Research article

Gradient estimates in generalized Orlicz spaces for quasilinear elliptic equations via extrapolation

  • Received: 22 April 2023 Revised: 26 July 2023 Accepted: 26 July 2023 Published: 10 August 2023
  • MSC : 35R35, 42B20, 46E30

  • The gradient estimates in the generalized Orlicz space for weak solutions of a class of quasi-linear elliptic boundary value problems are obtained using the modern technique of extrapolation. The coefficients are assumed to have small BMO seminorms, and the boundary of the domain is sufficiently flat in the sense of Reifenberg. As a corollary, we apply our results to the variable Lebesgue spaces.

    Citation: Ruimin Wu, Yinsheng Jiang, Liyuan Wang. Gradient estimates in generalized Orlicz spaces for quasilinear elliptic equations via extrapolation[J]. AIMS Mathematics, 2023, 8(10): 24153-24161. doi: 10.3934/math.20231231

    Related Papers:

  • The gradient estimates in the generalized Orlicz space for weak solutions of a class of quasi-linear elliptic boundary value problems are obtained using the modern technique of extrapolation. The coefficients are assumed to have small BMO seminorms, and the boundary of the domain is sufficiently flat in the sense of Reifenberg. As a corollary, we apply our results to the variable Lebesgue spaces.



    加载中


    [1] Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi, Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces, J. Funct. Anal., 275 (2018), 2538–2571. http://doi.org/10.1016/j.jfa.2018.05.015 doi: 10.1016/j.jfa.2018.05.015
    [2] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57 (2018), 62. http://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [3] S. Byun, J. Oh, Global gradient estimates for non-uniformly elliptic equations, Calc. Var. Partial Differ. Equ., 56 (2017), 46. http://doi.org/10.1007/s00526-017-1148-2 doi: 10.1007/s00526-017-1148-2
    [4] S. Byun, L. Wang, S. Zhou, Nonlinear elliptic equations with small $BMO$ coefficients in Reifenberg domains, J. Funct. Anal., 250 (2007), 167–196. http://doi.org/10.1016/j.jfa.2007.04.021 doi: 10.1016/j.jfa.2007.04.021
    [5] S. Byun, F. P. Yao, S. L. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations, J. Funct. Anal., 255 (2008), 1851–1873. http://doi.org/10.1016/j.jfa.2008.09.007 doi: 10.1016/j.jfa.2008.09.007
    [6] L. A. Caffarelli, I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1–21. http://doi.org/10.1002/(SICI)1097-0312(199801)51:13.0.CO;2-G doi: 10.1002/(SICI)1097-0312(199801)51:13.0.CO;2-G
    [7] L. Caffarelli, A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Anal., 175 (2018), 1–27. http://doi.org/10.1016/j.na.2018.05.003 doi: 10.1016/j.na.2018.05.003
    [8] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Springer Science & Business Media, 2013.
    [9] D. Cruz-Uribe, P. Hästö, Extrapolation and interpolation in generalized Orlicz spaces, Trans. Amer. Math. Soc., 370 (2018), 4323–4349.
    [10] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Pérez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264.
    [11] D. Cruz-Uribe, J. M. Martell, C. Pérez, Weights, extrapolation and the theory of Rubio de Francia, In: Operator theory: Advances and applications, Birkhäuser Basel, 2011. http://doi.org/10.1007/978-3-0348-0072-3
    [12] D. Cruz-Uribe, L. -A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 369 (2017), 1205–1235.
    [13] E. Dibenedetto, J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math., 115 (1993), 1107–1134. http://doi.org/10.2307/2375066 doi: 10.2307/2375066
    [14] P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, In: Lecture notes in mathematics, Springer, 2019. https://doi.org/10.1007/978-3-030-15100-3_3
    [15] P. Harjulehto, P. Hästö, R. Klén, Generalized Orlicz spaces and related PDE, Nonlinear Anal., 143 (2016), 155–173. http://doi.org/10.1016/j.na.2016.05.002 doi: 10.1016/j.na.2016.05.002
    [16] P. Hs̈t, ̈ J. Ok, Maximal regularity for non-autonomous differenetial equations, J. Eur. Math. Soc., 24 (2022), 1285–1334. https://doi.org/10.48550/arXiv.1902.00261
    [17] T. Iwaniec, Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators, Studia Math., 75 (1983), 293–312.
    [18] J. Kinnuen, S. L. Zhou, A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differ. Equ., 24 (1999), 2043–2068. http://doi.org/10.1080/03605309908821494 doi: 10.1080/03605309908821494
    [19] J. Kinnuen, S. L. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients, Differ. Integral Equ., 14 (2001), 475–492.
    [20] J. M. Martell, C. Prisuelos-Arribas, Weighted Hardy spaces associated with elliptic operators. Part: I. Weighted norm inequalities for conical square functions, Trans. Amer. Math. Soc., 369 (2017), 4193–4233. http://doi.org/10.1090/tran/6768 doi: 10.1090/tran/6768
    [21] L. Grafakos, Classical fourier analysis, In: Graduate texts in mathematics, New York: Springer, 2008. https://doi.org/10.1007/978-1-4939-1194-3
    [22] T. Mengesha, N. C. Phuc, Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differ. Equ., 250 (2011), 2485–2507. http://doi.org/10.1016/j.jde.2010.11.009 doi: 10.1016/j.jde.2010.11.009
    [23] T. Mengesha, N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Ration. Mech. Anal., 203 (2012), 189–216. http://doi.org/10.1007/s00205-011-0446-7 doi: 10.1007/s00205-011-0446-7
    [24] J. L. R. de Francia, Factorization and extrapolation of weights, Bull. Amer. Math. Soc., 7 (1982), 393–395. http://doi.org/10.1090/S0273-0979-1982-15047-9 doi: 10.1090/S0273-0979-1982-15047-9
    [25] S. Liang, S. Z. Zheng, Gradient estimate of a variable power for nonlinear elliptic equations with Orlicz growth, Adv. Nonlinear Anal., 10 (2021), 172–193. http://doi.org/10.1515/anona-2020-0121 doi: 10.1515/anona-2020-0121
    [26] G. Mingione, V. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197. http://doi.org/10.1016/j.jmaa.2021.125197 doi: 10.1016/j.jmaa.2021.125197
    [27] S. Yang, D. Yang, W. Yuan, Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part, Adv. Nonlinear Anal., 11 (2022), 1496–1530. http://doi.org/10.48550/arXiv.2201.00909 doi: 10.48550/arXiv.2201.00909
    [28] A. Vitolo, Lipschitz estimates for partial trace operators with extremal Hessian eigenvalues, Adv. Nonlinear Anal., 11 (2022), 1182–1200. https://doi.org/10.1515/anona-2022-0241 doi: 10.1515/anona-2022-0241
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(940) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog