The notion of generalized quantum cluster algebras was introduced as a natural generalization of Berenstein and Zelevinsky's quantum cluster algebras as well as Chekhov and Shapiro's generalized cluster algebras. In this paper, we focus on a generalized quantum cluster algebra of Kronecker type which possesses infinitely many cluster variables. We obtain the cluster multiplication formulas for this algebra. As an application of these formulas, a positive bar-invariant basis is explicitly constructed. Both results generalize those known for the Kronecker cluster algebra and quantum cluster algebra.
Citation: Liqian Bai, Xueqing Chen, Ming Ding, Fan Xu. A generalized quantum cluster algebra of Kronecker type[J]. Electronic Research Archive, 2024, 32(1): 670-685. doi: 10.3934/era.2024032
The notion of generalized quantum cluster algebras was introduced as a natural generalization of Berenstein and Zelevinsky's quantum cluster algebras as well as Chekhov and Shapiro's generalized cluster algebras. In this paper, we focus on a generalized quantum cluster algebra of Kronecker type which possesses infinitely many cluster variables. We obtain the cluster multiplication formulas for this algebra. As an application of these formulas, a positive bar-invariant basis is explicitly constructed. Both results generalize those known for the Kronecker cluster algebra and quantum cluster algebra.
[1] | S. Fomin, A. Zelevinsky, Cluster algebras Ⅰ. foundations, J. Amer. Math. Soc., 15 (2002), 497–529. https://doi.org/10.1090/S0894-0347-01-00385-X doi: 10.1090/S0894-0347-01-00385-X |
[2] | S. Fomin, A. Zelevinsky, Cluster algebras Ⅱ. finite type classification, Invent. Math., 154 (2003), 63–121. https://doi.org/10.1007/s00222-003-0302-y doi: 10.1007/s00222-003-0302-y |
[3] | A. Berenstein, A. Zelevinsky, Quantum cluster algebras, Adv. Math., 195 (2005), 405–455. https://doi.org/10.1016/j.aim.2004.08.003 doi: 10.1016/j.aim.2004.08.003 |
[4] | L. Chekhov, M. Shapiro, Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Notices, 2014 (2014), 2746–2772. https://doi.org/10.1093/imrn/rnt016 doi: 10.1093/imrn/rnt016 |
[5] | T. Nakanishi, Structure of seeds in generalized cluster algebras, Pacific J. Math., 277 (2015), 201–218. https://doi.org/10.2140/pjm.2015.277.201 doi: 10.2140/pjm.2015.277.201 |
[6] | P. Cao, F. Li, Some conjectures on generalized cluster algebras via the cluster formula and D-matrix pattern, J. Algebra, 493 (2018), 57–78. https://doi.org/10.1016/j.jalgebra.2017.08.034 doi: 10.1016/j.jalgebra.2017.08.034 |
[7] | P. Cao, F. Li, On some combinatorial properties of generalized cluster algebras, J. Pure Appl. Algebra, 225 (2021), 106650. https://doi.org/10.1016/j.jpaa.2020.106650 doi: 10.1016/j.jpaa.2020.106650 |
[8] | L. Mou, Scattering diagrams for generalized cluster algebras, preprint arXiv: 2110.02416. |
[9] | L. Bai, X. Chen, M. Ding, F. Xu, On the generalized cluster algebras of geometric types, Symmetry Integrability Geom. Methods Appl., 16 (2020), 92. https://doi.org/10.3842/SIGMA.2020.092 doi: 10.3842/SIGMA.2020.092 |
[10] | L. Bai, X. Chen, M. Ding, F. Xu, A quantum analogue of generalized cluster algebras, Algebr. Represent. Theory, 21 (2018), 1203–1217. https://doi.org/10.1007/s10468-017-9743-7 doi: 10.1007/s10468-017-9743-7 |
[11] | L. Bai, X. Chen, M. Ding, F. Xu, Generalized quantum cluster algebras: The Laurent phenomenon and upper bounds, J. Algebra, 619 (2023), 298–322. https://doi.org/10.1016/j.jalgebra.2022.12.012 doi: 10.1016/j.jalgebra.2022.12.012 |
[12] | P. Sherman, A. Zelevinsky, Positivity and canonical bases in rank $2$ cluster algebras of finite and affine types, Mosc. Math. J., 4 (2004), 947–974,982. https://doi.org/10.17323/1609-4514-2004-4-4-947-974 doi: 10.17323/1609-4514-2004-4-4-947-974 |
[13] | G. C. Irelli, Cluster algebras of type $A_2^{(1)}$, Algebr. Represent. Theory, 15 (2012), 977–1021. https://doi.org/10.1007/s10468-011-9275-5 doi: 10.1007/s10468-011-9275-5 |
[14] | P. Caldero, B. Keller, From triangulated categories to cluster algebras, Invent. Math., 172 (2008), 169–211. https://doi.org/10.1007/s00222-008-0111-4 doi: 10.1007/s00222-008-0111-4 |
[15] | A. Hubery, Acyclic cluster algebras via Ringel-Hall algebras, Citeseer, (2006). |
[16] | J. Xiao, F. Xu, Green's formula with $\mathbb{C}^{*}$-action and Caldero-Keller's formula for cluster algebras, in Progress in Mathematics, Birkhäuser/Springer, New York, (2010), 313–348. https://doi.org/10.1007/978-0-8176-4697-4_13 |
[17] | F. Xu, On the cluster multiplication theorem for acyclic cluster algebras, Trans. Amer. Math. Soc., 362 (2010), 753–776. https://doi.org/10.1090/S0002-9947-09-04946-0 doi: 10.1090/S0002-9947-09-04946-0 |
[18] | M. Ding, F. Xu, Bases of the quantum cluster algebra of the Kronecker quiver, Acta Math. Sin. Engl. Ser., 28 (2012), 1169–1178. https://doi.org/10.1007/s10114-011-0344-9 doi: 10.1007/s10114-011-0344-9 |
[19] | X. Chen, M. Ding, H. Zhang, Acyclic quantum cluster algebras via derived Hall algebras, preprint, arXiv: 2108.03558. |
[20] | M. Ding, F. Xu, X. Chen, Atomic bases of quantum cluster algebras of type $\widetilde{A}_{2n-1, 1}$, J. Algebra, 590 (2022), 1–25. https://doi.org/10.1016/j.jalgebra.2021.10.001 doi: 10.1016/j.jalgebra.2021.10.001 |
[21] | F. Qin, Cluster algebras and their bases, preprint, arXiv: 2108.09279. |
[22] | F. Li, J. Pan, Recurrence formula, positivity and polytope basis in cluster algebras via Newton polytopes, preprint, arXiv: 2201.01440. |
[23] | D. Rupel, Rank two non-commutative laurent phenomenon and pseudo-positivity, Algebra Comb., 2 (2019), 1239–1273. https://doi.org/10.5802/alco.81 doi: 10.5802/alco.81 |
[24] | F. Qin, t-analog of q-characters, bases of quantum cluster algebras, and a correction technique, Int. Math. Res. Notices, 2014 (2014), 6175–6232. https://doi.org/10.1093/imrn/rnt115 doi: 10.1093/imrn/rnt115 |