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Abstract: The notion of generalized quantum cluster algebras was introduced as a natural gener-
alization of Berenstein and Zelevinsky’s quantum cluster algebras as well as Chekhov and Shapiro’s
generalized cluster algebras. In this paper, we focus on a generalized quantum cluster algebra of Kro-
necker type which possesses infinitely many cluster variables. We obtain the cluster multiplication
formulas for this algebra. As an application of these formulas, a positive bar-invariant basis is explic-
itly constructed. Both results generalize those known for the Kronecker cluster algebra and quantum
cluster algebra.
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1. Introduction

Cluster algebras were invented by Fomin and Zelevinsky [1, 2] in order to set up an algebraic
framework for studying the total positivity and Lusztig’s canonical bases. Quantum cluster algebras, as
the quantum deformations of cluster algebras, were later introduced by Berenstein and Zelevinsky [3]
for studying the dual canonical bases in coordinate rings and their q-deformations. An important
feature of (quantum) cluster algebras is the so–called Laurent phenomenon which says that all cluster
variables belong to an intersection of certain (may be infinitely many) rings of Laurent polynomials.

Generalized cluster algebras were introduced by Chekhov and Shapiro [4] in order to understand
the Teichmüller theory of hyperbolic orbifold surfaces. The exchange relations for cluster variables of
generalized cluster algebras are polynomial exchange relations, while the exchange relations for cluster
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algebras are binomial relations. Generalized cluster algebras also possess the Laurent phenomenon [4]
and are studied by many people in a similar way as cluster algebras (see for example [5–9]). As a
natural generalization of both quantum cluster algebras and generalized cluster algebras, we defined
the generalized quantum cluster algebras [10]. It was not surprising that the Laurent phenomenon also
holds in these algebras [11].

One of the most important problems in cluster theory is to construct cluster multiplication formulas.
For acyclic cluster algebras, Sherman and Zelevinsky [12] first established the cluster multiplication
formulas in rank 2 cluster algebras of finite and affine types. Cerulli [13] generalized this result to
rank 3 cluster algebra of affine type A(1)

2 . Caldero and Keller [14] constructed the cluster multiplication
formulas between two cluster characters for simply laced Dynkin quivers, which was generalized to
affine types by Hubery in [15] and to acyclic types by Xiao and Xu in [16, 17]. In the quantum case,
Ding and Xu [18] first gave the cluster multiplication formulas of the quantum cluster algebra of the
Kronecker type. Recently, Chen et al. [19] obtained the cluster multiplication formulas in the acyclic
quantum cluster algebras with arbitrary coefficients through some quotients of derived Hall algebras of
acyclic valued quivers. Cluster multiplication formulas play an important role in constructing bases of
(quantum) cluster algebras with nice properties (see for example [12–14, 18, 20]). In cluster theory, a
basis is called positive if its structure constants are positive. Several positive bases such as the atomic
bases and the triangular bases of some (quantum) cluster algebras have been found (see [21, 22]). So
far, no similar results have been obtained in generalized quantum cluster algebras. It becomes natural
to think whether one can give an explicit treatment of the above mentioned problems for generalized
quantum cluster algebras.

In this paper, we study a generalized quantum cluster algebra of Kronecker type denoted by
Aq(2, 2), in which the exchange relations are trinomial while binomial in the usual quantum cluster
algebra of the Kronecker type. We recall the definition of generalized quantum cluster algebras in
Section 2, provide the cluster multiplication formulas ofAq(2, 2) in Section 3, and explicitly construct
a positive bar-invariant Z[q±

1
2 , h]-basis ofAq(2, 2) in Section 4.

2. Preliminaries

In this section, we mainly review the definition of generalized quantum cluster algebras [10].
Throughout this section, m and n are positive integers with m ≥ n. Let B̃ = (bi j) be an m × n in-
teger matrix whose upper n × n submatrix is denoted by B and Λ = (λi j) a skew-symmetric m × m
integer matrix.

Definition 2.1. The pair (Λ, B̃) is called compatible if for any 1 ≤ i ≤ m and 1 ≤ j ≤ n, we have

m∑
k=1

λkibk j =

d̃ j, if i = j;
0, otherwise;

(2.1)

for some positive integers d̃ j (1 ≤ j ≤ n).

Note that the skew-symmetric matrix Λ gives a skew-symmetric bilinear form on Zm defined by

Λ(a,b) = aTΛb

for any column vectors a,b ∈ Zm.
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Let q be a formal variable and Z[q±
1
2 ] ⊂ Q(q

1
2 ) the ring of integer Laurent polynomials in q

1
2 . One

can associate to (Λ, q) a quantum torus algebra as follows.

Definition 2.2. The quantum torus T over Z[q±
1
2 ] is generated by the symbols {X(a) | a ∈ Zm} subject

to the multiplication relations
X(a)X(b) = q

1
2Λ(a,b)X(a + b), (2.2)

for any a,b ∈ Zm.

The skew-field of fractions of T is denoted by F . On the quantum torus T , the Z-linear bar-
involution is defined by setting

q
r
2 X(a) = q−

r
2 X(a)

for any r ∈ Z and a ∈ Zm.
Let ek be the k-th standard unit vector in Zm and set Xk = X(ek) for 1 ≤ k ≤ m. An easy computation

shows that

X(a) = q
1
2

∑
i< j
λ jiaia j

Xa1
1 Xa2

2 . . . X
am
m

for a = (a1, a2, . . . , am)T ∈ Zm.
For any 1 ≤ i ≤ n, we say that B̃′ = (b′kl) is obtained from the matrix B̃ = (bkl) by the matrix

mutation in the direction i if B̃′ := µi
(
B̃
)

is given by

b′kl =

−bkl, if k = i or l = i,

bkl +
|bki |bil+bki |bil |

2 , otherwise.

Denote the function

[x]+ =

x, if x ≥ 0;
0, if x ≤ 0.

For any 1 ≤ i ≤ n and a sign ε ∈ {±1}, denote by Eε the m × m matrix associated to the matrix
B̃ = (bi j) with entries as follows

(Eε)kl =


δkl, if l , i;
−1, if k = l = i;

[−εbki]+, if k , l = i.

Proposition 2.3 ( [3, Proposition 3.4]). Let (Λ, B̃) be a compatible pair, then the pair (Λ′, B̃′) is also
compatible and independent of the choice of ε, where Λ′ = ET

εΛEε and B̃′ = µi(B̃).

We say that the compatible pair (Λ′, B̃′) is obtained from the compatible pair (Λ, B̃) by mutation in
the direction i and denoted by µi(Λ, B̃). It is known that µi is an involution [3, Proposition 3.6].

For each 1 ≤ i ≤ n, let di be a positive integer such that bli
di

are integers for all 1 ≤ l ≤ m and denote
by βi = 1

di
bi, where bi is the i-th column of B̃. Denote by

hi = {hi,0(q
1
2 ), hi,1(q

1
2 ), . . . , hi,di(q

1
2 )}, 1 ≤ i ≤ n,

where hk,l(q
1
2 ) ∈ Z[q±

1
2 ] satisfying that hk,l(q

1
2 ) = hk,dk−l(q

1
2 ) and hk,0(q

1
2 ) = hk,dk(q

1
2 ) = 1. We set

h := (h1,h2, . . . ,hn).

Electronic Research Archive Volume 32, Issue 1, 670–685.



673

Definition 2.4. With the above notations, the quadruple (X,h,Λ, B̃) is called a quantum seed if the pair
(Λ, B̃) is compatible. For a given quantum seed (X,h,Λ, B̃) and each 1 ≤ i ≤ n, the new quadruple

(X′,h′,Λ′, B̃′) := µi(X,h,Λ, B̃)

is defined by

X′(ek) = µi(X(ek)) =


X(ek), if k , i;

di∑
r=0

hi,r(q
1
2 )X(r[βi]+ + (di − r)[−βi]+ − ei), if k = i;

(2.3)

and
h′ = µi(h) = h and (Λ′, B̃′) = µi(Λ, B̃).

We say that the quadruple µi(X,h,Λ, B̃) is obtained from (X,h,Λ, B̃) by mutation in the direction i.

Proposition 2.5 ( [10, Proposition 3.6]). Let the quadruple (X,h,Λ, B̃) be a quantum seed, then the
quadruple µi(X,h,Λ, B̃) is also a quantum seed.

Note that µi is an involution by [10, Proposition 3.7]. Two quantum seeds are said to be mutation-
equivalent if they can be obtained from each other by a sequence of seed mutations. Given an initial
quantum seed (X,h,Λ, B̃), let (X′,h′,Λ′, B̃′) be mutation-equivalent to (X,h,Λ, B̃). Denote by X′ =
{X′1, . . . , X

′
m} which is called the extended cluster and the set {X′1, . . . , X

′
n} is called the cluster. The

element X′i is called a cluster variable for any 1 ≤ i ≤ n and X′k a frozen variable for any n+ 1 ≤ k ≤ m.
Note that X′k = Xk (n + 1 ≤ k ≤ m). For convenience, let P denote the multiplicative group generated
by Xn+1, . . . , Xm and q

1
2 , and ZP the ring of the Laurent polynomials in Xn+1, . . . , Xm with coefficients

in Z[q±
1
2 ].

Definition 2.6. Given the initial quantum seed (X,h,Λ, B̃), the associated generalized quantum cluster
algebra A(X,h,Λ, B̃) is the ZP-subalgebra of F generated by all cluster variables from the quantum
seeds which are mutation-equivalent to (X,h,Λ, B̃).

The following Laurent phenomenon is one of the most important results on generalized quantum
cluster algebras.

Theorem 2.7 ( [11, Theorem 3.1]). The generalized quantum cluster algebraA(X,h,Λ, B̃) is a subal-
gebra of the ring of Laurent polynomials in the cluster variables in any cluster over ZP.

3. The cluster multiplication formulas ofAq(2, 2)

In the following, we will consider the generalized quantum cluster algebra associated with the initial
seed (X,h,Λ, B), where d = (2, 2), h1 = h2 = (1, h, 1) with h ∈ Z[q±

1
2 ] and h = h,

Λ =

(
0 1
−1 0

)
and B =

(
0 2
−2 0

)
.

Note that ΛT B =
(

2 0
0 2

)
, and the based quantum torus is

T = Z[q±
1
2 ][X±1

1 , X
±1
2 |X1X2 = qX2X1].
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The quiver associated to the matrix B is the Kronecker quiver Q:

1• //// •2

We call this algebra a generalized quantum cluster algebra of Kronecker type, denoted byAq(2, 2). By
the definition and the Laurent phenomenon, Aq(2, 2) is the Z[q±

1
2 ]-subalgebra of T generated by the

cluster variables {Xk | k ∈ Z} which are obtained from the following exchange relations:

Xk−1Xk+1 = qX2
k + q

1
2 hXk + 1.

Recall that the n-th Chebyshev polynomial of the first kind Fn(x) is defined by

F0(x) = 1, F1(x) = x, F2(x) = x2 − 2, Fn+1(x) = Fn(x)x − Fn−1(x) for n ≥ 2,

and Fn(x) = 0 for n < 0.
Denote

Xδ := q
1
2 X0X3 − q

1
2 (q

1
2 X1 + h)(q

1
2 X2 + h),

thus Xδ ∈ Aq(2, 2).

Lemma 3.1. For each n ∈ Z>0, Fn(Xδ) is a bar-invariant element inAq(2, 2).

Proof. An direct computation shows that

Xδ = X(−1,−1) + hX(−1, 0) + hX(0,−1) + X(−1, 1) + X(1,−1),

thus Xδ is a bar-invariant element in Aq(2, 2). According to the definition of the n-th Chebyshev
polynomial Fn(x), one can deduce that Fn(Xδ) belong to Z[Xδ]. Thus the proof is completed. □

We define an automorphism denoted by σ on the generalized quantum cluster algebra Aq(2, 2) as
follows

σ(Xk) = Xk+1 and σ(q
k
2 ) = q

k
2 ,

for any k ∈ Z. Then we have the following result which will be useful for us to prove the cluster
multiplication formulas.

Lemma 3.2. For each n ∈ Z>0, σ(Fn(Xδ)) = Fn(Xδ).

Proof. Note that
σ(Xδ) = q

1
2 X1X4 − q

1
2 (q

1
2 X2 + h)(q

1
2 X3 + h),

X3 = X(−1, 2) + hX(−1, 1) + X(−1, 0)

and

X4 =X(−2, 3) + (q−
1
2 + q

1
2 )hX(−2, 2) + (q−1 + h2 + q)X(−2, 1) + (q−

1
2 + q

1
2 )hX(−2, 0)

+ X(−2,−1) + hX(−1, 1) + h2X(−1, 0) + hX(−1,−1) + X(0,−1).

Thus

q
1
2 X1X4 =q2X(−1, 3) + (q + q2)hX(−1, 2) + (1 + qh2 + q2)X(−1, 1) + (1 + q)hX(−1, 0)
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+ X(−1,−1) + qhX(0, 1) + q
1
2 h2 + hX(0,−1) + X(1,−1)

and

q
1
2 (q

1
2 X2 + h)(q

1
2 X3 + h) =q2X(−1, 3) + (q + q2)hX(−1, 2) + qhX(0, 1)

+ (qh2 + q2)X(−1, 1) + qhX(−1, 0) + q
1
2 h2.

We obtain that

σ(Xδ) = X(−1, 1) + hX(−1, 0) + X(−1,−1) + hX(0,−1) + X(1,−1) = Xδ.

Then the proof follows from the induction on n and the definition of the n-th Chebyshev polynomial
Fn(x). □

For a real number x, denote the floor function by ⌊x⌋ and the ceiling function by ⌈x⌉. The following
Theorem 3.3 and Remark 3.4 give the explicit cluster multiplication formulas forAq(2, 2).

Theorem 3.3. Let m and n be integers.

(1) For any m > n ≥ 1, we have

Fm(Xδ)Fn(Xδ) = Fm+n(Xδ) + Fm−n(Xδ), Fn(Xδ)Fn(Xδ) = F2n(Xδ) + 2. (3.1)

(2) For any n ≥ 1, we have

XmFn(Xδ) = q−
n
2 Xm−n + q

n
2 Xm+n +

n∑
k=1

(
k∑

l=1

q−
k+1

2 +l)hFn−k(Xδ). (3.2)

(3) For any n ≥ 2, we have

XmXm+n =q⌊
n
2 ⌋X⌊m+ n

2 ⌋
X⌈m+ n

2 ⌉
+

n−1∑
k=1

(
min(k,n−k)∑

l=1

q−
1
2+l)hXm+n−k

+

n−1∑
l=1

q−
n−1−l

2 clFn−1−l(Xδ), (3.3)

where c1 = 1, c2 = h2 and for k ≥ 2,

c2k = [
k−1∑
i=1

ai(q−(k−i) + qk−i) + ak]h2

and

c2k−1 = 2[
k−1∑
i=1

bi(q−(k−i) + qk−i) + bk]h2 +



k
2∑

i=1

(q−(k+1−2i) + qk+1−2i), if k is even;

k−1
2∑

i=1

(q−(k+1−2i) + qk+1−2i) + 1, if k is odd;
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with ai =
i(i+1)

2 and

bi =


i2 − 1

4
, if i is odd;

i2

4
, if i is even.

Proof. (1) The proof is immediately from the definition of the n-th Chebyshev polynomial Fn(x).
(2) By using the automorphism σ repeatedly, it suffices to prove the following equation

X1Fn(Xδ) = q−
n
2 X1−n + q

n
2 X1+n +

n∑
k=1

(
k∑

l=1

q−
k+1

2 +l)hFn−k(Xδ),

for n ≥ 1.
When n = 1,

X1Xδ =X(1, 0)(X(−1,−1) + hX(−1, 0) + hX(0,−1) + X(−1, 1) + X(1,−1))

=q−
1
2 X(0,−1) + h + q−

1
2 hX(1,−1) + q

1
2 X(0, 1) + q−

1
2 X(2,−1).

Note that X0 = X(2,−1) + hX(1,−1) + X(0,−1). Thus X1Xδ = q−
1
2 X0 + q

1
2 X2 + h. It follows that

XmXδ = q−
1
2 Xm−1 + q

1
2 Xm+1 + h

for all m ∈ Z.
When n = 2,

X1F2(Xδ) =X1(X2
δ − 2) = q−

1
2 X0Xδ + q

1
2 X2Xδ + hXδ − 2X1

=q−1X−1 + qX3 + (q−
1
2 + q

1
2 )h + hXδ.

When n ≥ 3, assume that X1Ft(Xδ) = q−
t
2 X1−t + q

t
2 X1+t +

t∑
k=1

(
k∑

l=1
q−

k+1
2 +l)hFn−k(Xδ) for t ≤ n − 1.

If t = n, then

X1Fn(Xδ) = X1(Fn−1(Xδ)Xδ − Fn−2(Xδ)) = X1Fn−1(Xδ)Xδ − X1Fn−2(Xδ).

By induction, we have

X1Fn−1(Xδ)Xδ

=q−
n−1

2 X2−nXδ + q
n−1

2 XnXδ +
n−1∑
k=1

(
k∑

l=1

q−
k+1

2 +l)hFn−1−k(Xδ)Xδ

=q−
n
2 X1−n + q1− n

2 X3−n + q
n
2−1Xn−1 + q

n
2 Xn+1 + (q−

n−1
2 + q

n−1
2 )h

+

n−1∑
k=1

(
k∑

l=1

q−
k+1

2 +l)hFn−1−k(Xδ)Xδ,
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and X1Fn−2(Xδ) = q1− n
2 X3−n + q

n
2−1Xn−1 +

n−2∑
k=1

(
k∑

l=1
q−

k+1
2 +l)hFn−2−k(Xδ). Note that

n−1∑
k=1

(
k∑

l=1

q−
k+1

2 +l)hFn−1−k(Xδ)Xδ −
n−2∑
k=1

(
k∑

l=1

q−
k+1

2 +l)hFn−2−k(Xδ)

=

n−3∑
k=1

(
k∑

l=1

q−
k+1

2 +l)h(Fn−1−k(Xδ)Xδ − Fn−2−k(Xδ)) + (
n−2∑
l=1

q−
n−1

2 +l)h(X2
δ − 2)

+ (
n−2∑
l=1

q−
n−1

2 +l)h + (
n−1∑
l=1

q−
n
2+l)hXδ

=

n−1∑
k=1

(
k∑

l=1

q−
k+1

2 +l)hFn−k(Xδ) + (
n−2∑
l=1

q−
n−1

2 +l)h

and
n−2∑
l=1

q−
n−1

2 +lh + (q−
n−1

2 + q
n−1

2 )h =
n∑

l=1
q−

n+1
2 +lh.

It follows that X1Fn(Xδ) = q−
n
2 X1−n + q

n
2 Xn+1 +

n∑
k=1

(
k∑

l=1
q−

k+1
2 +l)hFn−k(Xδ).

(3) In order to prove (3.3), it suffices to show that

X1X1+n = q⌊
n
2 ⌋X⌊1+ n

2 ⌋
X⌈1+ n

2 ⌉
+

n−1∑
k=1

(
min(k,n−k)∑

l=1

q−
1
2+l)hX1+n−k +

n−1∑
l=1

q−
n−1−l

2 clFn−1−l(Xδ)

for n ≥ 1.
When n = 2, it is the exchange relation. When n = 3, by (3.2), we have that

X1X4

=X1(q−
1
2 X3Xδ − q−1X2 − q−

1
2 h)

=q−
1
2 (qX2

2 + q
1
2 hX2 + 1)Xδ − q−1X1X2 − q−

1
2 hX1

=q
1
2 X2(q−

1
2 X1 + q

1
2 X3 + h) + h(q−

1
2 X1 + q

1
2 X3 + h) + q−

1
2 Xδ − q−1X1X2 − q−

1
2 hX1

=qX2X3 + q
1
2 hX2 + q

1
2 hX3 + q−

1
2 Xδ + h2.

Assume that

X1X1+t = q⌊
t
2 ⌋X⌊1+ t

2 ⌋
X⌈1+ t

2 ⌉
+

t−1∑
k=1

(
min(k,t−k)∑

l=1

q−
1
2+l)hX1+t−k +

t−1∑
l=1

q−
t−1−l

2 clFt−1−l(Xδ)

for all t ≤ n − 1.
Note that X1Xn+1 = q−

1
2 X1XnXδ − q−1X1Xn−1 − q−

1
2 hX1.

When n is even and n ≥ 4, then

X1Xn = q
n
2−1X n

2
X n

2+1 +

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
1
2+l)hXn−k +

n−2∑
l=1

q−
n−2−l

2 clFn−2−l(Xδ),
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q−1X1Xn−1 = q
n
2−2X2

n
2
+

n−3∑
k=1

(
min(k,n−2−k)∑

l=1

q−
3
2+l)hXn−1−k +

n−3∑
l=1

q−
n−1−l

2 clFn−3−l(Xδ)

and

q−
1
2 X1XnXδ

=q
n−3

2 X n
2
X n

2+1Xδ +
n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−1+l)hXn−kXδ +
n−2∑
l=1

q−
n−1−l

2 clFn−2−l(Xδ)Xδ

=q
n
2−2X2

n
2
+ q

n
2 X2

n
2+1 + q

n−1
2 hX n

2+1 + q
n
2−1 + q

n−3
2 hX n

2
+

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
3
2+l)hXn−1−k

+

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
1
2+l)hXn+1−k +

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−1+l)h2

+

n−2∑
l=1

q−
n−1−l

2 clFn−2−l(Xδ)Xδ.

Note that 

k ≤ n − 2 − k, if 1 ≤ k ≤
n
2
− 1;

k > n − 2 − k, if
n
2
≤ k ≤ n − 3;

k < n − 1 − k, if 1 ≤ k ≤
n
2
− 1;

k > n − 1 − k, if
n
2
≤ k ≤ n − 3;

k < n − k, if 1 ≤ k ≤
n
2
− 1;

k ≥ n − k, if
n
2
≤ k ≤ n − 1.

It follows that

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
3
2+l)hXn−1−k −

n−3∑
k=1

(
min(k,n−2−k)∑

l=1

q−
3
2+l)hXn−1−k − q−

1
2 hX1

=

n−3∑
k= n

2

q−
5
2+n−khXn−1−k =

n−1∑
k= n

2+2

q−
1
2+n−khXn+1−k.

Hence

n−1∑
k=1

(
min(k,n−k)∑

l=1

q−
1
2+l)hXn+1−k

=

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
3
2+l)hXn−1−k +

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
1
2+l)hXn+1−k + q

n−1
2 hX n

2+1
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+ q
n−3

2 hX n
2
−

n−3∑
k=1

(
min(k,n−2−k)∑

l=1

q−
3
2+l)hXn−1−k − q−

1
2 hX1.

Note that

q
n
2−1 +

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−1+l)h2 +

n−2∑
l=1

q−
n−1−l

2 clFn−2−l(Xδ)Xδ

−

n−3∑
l=1

q−
n−1−l

2 clFn−3−l(Xδ)

=q
n
2−1 +

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−1+l)h2 + q−1cn−3 +

n−2∑
l=1

q−
n−1−l

2 clFn−1−l(Xδ),

it suffices to prove that q
n
2−1 +

n−2∑
k=1

(
min(k,n−1−k)∑

l=1
q−1+l)h2 + q−1cn−3 = cn−1.

We have that

cn−1 = [

n
2−1∑
i=1

bi(q−( n
2−i) + q

n
2−i) + b n

2
]2h2 + (q−( n

2−1) + q−( n
2−3) + . . . + q

n
2−3 + q

n
2−1),

q−1cn−3 =
[ n

2−2∑
i=1

bi(q−( n
2−i) + q

n
2−2−i) + b n

2−1q−1
]
2h2

+ (q−( n
2−1) + q−( n

2−3) + . . . + q
n
2−5 + q

n
2−3)

and bk − bk−2 = k − 1. Thus

cn−1 − q−1cn−3 − q
n
2−1 =

[ n
2∑

k=1

(k − 1)q
n
2−k

]
2h2 =

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−1+l)h2.

Therefore

q
n
2−1 +

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−1+l)h2 + q−1cn−3 +

n−2∑
l=1

q−
n−1−l

2 clFn−1−l(Xδ)

=

n−1∑
l=1

q−
n−1−l

2 clFn−1−l(Xδ)

and X1X1+n = q
n
2 X2

n
2+1 +

n−1∑
k=1

(
min(k,n−k)∑

l=1
q−

1
2+l)hXn+1−k +

n−1∑
l=1

q−
n−1−l

2 clFn−1−l(Xδ).

When n is odd and n ≥ 5, we have

X1Xn = q
n−1

2 X2
n+1

2
+

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
1
2+l)hXn−k +

n−2∑
l=1

q−
n−2−l

2 clFn−2−l(Xδ)
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and

q−1X1Xn−1

=q
n−5

2 X n−1
2

X n+1
2
+

n−3∑
k=1

(
min(k,n−2−k)∑

l=1

q−
3
2+l)hXn−1−k +

n−3∑
l=1

q−
n−1−l

2 clFn−3−l(Xδ).

Then

q−
1
2 X1XnXδ

=q
n
2−1X n+1

2
(q−

1
2 X n−1

2
+ q

1
2 X n+3

2
+ h) +

n−2∑
l=1

q−
n−1−l

2 clFn−2−l(Xδ)Xδ

+

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−1+l)h(q−
1
2 Xn−1−k + q

1
2 Xn+1−k + h)

=q
n−3

2 X n+1
2

X n−1
2
+ q

n−1
2 X n+1

2
X n+3

2
+ q

n
2−1hX n+1

2
+

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
3
2+l)hXn−1−k

+

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
1
2+l)hXn+1−k +

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−1+l)h2

+

n−2∑
l=1

q−
n−1−l

2 clFn−2−l(Xδ)Xδ.

Note that 

k < n − 2 − k, if 1 ≤ k ≤
n − 3

2
;

k > n − 2 − k, if
n − 1

2
≤ k ≤ n − 3;

k ≤ n − 1 − k, if 1 ≤ k ≤
n − 1

2
;

k > n − 1 − k, if
n + 1

2
≤ k ≤ n − 3;

k < n − k, if 1 ≤ k ≤
n − 1

2
;

k > n − k, if
n + 1

2
≤ k ≤ n.

Hence
n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
3
2+l)hXn−1−k −

n−3∑
k=1

(
min(k,n−2−k)∑

l=1

q−
3
2+l)hXn−1−k

=q−
1
2 hX1 +

n−3∑
k= n+1

2

qn− 5
2−khXn−1−k + q

n
2−2hX n−1

2
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=q−
1
2 hX1 +

n−3∑
k= n−1

2

qn− 5
2−khXn−1−k =

n∑
k= n+3

2

qn− 1
2−khXn+1−k.

Note that

q
n
2−1hX n+1

2
+

n−3
2∑

l=1

q−
1
2+lhX n+1

2
=

n−1
2∑

l=1

q−
1
2+lhX n+1

2

and
n−3∑

k= n−1
2

qn− 5
2−khXn−1−k =

n−1∑
k= n+3

2

qn− 1
2−khXn−1−k,

then we obtain that

q
n
2−1hX n+1

2
+

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
3
2+l)hXn−1−k +

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−
1
2+l)hXn+1−k

−

n−3∑
k=1

(
min(k,n−2−k)∑

l=1

q−
3
2+l)hXn−1−k − q−

1
2 hX1

=

n−1∑
k=1

(
min(k,n−k)∑

l=1

q−
1
2+l)hXn+1−k.

Since
n−2∑
l=1

q−
n−1−l

2 clFn−2−l(Xδ)Xδ −
n−3∑
l=1

q−
n−1−l

2 clFn−3−l(Xδ)

=

n−2∑
l=1

q−
n−1−l

2 clFn−1−l(Xδ) + q−1cn−3,

we only need to show that q−1cn−3 +
n−2∑
k=1

(
min(k,n−1−k)∑

l=1
q−1+l)h2 = cn−1.

Note that ak − ak−2 = 2k − 1 for k ≥ 3, then

cn−1 − q−1cn−3

=
[
(n − 2) + (n − 4)q + (n − 6)q2 + . . . + 5q

n−7
2 + 3q

n−5
2 + q

n−3
2
]
h2

=

n−2∑
k=1

(
min(k,n−1−k)∑

l=1

q−1+l)h2.

Therefore

X1X1+n = q
n−1

2 X n+1
2

X n+3
2
+

n−1∑
k=1

(
min(k,n−k)∑

l=1

q−
1
2+l)hXn+1−k +

n−1∑
l=1

q−
n−1−l

2 clFn−1−l(Xδ).

The proof is completed. □

Remark 3.4. According to [10, Proposition 4.6] and Lemma 3.1, all cluster variables and Fn(Xδ) (n ∈
Z>0) are bar-invariant. Therefore, the cluster multiplication formulas for Fn(Xδ)Fm(Xδ), Fn(Xδ)Xm and
Xm+nXm can be obtained by applying the bar-involution to all formulas in Theorem 3.3.
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4. A positive bar-invariant basis ofAq(2, 2)

In this section, we will explicitly construct a positive bar-invariant Z[q±
1
2 , h]-basis ofAq(2, 2).

Definition 4.1. A basis ofAq(2, 2) is called a positive Z[q±
1
2 , h]-basis if its structure constants belong

to Z≥0[q±
1
2 , h].

Denote
B = {q−

a1a2
2 Xa1

m Xa2
m+1|m ∈ Z, (a1, a2) ∈ Z2

≥0} ⊔ {Fn(Xδ)|n ∈ Z>0}.

Lemma 4.2. All elements in B are bar-invariant.

Proof. According to [10, Lemma 4.3, Proposition 4.6], the following equations hold for any m ∈ Z:

XmXm+1 = qXm+1Xm, Xm = Xm.

Thus, for any m ∈ Z and (a1, a2) ∈ Z2
≥0, we have

q−
a1a2

2 Xa1
m Xa2

m+1 = q
a1a2

2 Xa2
m+1Xa1

m = q−
a1a2

2 Xa1
m Xa2

m+1

which assert that all elements in the set {q−
a1a2

2 Xa1
m Xa2

m+1|m ∈ Z, (a1, a2) ∈ Z2
≥0} are bar-invariant. Together

with Lemma 3.1, we know that any element in B is bar-invariant. □

In order to prove that the elements in B are Z[q±
1
2 , h]-independent, we need the following definition

which gives a partial order ≤ on Z2.

Definition 4.3. Let (r1, r2) and (s1, s2) ∈ Z2. If ri ≤ si for each 1 ≤ i ≤ 2, we write (r1, r2) ≤ (s1, s2).
Furthermore, if ri < si for some i, we write (r1, r2) < (s1, s2).

Theorem 4.4. The set B is a positive bar-invariant Z[q±
1
2 , h]-basis ofAq(2, 2).

Proof. According to Theorem 3.3 and Remark 3.4, we can deduce that the generalized quantum cluster
algebraAq(2, 2) is Z[q±

1
2 , h]-spanned by the elements in B.

Note that Xδ has the minimal non-zero term X(−1,−1) associated to the partial order in Definition
4.3, and thus by Theorem 3.3, we deduce that the element Fn(Xδ) has the minimal non-zero term
X(−n,−n) for each n ∈ Z>0. According to Theorem 3.3 (2), we have XnXδ = q

1
2 Xn+1+q−

1
2 Xn−1+h. Thus,

for each n ≥ 2,we obtain that the cluster variable Xn has the minimal non-zero term anX(−n+2,−n+3)
where an ∈ Z[q±

1
2 ], and for each n ≥ −1, the cluster variable X−n has the minimal non-zero term

bnX(−n,−n − 1) where bn ∈ Z[q±
1
2 ]. Hence, there exists a bijection between the set of all minimal

non-zero terms in cluster variables and Fn(Xδ) (n ∈ Z>0) and almost positive roots associated to the
affine Lie algebra ŝl2. Using the same discussion as [12, Proposition 3.1], we have that there exists a
bijection between the set of all minimal non-zero terms in the elements in B and Z2, which implies that
the elements in B are Z[q±

1
2 , h]-independent.

It is easy to see that the structure constants of the cluster multiplication formulas in Theorem 3.3
and Remark 3.4 belong to Z≥0[q±

1
2 , h], i.e., positive. Thus by using Theorem 3.3 and Remark 3.4

repeatedly, one can deduce that the structure constants of the basis elements are positive. Together
with Lemma 4.2, the proof is completed. □
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Remark 4.5. If we set h = 0 and q = 1, then the set B is exactly the canonical basis of the cluster
algebra of Kronecker quiver obtained in [12].

Definition 4.6. An element in Aq(2, 2) is called positive if the coefficients of its Laurent expansion
associated to any cluster belong to Z≥0[q±

1
2 , h].

Remark 4.7. Using the same arguments as [24, Corollary 8.3.3], it is not difficult to see that every
element in B is positive: According to Theorem 2.7, for any element b ∈ B and any cluster (Xn, Xn+1),
we have

bXd1
n Xd2

n+1 =
∑

(m1,m2)

bm1,m2 Xm1
n Xm2

n+1

where d1, d2,m1,m2 are nonnegative integers and the coefficients bm1,m2 ∈ Z[q±
1
2 , h]. Note that B is

a positive basis by Theorem 4.4, thus bm1,m2 ∈ Z≥0[q±
1
2 , h]. In particular, we obtain that all cluster

variables ofAq(2, 2) are positive, which is a special case in [23].

5. Conclusions

We study a generalized quantum cluster algebra of Kronecker type Aq(2, 2). We prove the cluster
multiplication formulas of Aq(2, 2). For this, we define the element Xδ in Aq(2, 2), and then use the
n-th Chebyshev polynomial of the first kind Fn(x) (n ∈ Z≥0) which naturally arises in cluster theory
associated to quivers of affine type and surface type. As an application of the cluster multiplication
formulas, a positive bar-invariant basis of this algebra is explicitly constructed. We hope the combi-
natorics developed here will be used to study generalized quantum cluster algebras for any rank in a
future study.
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