Citation: Tianjun Lu, Xian Zhong, Luo Zhong, RuiqiLuo. A location-aware feature extraction algorithm for image recognition in mobile edge computing[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6672-6682. doi: 10.3934/mbe.2019332
[1] | S. Bera, S. Misra and J. J. P. C. Rodrigues, Cloud computing applications for smart grid: A survey, IEEE T. Parall. Distr., 26 (2015), 1477–1494. |
[2] | C. Esposito, A. Castiglione, B. Martini, et al., Cloud manufacturing: security, privacy, and forensic concerns, IEEE Cloud Comput., 3 (2016), 16–22. |
[3] | Y. C. Hu, M. Patel, D. Sabella, et al., Mobile edge computing: A key technology towards 5G, ETSI white paper, 11 (2015), 1–16. |
[4] | M. T. Liu, F. R. Yu, Y. L. Teng, et al., Distributed resource allocation in blockchain-based video streaming systems with mobile edge computing, IEEE T. Wirel. Commun., 5 (2019), 695–708. |
[5] | S. Wang, Y. Zhao, J. Xu, et al., Edge Server Placement in Mobile Edge Computing, Journal of Parallel and Distributed Computing, 2018. Available from: https://www.sciencedirect.com/science/article/pii/S0743731518304398. |
[6] | S. Wang, Y. Zhao, L. Huang, et al., QoS Prediction for Service Recommendations in Mobile Edge Computing, Journal of Parallel and Distributed Computing, 2017. Available from: http://www.sciencedirect.com/science/article/pii/S074373151730268X. |
[7] | H. T. Zhao, S. Y. Sun, Z. L. Jing, et al., Local structure based supervised feature extraction, Pattern Recognition, 39 (2005), 1546–1550. |
[8] | W. Zhang, X. Y. Xue, H. Lu, et al., Discriminant neighborhood embedding for classification, Pattern Recognition, 39 (2006), 2240–2243. |
[9] | S. C. Yan, D. Xu, B. Y. Zhang, et al., Graph embedding: a general framework for dimensionality reduction, In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2005), 830–837. |
[10] | S. C. Yan, D. Xu, B. Y. Zhang, et al., Graph embedding and extensions: a general framework for dimensionality reduction, IEEE T. Pattern Anal., 29 (2007), 40–51. |
[11] | C. T. Ding and S. G. Wang, Appropriate points choosing for subspace learning over image classification, J. Supercomput., 75 (2018), 688–703. |
[12] | C. T. Ding and L. Zhang, Double adjacency graphs-based discriminant neighborhood embedding, Pattern Recognition, 48 (2015), 1734–1742. |
[13] | Y. C. Hu, M. Patel, D. Sabella, et al., Mobile edge computing: A key technology towards 5G, ETSI white paper, 11 (2015), 1–16. |
[14] | N. Abbas, Y. Zhang, A. Taherkordi, et al., Mobile edge computing: a survey, IEEE Internet Things, 5 (2018), 450–465. |
[15] | E. Ahmed, A. Naveed, A. Gani, et al., Process state synchronization-based application execution management for mobile edge/cloud computing, Future Gener. Comp. Sy., 91 (2019), 579–589. |
[16] | Y. M. Zhang, X. L. Lan, Y. Li, et al., Efficient Computation Resource Management in Mobile Edge-Cloud Computing, IEEE Internet Things, 6 (2019), 3455–3466. |
[17] | J. Zhang, L. Zhou, Q. Tang, et al., Stochastic Computation Offloading and Trajectory Scheduling for UAV-Assisted Mobile Edge Computing, IEEE Internet Things, 6 (2019), 3688–3699. |