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Abstract: In this paper, we explore the mechanisms of central pattern generators (CPGs), circuits
that can generate rhythmic patterns of motor activity without external input. We study the half-center
oscillator, a simple form of CPG circuit consisting of neurons connected by reciprocally inhibitory
synapses. We examine the role of asymmetric coupling factors in shaping rhythm activity and how
different network topologies contribute to network efficiency. We have discovered that neurons with
lower synaptic strength are more susceptible to noise that affects rhythm changes. Our research high-
lights the importance of asymmetric coupling factors, noise, and other synaptic parameters in shaping
the broad regimes of CPG rhythm. Finally, we compare three topology types’ regular regimes and
provide insights on how to locate the rhythm activity.
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1. Introduction

Central pattern generator (CPG) is a microcircuit of neuron network that can generate multi-rhythm
pattern sequences spontaneously without any external information input [1,2]. It controls motor behav-
iors such as swimming [3, 4], walking, breathing, heartbeat, and more [2, 5–7]. Recently, Marder et al.
made a well-summarized study about CPG and put forward new insights on small rhythmic circuits [8].
CPG is characterized by the robustness and flexibility of the neuronal network in rhythmic activity.

There have been numerous studies examining the working mechanisms of CPGs from both theo-
retical and experimental perspectives [9–16]. However, achieving flexibility and robustness in CPGs
remains not fully understood. Coordination of motor rhythms can be better achieved through the
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connection between CPGs, which may form an attractor. Each attractor determines a rhythmic behav-
ior [17, 18]. Some researchers have proposed a rhythmic pattern for human arm movement, indicating
that humans also possess a higher level of CPG in their central nervous system. Research on the reasons
for these characteristics of CPGs is still ongoing, and it remains unclear how CPGs achieve the robust-
ness and flexibility required for the collaborative implementation of essential rhythm patterns [19].
Thus, discussion on the rhythmic activity pattern of CPGs is still active [20, 21]. Some models are
based on Hodgkin-Huxley (HH) neurons, while others are non-periodic neural oscillation models.
Theoretical researchers have revealed the hidden internal mechanisms of CPGs from the perspective
of dynamics [13, 22]. Collens et al. have revealed a mutually inhibitory tri-neuron neural network that
explains the emergence, disappearance, and stability of neuronal rhythm with the change of synaptic
parameters [22]. Lu et al. [23, 24] have studied the synchronization and resonance of small-world net-
works based on CPGs and proposed integer and fractional models based on the working mechanisms
of CPGs. Recent research by Zang and Marder in PNAS (2023) demonstrates that how the spatial
morphology of neurons can significantly impact the firing patterns of the CPG circuit [25]. The firing
mechanism of neuronal rhythm is known to vary according to several studies [26–28]. However, it
is still unclear whether this diversity in neuronal rhythm implies a diversity of CPG circuit function.
A crucial question is whether the same CPG circuit can produce multiple motor behaviors, making it
multifunctional [29, 30]. The generation of motor behavior depends on the modulation of a variety of
motor rhythms, making it necessary and important to study rhythm diversity in order to understand the
function of CPG.

Studying small circuits is crucial to understanding CPG. Typically, these circuits are half-center
oscillators (HCO), the smallest building unit that consists of groups of neurons that inhibit each
other [31, 32]. HCO circuits are considered the easiest to identify. The firing patterns of HCOs may
also be influenced by neuronal phase response curves, as indicated in the work by Zang et al. [33].
The synchronization of two neurons has been explored by researchers [34, 35]. They have analyzed
how neuronal parameters affect the network activity of HCO, which in turn affects motor control [36].
Researchers have also analyzed the effect of changes in system parameter space on the robustness of
the HCO bursting model [37, 38]. Noise, the robustness of HCO, and sensory feedback are closely
related [39,40]. However, the effect of synaptic conductance on HCO rhythm patterns still needs to be
analyzed. Inhibition of connection can improve the stability of CPG, and we will explore how changes
in the rhythm pattern of HCO and tri-neuron CPG occur with the system parameter regime. We will
also examine the effects of synaptic conductance and noise on CPG rhythm patterns.

In this study, we investigate the origin of the flexibility and robustness of CPGs as well as the impact
of synaptic conductance on the network rhythm. We examine three different topological modes where
each neuron has at least one connection to the other member of the CPG. Our findings demonstrate
that diverse rhythm patterns exist in Patterns B and C, as shown in Figure 3. These results are based
on the functional characteristics of CPG network structures, which are classified as “open” and “non-
open” and were studied by Huerta et al. These findings are also consistent with certain biological
principles [41]. Rhythmic motor patterns are associated with diseases such as spinal cord injury and
can be easily studied quantitatively. Therefore, the study of CPG rhythm can significantly contribute to
the development of disease diagnosis and the advancement of intelligent science. For example, Mader
et al. (2001) elaborated that CPG can contribute to the development of new therapeutic methods in
the recovery of spinal cord injury and summarized the mechanism process of CPG [1]. The biological
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CPG principle and the establishment of spiking neural network [42–45] inspire the development of
intelligent science.

The paper is structured as follows. In Section 2, we describe the materials and methods we used
in building CPG, including the HH neuron model. Then, in Section 3.1, we illustrate how the rhythm
pattern of HCO is regulated by synaptic strength and noise. In Section 3.2, we investigate CPG rhythms
in other topologies. Finally, we present the discussion and conclusion in Section 4.

2. Materials and methods

2.1. Neuronal model and dynamics

In our CPG, each interneuron is modeled by a Hodgkin–Huxley (HH) model. This microcircuit
captures the dynamics by a single compartment, which is described by the following differential equa-
tions [28, 46, 47]:

Cm
dV

dt
= −INa − IK − ILeak + ID,

dn

dt
=

n∞ − n

τn
,

dQ

dt
= ω +

√
2Dξ (t) .

(2.1)

Here, Cm denotes the neural membrane capacitance density (µF/cm2); V represents the membrane
potential (mV); the gating variable n of activated K+ channels, denotes the activation probability of
potassium ion channels; τn is the time constant (ms); ξ(t) is Gaussian white noise; ω and D are angular
frequency and noise intensity for forcing currents; Q(t) is phase noise; and INa, IK , and ILeak are sodium
ion current, potassium ion current, and leakage current. Their expressions are as follows:

INa = gNam∞(V) (1 − n) (V − ENa) ,
IK = gKn (V − EK) ,
ILeak = gL (V − EL) ,
ID = A sin (Q (t)) ,

where the parameter gNa and gK are the maximal conductances (mS/cm2); ENa, EK , and EL are the
reversal potentials (mV); m∞ and n∞ are the steady-state of the ionic gating channels; and A is amplitude
for forcing currents. They are modeled using:

m∞(V) =
1

1 + exp

−V + 35

5


, n∞(V) =

1

1 + exp

−V + 36

5


.

Specifically, we add a voltage-dependent linear control current (I) to this model, which is expressed
as follows.

dI

dt
= ε (−80 − V) . (2.2)

Now, ε is the feedback coefficient, and ε = 0.001 is used if not otherwise specified.

Electronic Research Archive Volume 32, Issue 1, 686–706.



689

Figure 1. Sequence diagram of interspike intervals of a single neuron for gK = 4.2nS and
7nS , as the change of parameter ε.

By adjusting parameters, the HH model can reproduce the firing patterns observed in neurons, which
underlie their rhythmic properties in the CPG. Figure 1 displays the sequence diagram of interspike
intervals (ISIs) of a single neuron without noise. When gK = 4.2nS , the system undergoes period-
doubling bifurcation with the change of parameter ε, leading to chaos. At this point, the system has
two period-doubling cascade paths, and the range of parameters that produce chaos broadens as ε
increases. One period-doubling cascade path disappears around ε = 0.0145, while the other path has
an interspike interval remaining. As we will see below, the system displays the spiking mode when
ε > 0.0145. When gK = 7nS , the system shows a bifurcation diagram that resembles the period-adding
cascade as parameters increase. There is still a bifurcation path from period-doubling to chaos. The
ISI diagram clearly shows three layers, which may contain deep neural information not captured by
the firing patterns of neurons. In the following section, we will present the firing sequence diagram for
the corresponding parameters of Figure 1.

In Figure 2, the left panel displays the time series for gK = 4.2nS (above Figure 1). When ε = 0.001,
the neuron model exhibits bursting, which corresponds to several ISIs shown in Figure 1. For ε = 0.005
and 0.0075, there are three and two ISIs respectively, represented by three spikings and two spikings
per bursting. When ε = 0.01, this extends to four ISIs, and although the firing pattern appears similar
to that of ε = 0.0075, it has changed. At ε = 0.0125, the system discharges chaotically, while at
ε = 0.015, the firing is a single spiking. The right panel of Figure 2 displays the time series for
gK = 7nS (below Figure 1). At ε = 0.01, the model discharge shows two ISIs. As the parameter varies
from 0.02 to 0.014, the discharge pattern of the model exhibits different chaotic discharges. In this
manner, by calculating the ISIs, we can observe the hidden information of the firing sequence.
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Figure 2. Time series diagram. Left panel gK = 4.2nS and parameter ε from top to bottom
is 0.001, 0.005, 0.0075, 0.01, 0.0125, 0.015; right panel gK = 7nS and parameter ε from top
to bottom is 0.01, 0.02, 0.04, 0.08, 0.12, 0.14.

2.2. CPG based model

The inhibitory relationship between neurons is considered to be a key point in the generation of
rhythms. Our CPG models typically consist of two or three neurons. The most common structure de-
scribing firing rhythmic activities consists of two coupled neurons that inhibit each other (Figure 3A).
This structure is widely known as half-center oscillator and is symmetrically coupled through both in-
hibitory connections with g12 and g21. We will start off with the simplest network where two cells next
section. On this basis, we extended the number of neurons to three (Figure 3B,C). In three circuits,
neurons and inhibitory synapses (small black solid dots) form a hybrid microcircuit. And neurons are
labeled with different colors (blue, red and green) which correspond to the colors in the firing activ-
ities. The synaptic transmission contained in the CPG structure in Figure 3 are ionotropic synapses.
These synaptic are inhibitory synapses and are modeled using a first-order kinetic equations, which are
conductance-based type similar to previous studies [48–51]:

Ipre→post = gpre→postH∞(Vpre)
(
Vpre − Epre→post

)
,

H∞(Vpre) =
1

1 + exp

−Vpre − θ

σ


. (2.3)

Here, Vpre is the presynaptic voltage, σ = 1mV is the steepness, θ = −60mV sets the value when the
function is semi-activated, Epre→post is the reversal potential, and gpre→post is the maximal conductance
(gi j, i, j = 1, 2, 3 & i , j in Figure 3).
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Figure 3. Three different topologies of mutually inhibited neuronalcircuits in this study. The
solid blue, green, and red circles represent neurons and are labeled as 1, 2 and 3, respec-
tively. These neurons are modeled by the HH model, see eqs 2.1 and 2.2. Black filled circles
represent inhibitory synapses and the model see eq 2.3. The conductance of the connection
between neurons is noted as gi j, i, j = 1, 2, 3 & i , j. This indicates that the synapse from
neuron i to neuron j.

For numerical integration of network system, the fourth-order Runge–Kutta algorithm was used
with a time step of 0.05ms. The total integration time length of each simulation run was 5000ms.
Simulations were implemented in Python 3.9.7 on PC with 12th Gen Intel(R) Core(TM) i7-12700H
2.30 GHz CPU.

3. Results

3.1. The rhythm activity of half-center oscillator

The discussion in this section is based on the reciprocal inhibition of two neurons, which we call
half-center oscillators (pattern A in Figure 3). The synchronous firing of neurons contains very impor-
tant neural information. Here we investigate the synchrony of half-central oscillator rhythm activity.
In Figure 4, we show the variation trend of synchronous firing with synaptic parameters of the model,
and we can see the roughly synchronous discharge pattern. Fixing the synaptic parameter σ, we can
find that the reversal potential Esyn has an intermittent effect on synchrony. The effect of the synap-
tic parameter σ is more continuous than fixing it. The transversely separated bands are very distinct,
indicating that the synaptic reversal potential has a significant effect on synchrony. In the following,
we will select three appropriate sets of parameters to investigate the synchronization of half-central
oscillation according to the phase difference diagram shown in Figure 4. The three sets of parameters
are Esyn = −110mV , σ = 1 (phase difference between 100ms and 200ms); Esyn = −89mV , σ = 1/2
(phase difference between 200 and 250ms); and Esyn = −61mV , σ = 1/6 (phase difference between 0
and 50ms).
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Figure 4. The phase difference bifurcation diagram of the model firing under the change of
the bissynaptic parameters. σ and Esyn are two synaptic parameters. The smaller the value of
the phase difference, the closer it is to synchronization.

From the top of the Figure 5 (i.e., when the synaptic parameters are Esyn = −110mV and σ = 1),
as the two-parameter synaptic conductance is changed, the phase difference of the neuronal membrane
potential exceeds 100 except near the diagonal. The diagonal is shown in dark blue, indicating that the
two neurons are perfectly synchronized. By simulating their discharge state, it can also be confirmed
that synchronization is achieved when the conductance parameters of the two synapses are equal. In
particular, in the small regime of two synaptic conductances close to zero and close to one, the area of
perfect synchrony is slightly larger. Dark purple indicates that the phase difference between the two
neurons is maximal. One interesting observation is that the bifurcation diagram of the phase difference
is symmetric about the diagonal as the two-parameter synaptic conductance change.

When the synaptic parameters were changed to Esyn = −89mV and σ = 1/2, we obtained the
synchronous firing diagram of the half-center oscillator as shown in the middle of Figure 5. The
diagonal synchrony seems to be preserved as we can see from the figure. However, the discharge of the
diagonal is richer (The variety of the phase difference indicates the richness in the rhythm activity of the
half-central oscillator). The bifurcation diagram of the phase difference is still symmetric and we can
get a variety of differences in the phase difference depending on the color distribution of the pattern.
A variety of rhythm activities of the half-center oscillator can be realized, which makes it easier to
operate and transform the half-center oscillator. Furthermore, we can perform the rhythm control of
the half-center oscillator. Eventually, we may be able to achieve synchronous control of a half-central
oscillator. Synchronization does not necessarily require the two-parameter synaptic conductance to be
equal as can be seen from the bottom of Figure 5. Unlike in the previous two diagrams, the distinct
dark blue diagonals are missing, but the symmetry about the synaptic conductance is preserved. Here
the dark blue area is spread throughout the parameter bifurcation plane and the phase difference is
radially spread around the upper right corner, like a ripple of water. Based on the above analysis, small
synaptic conductance parameters may make it easier to achieve the synchronous rhythm of the half-
center oscillator, and synaptic parameters Esyn and σ have significant effects on their synchronization.
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In the following, we will investigate the ISIs of each neuron in the half-center oscillator model with
different potassium conductance gK under the above three sets of parameters. The left panel of Figure 6
depicts the bifurcation diagram under the three groups of parameters when the conductance parameter
is 4.2nS . It can be seen from the figure that the rhythm activity in the half-center oscillator of the three
bifurcation graphs is not synchronous. The top is like a bifurcation process of inverse period-adding
and the discharge of the system is relatively stable. We can see that the discharge is very abundant from
the middle, especially when the ε is between 0.01 and 0.015, which can be related to the middle of
Figure 5. The bottom shows the complex diversity of ISIs. Like the first two, ISIs are concentrated in
two layers and it is in a chaotic state. This corresponds to the bottom of Figure 5 and it is interspersed
with large phase differences dotted with dots. When the potassium conductance gK = 7nS , the ISIs for
the three sets of parameters are shown on the right panel of Figure 6. Compared with the left panel,
the ISIs have changed fundamentally. Neuron 1 in the half-center oscillator shows smaller ISIs than
neuron 2 shown at the top. In the middle, there is only one ISI in the former stage, and the chaotic ISIs
start to appear in the later stage. Therefore, the change in potassium conductance has a great influence
on the rhythm activity of the half-center oscillator.

We analyzed the bifurcation patterns and the ISIs patterns of the half-center oscillator to investigate
the rhythm activity when the potassium conductance is changed. Our research found that altering the
relative size of the two-parameter synaptic conductances could control the rhythm pattern of the half-
center oscillator. Different synaptic parameters such as Esyn and σ can trigger very different rhythm
patterns. Figure 7 presents an example where we took Esyn = −110mV , σ = 1, g12 = 0.2nS , g21 =

0.8nS to investigate the HCO rhythm under different potassium conductances. It turns out that a
single spike on the left panel has branches that cause neuron 1’s ISIs to decrease when noise is added
to it. We looked at the bursts rhythm, spiking rhythm, and mixed mode rhythm in HCO. A large
number of discharge patterns can be implemented in HCO, especially when gK = 7nS , by adjusting
the asymmetric coupling factor. By comparing the rhythmic activity, we found that when g12 is larger
than g21, neuron 1 fires earlier than neuron 2, and vice versa. In other words, synaptic conductance
parameters can control the firing start time of neurons in HCO. Synapse conductance parameters can
also synchronize discharge patterns in HCO as shown in Figure 8 under different discharge modes
when the synaptic parameters are exactly equal. Different discharge mode synchronization will occur
under different conductances such as burst synchronization, spiking synchronization, and subthreshold
synchronization. We found that in HCO, the synchronization regime is likely to appear when the
synaptic conductance parameters are equal, but the synchronization state will also appear when the
synaptic conductance parameters are not equal. Synaptic parameters are required to participate in the
mediation of neuron firing in this case. The inequality of the two synaptic parameters will lead to
a rich rhythm pattern of HCO. The synchronization state disappears when noise acts on neuron 1.
When gK = 4.2nS , the rhythmic discharge of neuron 1 changes greatly, while the burster structure
of neuron 2 is stable. When gK = 7nS , the spiking of neurons is disturbed. In particular, when
gK = 47.4nS , only neuron 1, which was originally subthreshold began to discharge, while neuron 2
remained subthreshold.
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Figure 5. Phase bifurcation diagram as a function of asymmetric coupling factor. Synaptic
parameters: top (Esyn = −110, σ = 1), middle (Esyn = −89mV , σ = 1/2), bottom (Esyn =

−61mV , σ = 1/6). Potassium conductance gK = 4.2nS . Here dark blue indicates gradual
synchronization, and dark purple is the largest phase difference.
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Figure 6. Sequence diagram of interspike intervals of half-center oscillators. The blue track
shows the ISIs of neuron 1, and the red track shows the ISIs of neuron 2. Synaptic parameters:
top (Esyn = −110mV , σ = 1), middle (Esyn = −89mV , σ = 1/2), and bottom (Esyn =

−61mV , σ = 1/6). Left panel: potassium conductance gK = 4.2nS ; right panel: potassium
conductance gK = 7nS .
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Figure 7. Sequence diagram of interspike intervals of half-center oscillators as potassium
conductance changes. Blue shows the firing sequence of neuron 1, red shows the firing
sequence of neuron 2. Synaptic conductance g12 = 0.2nS , g21 = 0.8nS . The left panel: HCO
without noise, and the right panel: HCO with noise and parameters A = 5,D = 2, ω = 0.5.
Here the noise only acts on neuron 1.

Subthreshold oscillation contains rich expression of neuronal information [52]. Here, subthreshold
oscillations of the half-center oscillator are shown in Figure 9. As you can be seen from the right
panel, Subthreshold oscillations alternate between neurons 1 and 2 in HCO, and subthreshold oscilla-
tions appear accompanied by small oscillations at lower membrane voltage values. The subthreshold
oscillations in neuron 2 are consistent with the current in synapse 2. A more detailed subthreshold
oscillation process can be found in the left panel, where the membrane voltage value of neuron 2 hov-
ers near the lowest center when subthreshold oscillation of neuron 1 begins. When neuron 1 ends
subthreshold oscillation, it continuously changes to hover around smaller membrane voltage values,
while neuron 2 begins subthreshold oscillation. This is how subthreshold oscillations of neurons 1 and
2 alternate.
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Figure 8. Synchronization of half-center oscillators rhythm activity. Synaptic conductance
g12 = 0.1nS , g21 = 0.1nS . The top, middle, and bottom represent the synchronization
of bursts mode, spiking, and subthreshold oscillation when gK = 4.2nS , 7nS , and 47.4nS ,
respectively. The left panel: HCO without noise, and the right panel: HCO with noise and
parameters A = 5,D = 2, ω = 0.5. Here the noise only acts on neuron 1.

Figure 9. Subthreshold firing phase diagram of half-center oscillator. The left panel is the
phase diagram. The right panel, from top to bottom, are the firing of neuron 1, firing of
neuron 2, and the current at synapse 2. gK = 46.4nS , g12 = 0.5nS , g21 = 1.0nS , σ = 1/5,
Esyn = −100mV .
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3.2. Sequentially inhibit the connected CPG rhythm pattern

This section discusses the patterns B and C (Figure 3) in a tri-neuron CPG. The time difference in
calculating its discharge sequence is significant by comparing the single neuron, half-center oscillator,
and tri-neuron CPG. The increase in the number of neurons will greatly reduce the computational effi-
ciency. In contrast, the increase in the number of synapses will also affect the computational efficiency,
but it is not as obvious as the increase in the number of neurons. Figures 10 and 11 show the discharge
pattern in pattern B (Figure 3) under two different synaptic conductance parameters while fixing the
potassium conductance gK = 4.2nS and two synaptic parameters Esyn = −110mV , σ = 1. Pattern B
(Figure 3) is the sequential inhibition of connected neuronal circuits, gi j indicates the synaptic conduc-
tance that the ith neuron inhibits the jth neuron.

Figure 10. The rhythm pattern is in the tri-neuron CPG. Blue, red, and green are the
membrane voltages of neurons 1–3, respectively. The synaptic conductance parameters are
g12 = 0.4nS , g23 = 0.6nS , g31 = 0.8nS . The corresponding display is pattern B (Figure 3).
The left panel: HCO without noise, and the right panel: HCO with noise and parameters
A = 5,D = 2, ω = 0.5. Here the noise only acts on neuron 1.

As can be seen from Figure 10, for this set of synaptic conductance parameters, members of CPG
exhibit different rhythm patterns than those in single neurons and half-center oscillators, which are
caused by synaptic coupling of neurons (left panel). If the discharge of blue neuron 1 is taken as the
starting point of the member in CPG, the typical CPG rhythm pattern is shown, that is, the discharge
order in CPG members is “blue-green-red” or “neuron 1-neuron 3-neuron 2”. When the noise is applied
to neuron 1, we find that the firing of neuron 1 changes greatly and the firing of neurons 2 and 3
changes weakly.

When we change the synaptic conductance g12 = 0.1nS in Figure 10, the rhythm pattern shown
in Figure 11 is obtained. At this time, the subtle shift in the discharge of members in CPG can be
controlled by adjusting the synaptic conductance g12. That is, the rhythm pattern control of such CPG
members can be realized and changes in synaptic conductance regulate the rhythm pattern of members
in CPG. When the noise is applied to neuron 1, the firing of neurons 2 and 3 changes weakly.

When the conductance of three synapses is equal, the members in CPG exhibit the same burst dis-
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charge in pattern B (Figure 3). In pattern B, we found a small rule that increased synaptic conductance
delayed the start time of postsynaptic neuron firing. When g31 is much smaller than g12, neurons 3
and 1 tend to be in sync. Using this property, the firing synchronization of neurons in CPG can be
easily regulated and controlled.

Figure 11. The rhythm pattern is in the tri-neuron CPG. Blue, red, and green are the
membrane voltages of neurons 1–3, respectively. The synaptic conductance parameters are
g12 = 0.1nS , g23 = 0.6nS , g31 = 0.8nS . The corresponding display is pattern B (Figure 3).
The left panel: HCO without noise, and the right panel: HCO with noise and parameters
A = 5,D = 2, ω = 0.5. Here the noise only acts on neuron 1.

3.3. CPG rhythm patterns of reciprocal inhibition connections

In the same way, we also analyze the rhythm pattern of tri-neuron CPG, namely pattern C (Figure 3).
This pattern is a tri-neuron circuit composed of pairs of neurons that inhibit each other. Although it has
the same two discharge sequences as the members of CPG in pattern B (Figure 3), the discharge mode
of members in CPG is completely different from that of pattern B (Figure 3), as shown in Figure 12.
At this time, the discharge order of CPG members showed “neuron 1-neuron 2-neuron 3”, but the
membrane voltage sequence of neuron 1 is different from that of neurons 2 and 3. Unlike the Figure 10,
each member of the CPG behaves in the same discharge. That is, the reciprocal inhibition of the CPG
loop increases the diversity of the discharge activities of its members. In addition, we found that when
noise was stimulated to neurons 1–3 respectively, the stimulation of neuron 2 completely destroyed the
original CPG firing rhythm pattern. The reason may be that the synaptic conductance parameters of
neuron 2 are very small.

In particular, when the conductance of each synapse in the CPG is different (As shown in Figure 13),
the member of CPG named neuron 1 shows an burster firing pattern, while neurons 2 and 3 show a
mixed bursting pattern. The discharge activities of such CPG members are caused by completely
asymmetric coupling factor regulation. The results show that asymmetric coupling factors can strongly
regulate the discharge of neurons. Under these synaptic parameters, the firing rhythm pattern was
substantially altered when we stimulated neurons 1–3 with noise, respectively. This may be because
CPG at this synaptic parameter is in a critical state. The members of CPG show very rich discharge
activities in pattern C (Figure 3), not all of which are shown here. We also investigated the patterns of
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two other types of synaptic connections in which members also have different discharges, only two of
which are shown here.

Figure 12. The rhythm pattern is in the tri-neuron CPG. Blue, red, and green are the
membrane voltages of neurons 1–3, respectively. The synaptic conductance parameters are
g12 = 0.02nS , g23 = 0.2nS , g31 = 0.3nS , g21 = 0.3nS , g32 = 0.02nS , g13 = 0.2nS . The
corresponding display is pattern C (Figure 3). A) represents HCO without noise; B), C) and
D) represent HCO with noise and parameters A = 5,D = 2, ω = 0.5. Here the noise only
acts on neuron 1 (B), neuron 2 (C), and neuron 3 (D), respectively.

Figure 13. The rhythm pattern is in the tri-neuron CPG. Blue, red, and green are the
membrane voltages of neurons 1–3, respectively. The synaptic conductance parameters are
g12 = 0.3nS , g23 = 0.5nS , g31 = 0.02nS , g21 = 0.02nS , g32 = 0.4nS , g13 = 0.6nS . The
corresponding display is pattern C (Figure 3). A) represents HCO without noise; B), C) and
D) represent HCO with noise and parameters A = 5,D = 2, ω = 0.5. Here the noise only
acts on neuron 1 (B), neuron 2 (C), and neuron 3 (D), respectively.
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4. Conclusions

This paper first introduces the rich discharge properties of the single neuron model, which has been
used in our modeling. Second, the influence of asymmetric coupling factor and two synaptic param-
eters σ and Esyn on the half-center oscillators discharge synchronization is discussed. We find that
synaptic parameters and noise together affect the discharge of two neurons in the half-center oscillator.
Asymmetric coupling factors modulate the rhythm activity in the half-center oscillator. We find that
the firing synchronization occurred not only at the diagonal, but also when the remaining two synap-
tic parameters σ and Esyn are changed. Small synaptic conductance parameters may make it easier
to synchronize the half-center oscillator, and the synaptic conductance may control the discharge or-
der of neurons in the half-center oscillator. The interspike intervals diagram of two neurons in the
half-center oscillator is used to verify the firing synchronization under several fixed parameters. In
addition to the synaptic conductance parameters, the synaptic parameters σ and Esyn can be adjusted
to increase the diversity of rhythm activity of the half-center oscillator. The synaptic conductance and
synaptic parameters together control its rhythm activities. The rhythms properties of CPG are regu-
lated by the potassium conductance value. The typical CPG modes and discharge synchronization of
three groups of different potassium conductance parameters are shown, which are bursting, spiking,
and mixed-mode oscillations (MMOs) respectively. It has been shown that noise can regulate the dis-
charge rhythm and synchronization of HCO. Finally, two typical pattern are discussed, and how the
asymmetric coupling factors regulate the discharge of members in CPG is analyzed.

The asymmetric coupling factor can adjust the discharge mode of CPG members, such as burst-
ing mode, spiking, and MMOs, to realize the control of rhythms activity in CPG. The phase diagram
explains the alternations between neuronal firing patterns and the effect of synaptic currents on mem-
brane potential. We simulated six connected modes, and only the discharge modes of members in
partial CPG of the three types were shown here. We find that the rhythm activity of neurons in pat-
terns B and C (Figure 3) were more abundant than those in single and half-center oscillators neurons.
Asymmetric coupling factors (synaptic conductance) can control the start time of postsynaptic neu-
ron firing, and the increase of synaptic conductance will delay the start time of postsynaptic neuron
firing. When potassium conductance gK is changed, the discharge of CPG members will be greatly
changed. For example, when gK = 7nS , the members of CPG show abundant spiking discharge mode
in pattern B (Figure 3). In the reciprocal inhibition CPG pattern C (Figure 3), when the potassium
conductance gK = 4.2nS and the synaptic conductance is equal, the members of CPG do not discharge
synchronously, which is different from the performance of pattern B (Figure 3). When the potassium
conductance gK = 7nS and the synaptic conductance is equal, the discharge of the CPG members does
not spiking synchronously, which is a very interesting question but we have not shown the diagram in
detail here due to space constraints. That will be one of the things we will look at in the future. In
addition, we found that noise and synaptic strength together determine the robustness of CPG, and the
critical state of CPG rhythmic discharge is sensitive to noise. Furthermore, we have observed the same
noise had a greater effect on the rhythm changes of neurons with lower synaptic strength. That is, high
strength inhibition connection will improve the stability of CPG. Of course, the changes in synaptic
parameters can also regulate the discharge mode of CPG members, so these factors will jointly deter-
mine the discharge mode of CPG members. The influence of comprehensive factors will be the focus
and difficulty of our future research, and the rhythm activities of other members will also need to be
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investigated. Finally, synapse parameters will be integrated to control and realize the rhythm activity
of CPG.

Our study focused on the chemical synapses between neurons, while the electrical coupling between
them was not considered. However, in future studies, we will analyze the synergistic effects of both
electrical and chemical coupling in CPG as it can lead to very different rhythmic patterns. Our current
model demonstrates that synaptic conductance can influence the rhythm pattern of the tri-neuron net-
work and a change in the conductance can shift the members of the CPG into typical regular sequential
discharge mode. Our findings reveal a unique rhythm pattern in CPG, where neuron 1 exhibits chaotic
spiking while neurons 2 and 3 show regular bursting. This rhythmic activity and regular sequential
discharge pattern of the CPG is crucial for its flexibility, robustness, and ultimate realization of swim-
ming, walking, or other cognitive functions. The diversity of rhythm activities in CPG is essential
for its flexibility and robustness, which can resist interference from external information. Changes in
synaptic conductance and noise can produce a large number of different rhythm activities, making the
CPG less susceptible to external interference.

CPG rhythm patterns have been discovered in invertebrates (crustacean pyloric or gastric) and leech
heartbeats. These patterns are used to simulate the rhythm activity of the human central nervous sys-
tem, which in turn controls the rhythm of arm movement [17]. Additionally, CPG rhythm can help
in the diagnosis of various diseases. For instance, Mader et al. [1] have claimed that CPG can assist
in the development of therapeutic methods for the recovery of strong spinal cord injuries. Tassinari et
al. reviewed the relationship of central pattern generators with parasomnias and sleep-related epilep-
tic seizures and explained some epileptic seizures and parasomnias using the firing patterns of the
CPG [53, 54]. Therefore, studying the functioning principle of CPG rhythm activities is essential for
understanding related motor behaviors and achieving better motor control as well as improving dis-
ease diagnosis.
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