Research article Special Issues

The influence of synaptic strength and noise on the robustness of central pattern generator

  • Received: 25 September 2023 Revised: 23 December 2023 Accepted: 27 December 2023 Published: 09 January 2024
  • In this paper, we explore the mechanisms of central pattern generators (CPGs), circuits that can generate rhythmic patterns of motor activity without external input. We study the half-center oscillator, a simple form of CPG circuit consisting of neurons connected by reciprocally inhibitory synapses. We examine the role of asymmetric coupling factors in shaping rhythm activity and how different network topologies contribute to network efficiency. We have discovered that neurons with lower synaptic strength are more susceptible to noise that affects rhythm changes. Our research highlights the importance of asymmetric coupling factors, noise, and other synaptic parameters in shaping the broad regimes of CPG rhythm. Finally, we compare three topology types' regular regimes and provide insights on how to locate the rhythm activity.

    Citation: Feibiao Zhan, Jian Song, Shenquan Liu. The influence of synaptic strength and noise on the robustness of central pattern generator[J]. Electronic Research Archive, 2024, 32(1): 686-706. doi: 10.3934/era.2024033

    Related Papers:

  • In this paper, we explore the mechanisms of central pattern generators (CPGs), circuits that can generate rhythmic patterns of motor activity without external input. We study the half-center oscillator, a simple form of CPG circuit consisting of neurons connected by reciprocally inhibitory synapses. We examine the role of asymmetric coupling factors in shaping rhythm activity and how different network topologies contribute to network efficiency. We have discovered that neurons with lower synaptic strength are more susceptible to noise that affects rhythm changes. Our research highlights the importance of asymmetric coupling factors, noise, and other synaptic parameters in shaping the broad regimes of CPG rhythm. Finally, we compare three topology types' regular regimes and provide insights on how to locate the rhythm activity.



    加载中


    [1] E. Marder, D. Bucher, Central pattern generators and the control of rhythmic movements, Curr. Biol., 11 (2001), R986–R996. https://doi.org/10.1016/S0960-9822(01)00581-4 doi: 10.1016/S0960-9822(01)00581-4
    [2] E. Marder, R. L. Calabrese, Principles of rhythmic motor pattern generation, Physiol. Rev., 76 (1996), 687–717. https://doi.org/10.1152/physrev.1996.76.3.687 doi: 10.1152/physrev.1996.76.3.687
    [3] A. Sakurai, C. A. Gunaratne, P. S. Katz, Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusk Melibe leonina, J. Neurophysiol., 112 (2014), 1317–1328. https://doi.org/10.1152/jn.00261.2014 doi: 10.1152/jn.00261.2014
    [4] D. Alaçam, A. Shilnikov, Making a swim central pattern generator out of latent parabolic bursters, Int. J. Bifurcation Chaos, 25 (2015), 1540003. https://doi.org/10.1142/S0218127415400039 doi: 10.1142/S0218127415400039
    [5] A. I. Selverston, Model Neural Networks and Behavior, New York, 1985. https://doi.org/10.1007/978-1-4757-5858-0
    [6] W. N. Frost, P. S. Katz, Single neuron control over a complex motor program, PNAS, 93 (1996), 422–426. https://doi.org/10.1073/pnas.93.1.422 doi: 10.1073/pnas.93.1.422
    [7] P. S. Katz, S. L. Hooper, Invertebrate central pattern generators, Cold Spring Harbor Monogr. Ser., 49 (2007), 251.
    [8] E. Marder, S. Kedia, E. O. Morozova, New insights from small rhythmic circuits, Curr. Opin. Neurobiol., 76 (2022), 102610. https://doi.org/10.1016/j.conb.2022.102610 doi: 10.1016/j.conb.2022.102610
    [9] E. Marder, Neuromodulation of neuronal circuits: back to the future, Neuron, 76 (2012), 1–11. https://doi.org/10.1016/j.neuron.2012.09.010 doi: 10.1016/j.neuron.2012.09.010
    [10] I. Belykh, A. Shilnikov, When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons, Phys. Rev. Lett., 101 (2008), 078102. https://doi.org/10.1103/PhysRevLett.101.078102 doi: 10.1103/PhysRevLett.101.078102
    [11] T. Nowotny, M. I. Rabinovich, Dynamical origin of independent spiking and bursting activity in neural microcircuits, Phys. Rev. Lett., 98 (2007), 128106. https://doi.org/10.1103/PhysRevLett.98.128106 doi: 10.1103/PhysRevLett.98.128106
    [12] A. I. Selverston, Invertebrate central pattern generator circuits, Phil. Trans. R. Soc. B, 365 (2010), 2329–2345. https://doi.org/10.1098/rstb.2009.0270 doi: 10.1098/rstb.2009.0270
    [13] A. I. Selverston, M. I. Rabinovich, H. D Abarbanel, R. Elson, A. Szücs, R. D. Pinto, et al., Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators, J. Physiol.-Paris, 94 (2000), 357–374. https://doi.org/10.1016/S0928-4257(00)01101-3 doi: 10.1016/S0928-4257(00)01101-3
    [14] R. Huerta, M. A. Sánchez-Montañés, F. Corbacho, J. A. Sigüenza, A central pattern generator to control a pyloric-based system, Biol. Cybern., 82 (2000), 85–94. https://doi.org/10.1007/PL00007963 doi: 10.1007/PL00007963
    [15] M. Lodi, A. L. Shilnikov, M. Storace, Design principles for central pattern generators with preset rhythms, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 3658–3669. https://doi.org/10.1109/TNNLS.2019.2945637 doi: 10.1109/TNNLS.2019.2945637
    [16] S. Chen, Y. Liu, T. Chen, J. Lou, Rhythm motion control in bio-inspired fishtail based on central pattern generator, IET Cyber-Syst. Robot., 3 (2021), 53–67. https://doi.org/10.1049/csy2.12007 doi: 10.1049/csy2.12007
    [17] J. Wojcik, J. Schwabedal, R. Clewley, A. L. Shilnikov, Key bifurcations of bursting polyrhythms in 3-cell central pattern generators, PLoS One, 9 (2014), e92918. https://doi.org/10.1371/journal.pone.0092918 doi: 10.1371/journal.pone.0092918
    [18] J. T. C. Schwabedal, A. B. Neiman, A. L. Shilnikov, Robust design of polyrhythmic neural circuits, Phys. Rev. E, 90 (2014), 022715. https://doi.org/10.1103/PhysRevE.90.022715 doi: 10.1103/PhysRevE.90.022715
    [19] R. Azodi-Avval, F. Bahrami, A mathematical model of arm movement during rhythmic motor activity, in 2011 18th Iranian Conference of Biomedical Engineering (ICBME), (2011), 304–308. https://doi.org/10.1109/ICBME.2011.6168578
    [20] M. B. Reyes, P. V. Carelli, J. C. Sartorelli, R. D. Pinto, A modeling approach on why simple central pattern generators are built of irregular neurons, PLoS One, 10 (2015), e0120314. https://doi.org/10.1371/journal.pone.0120314 doi: 10.1371/journal.pone.0120314
    [21] J. Dethier, G. Drion, A. Franci, R. Sepulchre, A positive feedback at the cellular level promotes robustness and modulation at the circuit level, J. Neurophysiol., 114 (2015), 2472–2484. https://doi.org/10.1152/jn.00471.2015 doi: 10.1152/jn.00471.2015
    [22] J. Collens, K. Pusuluri, A. Kelley, D. Knapper, T. Xing, S. Basodi, et al., Dynamics and bifurcations in multistable 3-cell neural networks, Chaos, 30 (2020), 072101. https://doi.org/10.1063/5.0011374 doi: 10.1063/5.0011374
    [23] Q. Lu, X. Wang, J. Tian, A new biological central pattern generator model and its relationship with the motor units, Cognit. Neurodyn., 16 (2022), 135–147. https://doi.org/10.1007/s11571-021-09710-0 doi: 10.1007/s11571-021-09710-0
    [24] Q. Lu, J. Tian, Synchronization and stochastic resonance of the small-world neural network based on the CPG, Cognit. Neurodyn., 8 (2014), 217–226. https://doi.org/10.1007/s11571-013-9275-8 doi: 10.1007/s11571-013-9275-8
    [25] Y. Zang, E. Marder, Neuronal morphology enhances robustness to perturbations of channel densities, PNAS, 120 (2023), e2219049120. https://doi.org/10.1073/pnas.2219049120 doi: 10.1073/pnas.2219049120
    [26] E. M. Izhikevich, Neural excitability, spiking, and bursting, Int. J. Bifurcation Chaos, 10 (2000), 1171–1266. https://doi.org/10.1142/S0218127400000840 doi: 10.1142/S0218127400000840
    [27] B. Lu, X. Jiang, Reduced and bifurcation analysis of intrinsically bursting neuron model, Electron. Res. Arch., 31 (2023), 5928–5945. https://doi.org/10.3934/era.2023301 doi: 10.3934/era.2023301
    [28] F. Zhan, S. Liu, X. Zhang, J. Wang, B. Lu, Mixed-mode oscillations and bifurcation analysis in a pituitary model, Nonlinear Dyn., 94 (2018), 807–826. https://doi.org/10.1007/s11071-018-4395-7 doi: 10.1007/s11071-018-4395-7
    [29] W. B. Kristan, Neuronal decision-making circuits, Curr. Biol., 18 (2008), R928–R932. https://doi.org/10.1016/j.cub.2008.07.081 doi: 10.1016/j.cub.2008.07.081
    [30] K. L. Briggman, W. B. Kristan, Multifunctional pattern-generating circuits, Annu. Rev. Neurosci., 31 (2008), 271–294. https://doi.org/10.1146/annurev.neuro.31.060407.125552 doi: 10.1146/annurev.neuro.31.060407.125552
    [31] A. A. A. Hill, J. Lu, M. A. Masino, O. H. Olsen, R. L. Calabrese, A model of a segmental oscillator in the leech heartbeat neuronal network, J. Comput. Neurosci., 10 (2001), 281–302. https://doi.org/10.1023/A:1011216131638 doi: 10.1023/A:1011216131638
    [32] R. L. Calabrese, Half-center oscillators underlying rhythmic movements, in The Handbook of Brain Theory and Neural Networks, (1998), 444–447.
    [33] Y. Zang, S. Hong, E. D. Schutter, Firing rate-dependent phase responses of Purkinje cells support transient oscillations, eLife, 9 (2020), e60692. https://doi.org/10.7554/eLife.60692 doi: 10.7554/eLife.60692
    [34] M. Liu, L. Duan, In-phase and anti-phase spikes synchronization within mixed Bursters of the pre-Bözinger complex, Electron. Res. Arch., 30 (2022), 961–977. https://doi.org/10.3934/era.2022050 doi: 10.3934/era.2022050
    [35] S. Li, G. Zhang, J. Wang, Y. Chen, B. Deng, Emergent central pattern generator behavior in chemical coupled two-compartment models with time delay, Physica A, 491 (2018), 177–187. https://doi.org/10.1016/j.physa.2017.08.121 doi: 10.1016/j.physa.2017.08.121
    [36] A. Doloc-Mihu, R. L. Calabrese, A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity, J. Biol. Phys., 37 (2011), 263–283. https://doi.org/10.1007/s10867-011-9215-y doi: 10.1007/s10867-011-9215-y
    [37] A. Doloc-Mihu, R. L. Calabrese, Analysis of family structures reveals robustness or sensitivity of bursting activity to parameter variations in a half-center oscillator (HCO) model, eNeuro, 3 (2016). https://doi.org/10.1523/ENEURO.0015-16.2016
    [38] I. Elices, P. Varona, Asymmetry factors shaping regular and irregular bursting rhythms in central pattern generators, Front. Comput. Neurosci., 11 (2017), 9. https://doi.org/10.3389/fncom.2017.00009 doi: 10.3389/fncom.2017.00009
    [39] A. J. White, Sensory feedback expands dynamic complexity and aids in robustness against noise, Biol. Cybern., 116 (2022), 267–269. https://doi.org/10.1007/s00422-021-00917-2 doi: 10.1007/s00422-021-00917-2
    [40] Z. Yu, P. J. Thomas, Dynamical consequences of sensory feedback in a half-center oscillator coupled to a simple motor system, Biol. Cybern., 115 (2021), 135–160. https://doi.org/10.1007/s00422-021-00864-y doi: 10.1007/s00422-021-00864-y
    [41] R. Huerta, P. Varona, M. I. Rabinovich, H. D. I. Abarbanel, Topology selection by chaotic neurons of a pyloric central pattern generator, Biol. Cybern., 84 (2001), L1–L8. https://doi.org/10.1007/PL00007976 doi: 10.1007/PL00007976
    [42] V. In, A. Kho, P. Longhini, J. D. Neff, A. Palacios, P. L. Buono, Meet ANIBOT: the first biologically-inspired animal robot, Int. J. Bifurcation Chaos, 32 (2022), 2230001. https://doi.org/10.1142/S0218127422300014 doi: 10.1142/S0218127422300014
    [43] A. S. Lele, Y. Fang, J. Ting, A. Raychowdhury, Learning to walk: bio-mimetic hexapod locomotion via reinforcement-based spiking central pattern generation, IEEE J. Emerging Sel. Top. Circuits Syst., 10 (2020), 536–545. https://doi.org/10.1109/JETCAS.2020.3033135 doi: 10.1109/JETCAS.2020.3033135
    [44] T. Sun, Z. Dai, P. Manoonpong, Distributed-force-feedback-based reflex with online learning for adaptive quadruped motor control, Neural Networks, 142 (2021), 410–427. https://doi.org/10.1016/j.neunet.2021.06.001 doi: 10.1016/j.neunet.2021.06.001
    [45] A. Espinal, H. Rostro-Gonzalez, M. Carpio, E. I. Guerra-Hernandez, M. Ornelas-Rodriguez, M. Sotelo-Figueroa, Design of spiking central pattern generators for multiple locomotion gaits in hexapod robots by christiansen grammar evolution, Front. Neurorobot., 10 (2016), 6. https://doi.org/10.3389/fnbot.2016.00006 doi: 10.3389/fnbot.2016.00006
    [46] F. Zhan, S. Liu, Response of electrical activity in an improved neuron model under electromagnetic radiation and noise, Front. Comput. Neurosci., 11 (2017), 107. https://doi.org/10.3389/fncom.2017.00107 doi: 10.3389/fncom.2017.00107
    [47] F. Zhan, S. Liu, J. Wang, B. Lu, Bursting patterns and mixed-mode oscillations in reduced Purkinje model, Int. J. Mod. Phys. B, 32 (2018), 1850043. https://doi.org/10.1142/S0217979218500431 doi: 10.1142/S0217979218500431
    [48] D. Terman, J. E. Rubin, A. C. Yew, C. J. Wilson, Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci., 22 (2002), 2963–2976. https://doi.org/10.1523/JNEUROSCI.22-07-02963.2002 doi: 10.1523/JNEUROSCI.22-07-02963.2002
    [49] F. Su, J. Wang, S. Niu, H. Li, B. Deng, C. Liu, et al., Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia–thalamic network, Neural Networks, 98 (2018), 283–295. https://doi.org/10.1016/j.neunet.2017.12.001 doi: 10.1016/j.neunet.2017.12.001
    [50] J. Song, S. Liu, H. Lin, Model-based quantitative optimization of deep brain stimulation and prediction of Parkinson's states, Neuroscience, 498 (2022), 105–124. https://doi.org/10.1016/j.neuroscience.2022.05.019 doi: 10.1016/j.neuroscience.2022.05.019
    [51] J. Song, H. Lin, S. Liu, Basal ganglia network dynamics and function: role of direct, indirect and hyper-direct pathways in action selection, Network: Comput. Neural Syst., 34 (2023), 84–121. https://doi.org/10.1080/0954898X.2023.2173816 doi: 10.1080/0954898X.2023.2173816
    [52] M. Valero, I. Zutshi, E. Yoon, G. Buzsáki, Probing subthreshold dynamics of hippocampal neurons by pulsed optogenetics, Science, 375 (2022), 570–574. https://doi.org/10.1126/science.abm1891 doi: 10.1126/science.abm1891
    [53] C. A. Tassinari, G. Cantalupo, B. Hoegl, P. Cortelli, L. Tassi, S. Francione, et al., Neuroethological approach to frontolimbic epileptic seizures and parasomnias: the same central pattern generators for the same behaviours, Rev. Neurol., 165 (2009), 762–768. https://doi.org/10.1016/j.neurol.2009.08.002 doi: 10.1016/j.neurol.2009.08.002
    [54] C. A. Tassinari, E. Gardella, G. Cantalupo, G. Rubboli, Relationship of central pattern generators with parasomnias and sleep-related epileptic seizures, Sleep Med. Clin., 7 (2012), 125–134. https://doi.org/10.1016/j.jsmc.2012.01.003 doi: 10.1016/j.jsmc.2012.01.003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(756) PDF downloads(54) Cited by(0)

Article outline

Figures and Tables

Figures(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog