well as f ∈ C0([0,T ], L2
div(Ω

−
0 ∪ Ω+

0 )), g3 ∈ C0([0,T ], L2(Σ)) and either
one of the conditions

f ∈ W1,1((0,T ), L2
div(Ω

−
0 ∪Ω+

0 )) or f ∈ L1((0,T ),V)

and
g3 ∈ W1,1((0,T ), L2(Σ)) or g3 ∈ L1((0,T ),H2

0(Σ))

is satisfied, respectively, then (3.5) has a unique classical solution with ū = 0 and

(v, u3) ∈ C0
(
[0,T ],V ×

(
H4(Σ) ∩ H2

0(Σ)
))
∩C1

(
(0,T ), L2

div(Ω
−
0 ∪Ω+

0 ) × H2
0(Σ)

)
.

Proof. Again, for notational convenience, we assume that the scalar coefficients are equal to 1. We
introduce the auxiliary variable w3 = ∂tu3 denoting the plate’s normal velocity. The spatial solution
space is chosen as

Y B L2
div(Ω−0 ∪Ω+

0 ) ×U3 × L2(Σ),
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where we equip the spaceU3 with the inner product

(u3,U3)U3 B (Chom
∇2

x̄u3,∇
2
x̄U3)Σ

and induced norm ‖ · ‖U3 . Note that this choice is possible by symmetry and coercivity of Chom on the
space of symmetric matrices.

Due to the vanishing coupling stiffness tensor Bhom, we can immediately deduce ū = 0, such that
system (3.5) can be expressed in operator form as

d
dt

y(t) = Φy(t) + F(t), y(0) = (v0, 0, 0)T

with F(t) = ( f (t), 0, g3(t))T and

Φ : Y → Y, Φ B


−A 0 RVW

0 0 I
RWV −I −RWW

 ,
where the arising operators are associated with the bilinear forms

(Av,V) = (D(v),D(V))Ω−0∪Ω+
0

+ (K̂−1v,V)Σ,

(RVWw3,V) = (K̂−1w3e3,V)Σ,

(RWVv,W3) = (K̂−1v,W3e3)Σ,

(RWWw3,W3) = (K̂−1w3e3,W3e3)Σ

and the identity operator I. We have D(Φ) = V ×
(
H4(Σ) ∩U3

)
×U3.

We show that Φ is generator of a contraction semigroup in Y utilizing the sufficient conditions in
the Lumer-Phillips theorem.

(1) Clearly, D(Φ) is dense in Y.

(2) The operator Φ is dissipative: Let y ∈ D(Φ). We can directly compute

(Φy, y) = −‖D(v)‖2L2(Ω−0∪Ω+
0 ) − ‖K̂

− 1
2 (v − w3e3)‖2L2(Σ) + (w3, u3)U3 − (u3,w3)U3 ≤ 0.

Here, K̂− 1
2 ∈ R3×3 denotes the square root of K̂−1 which is uniquely defined by symmetry and

positive definiteness.

(3) There exists a λ > 0 such that λ−Φ is surjective: Let λ > 0 and f = ( f1, f2, f3)T ∈ Y be given. We
want to prove the solvability of the system

(λ −Φ)y = f

which is equivalent to

(λ + A)v − λRVWu3 = f1 − RVW f2, (3.14)
w3 = λu3 − f2, (3.15)
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−RWVv + u3 + λ(λ + RWW)u3 = f3 + (λ + RWW) f2. (3.16)

Solely considering equations (3.14) and (3.16), we can verify that the left-hand side is associated
to the bilinear form

a ((v, u3), (V,U3)) B λ(v,V)Ω−0∪Ω+
0

+ (D(v),D(V))Ω−0∪Ω+
0

+ (K̂−1(v − λu3e3),V)Σ

− (K̂−1v,U3e3)Σ + (1 + λ2)(u3,U3)U3 + λ(K̂−1u3e3,U3e3)Σ

which is continuous for all λ. Moreover, we can compute

a ((v, u3), (v, u3)) = λ‖v‖2L2(Ω−0∪Ω+
0 ) + ‖D(v)‖2

Ω−0∪Ω+
0

+ (1 + λ2)‖u3‖
2
U3

+ (K̂−
1
2 v, K̂−

1
2 v)Σ − (1 + λ)(K̂−

1
2 v, K̂−

1
2 u3e3)Σ + λ(K̂−

1
2 u3e3, K̂−

1
2 u3e3)Σ.

Hence, for λ = 1 we attain

a ((v, u3), (v, u3)) = ‖v‖2L2(Ω−0∪Ω+
0 ) + ‖D(v)‖2

Ω−0∪Ω+
0

+ 2‖u3‖
2
U3

+ ‖K̂−
1
2 (v − u3e3)‖2L2(Σ)

and thereby coerciveness. We can apply the Lax-Milgram theorem to deduce the existence of a
unique (v, u3)T ∈ V × U3. Elliptic regularity further ensures u3 ∈ H4 ∩ U3. From Eq (3.15), we
finally deduce the existence of w3 ∈ U3.

Hence,Φ is generator of a contraction semigroup inY and the statement follows with Theorem 2.7.
�

4. Conclusions

A fluid-structure interaction problem of non-stationary Stokes flow through a thin, permeable
structure was considered. A homogenized and dimension reduced model was presented and extended
by an interface-flux term obeying Darcy’s law. The existence and uniqueness of solutions to the non-
stationary microscopic structure model was verified utilizing a semigroup approach. Furthermore,
well-posedness of the new macroscopic FSI model was derived with a classical Galerkin approach, as
well as with a semigroup approach under frequently met assumptions on the microscopic structure.
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