The secure authentication of user data is crucial in various sectors, including digital banking, medical applications and e-governance, especially for images. Secure communication protects against data tampering and forgery, thereby bolstering the foundation for informed decision-making, whether managing traffic, enhancing public safety, or monitoring environmental conditions. Conventional visual cryptographic protocols offer solutions, particularly for color images, though they grapple with challenges such as high computational demands and reliance on multiple cover images. Additionally, they often require third-party authorization to verify the image integrity. On the other hand, visual cryptography offers a streamlined approach. It divides images into shares, where each pixel represented uniquely, thus allowing visual decryption without complex computations. The optimized multi-tiered authentication protocol (OMTAP), which is integrated with the visual sharing scheme (VSS), takes secure image sharing to the next level. It reduces share count, prioritizes image fidelity and transmission security, and introduces the self-verification of decrypted image integrity through asymmetric key matrix generators, thus eliminating external validation. Rigorous testing has confirmed OMTAP's robustness and broad applicability, thereby ensuring that decrypted images maintain their quality with a peak signal-to-noise ratio (PSNR) of 40 dB and full integrity at the receiver's end.
Citation: Tao Liu, Shubhangi Vairagar, Sushadevi Adagale, T. Karthick, Catherine Esther Karunya, John Blesswin A, Selva Mary G. Secure multimedia communication: advanced asymmetric key authentication with grayscale visual cryptography[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4762-4778. doi: 10.3934/mbe.2024209
The secure authentication of user data is crucial in various sectors, including digital banking, medical applications and e-governance, especially for images. Secure communication protects against data tampering and forgery, thereby bolstering the foundation for informed decision-making, whether managing traffic, enhancing public safety, or monitoring environmental conditions. Conventional visual cryptographic protocols offer solutions, particularly for color images, though they grapple with challenges such as high computational demands and reliance on multiple cover images. Additionally, they often require third-party authorization to verify the image integrity. On the other hand, visual cryptography offers a streamlined approach. It divides images into shares, where each pixel represented uniquely, thus allowing visual decryption without complex computations. The optimized multi-tiered authentication protocol (OMTAP), which is integrated with the visual sharing scheme (VSS), takes secure image sharing to the next level. It reduces share count, prioritizes image fidelity and transmission security, and introduces the self-verification of decrypted image integrity through asymmetric key matrix generators, thus eliminating external validation. Rigorous testing has confirmed OMTAP's robustness and broad applicability, thereby ensuring that decrypted images maintain their quality with a peak signal-to-noise ratio (PSNR) of 40 dB and full integrity at the receiver's end.
[1] | A. Akanksha, H. Garg, S. Shivani, Privacy protection of digital images using watermarking and QR code-based visual cryptography, Adv. Multimedia, 2023 (2023). https://doi.org/10.1155/2023/6945340 doi: 10.1155/2023/6945340 |
[2] | M. Naor, A. Shamir, Visual cryptography, in Advances in Cryptology—EUROCRYPT'94: Workshop on the Theory and Application of Cryptographic Techniques Perugia, (1995), 1–12. https://doi.org/10.1007/BFb0053419 |
[3] | F. Aswad, I. Salman, S. Mostafa, An optimization of color halftone visual cryptography scheme based on bat algorithm, J. Intell. Syst., 30 (2021), 816–835.https://doi.org/10.1515/jisys-2021-0042 doi: 10.1515/jisys-2021-0042 |
[4] | A. J. Blesswin, G. S. Mary, S. M. Kumar, Secured communication method using visual secret sharing scheme for color images, J. Internet Technol., 22 (2021), 803–810. |
[5] | E. Çiftci, E. Sümer, A novel steganography method for binary and color halftone images, Peer J. Comput. Sci., 8 (2022), 1062. https://doi.org/10.7717/peerj-cs.1062 doi: 10.7717/peerj-cs.1062 |
[6] | G. S. Mary, A. J. Blesswin, S. M. Kumar, Self-authentication model to prevent cheating issues in grayscale visual secret sharing schemes, Wirel. Pers. Commun., 125 (2022), 1695–1714. https://doi.org/10.1007/s11277-022-09628-8 doi: 10.1007/s11277-022-09628-8 |
[7] | G. Ateniese, C. Blundo, A. De Santis, D. R. Stinson, Extended capabilities for visual cryptography, Theor. Comput. Sci., 250 (2001), 143–161. https://doi.org/10.1016/S0304-3975(99)00127-9 doi: 10.1016/S0304-3975(99)00127-9 |
[8] | I. F. Elashry, O. S. Faragallah, A. M. Abbas, S. El-Rabaie, F. E. A. El-Samie, A new method for encrypting images with few details using rijndael and RC6 block ciphers in the electronic code book mode, Inf. Secur. J., 21 (2012), 193–205. https://doi.org/10.1080/19393555.2011.654319 doi: 10.1080/19393555.2011.654319 |
[9] | J. L. Sian, H. C. Wei, A probabilistic model of visual cryptography scheme with dynamic group, IEEE Trans. Inf. Forensics Secur., 7 (2012), 197–207. https://doi.org/10.1109/TIFS.2011.2167229 doi: 10.1109/TIFS.2011.2167229 |
[10] | C. C. Lin, W. H. Tsai, Visual cryptography for gray-level images by dithering techniques, Pattern Recognit. Lett., 24 (2003), 349–358. https://doi.org/10.1016/S0167-8655(02)00259-3 doi: 10.1016/S0167-8655(02)00259-3 |
[11] | A. J. Blesswin, P. Visalakshi, Optimal visual secret sharing on electrocardiography images for medical secret communications, Int. J. Control Theory Appl., 9 (2016), 1055–1062. |
[12] | Q. Wang, A. J. Blesswin, T. Manoranjitham, P. Akilandeswari, G. S. Mary, S. Suryawanshi, A. C. E. Karunya, Securing image-based document transmission in logistics and supply chain management through cheating-resistant visual cryptographic protocols, Math. Biosci. Eng., 20 (2023), 19983–20001. https://doi.org/10.3934/mbe.2023885 doi: 10.3934/mbe.2023885 |
[13] | A. J. Blesswin, G. S. Mary, S. M. M. Kumar, Multiple secret image communication using visual cryptography, Wireless Pers. Commun., 122 (2022), 3085–3103. https://doi.org/10.1007/s11277-021-09041-7 doi: 10.1007/s11277-021-09041-7 |
[14] | S. Gao, R. Wu, X. Wang, J. Wang, Q. Li, C. Wang, et al., A 3D model encryption scheme based on a cascaded chaotic system, Signal Process., 202 (2023), 108745. https://doi.org/10.1016/j.sigpro.2022.108745 doi: 10.1016/j.sigpro.2022.108745 |
[15] | G. S. Mary, S. M. M. Kumar, Secure grayscale image communication using significant visual cryptography scheme in real-time applications, Multimedia Tools Appl., 79 (2020), 10363–10382. https://doi.org/10.1007/s11042-019-7202-7 doi: 10.1007/s11042-019-7202-7 |
[16] | A. J. Blesswin, P. Visalakshi, A novel visual image confirmation (VIC) protocol using visual cryptography for securing ubiquitous bluetooth mobile communications, Res. J. Appl. Sci., 9 (2014), 503–510. https://dx.doi.org/10.36478/rjasci.2014.503.510 doi: 10.36478/rjasci.2014.503.510 |
[17] | J. S. Pan, T. Liu, H. M. Yang, B. Yan, Visual cryptography scheme for secret color images with color QR codes, J. Vis. Commun. Image Representation, 82 (2021), 103405. https://doi.org/10.1016/j.jvcir.2021.103405 doi: 10.1016/j.jvcir.2021.103405 |
[18] | Y. Cheng, Z. Fu, B. Yu, Improved visual secret sharing scheme for QR code applications, IEEE Trans. Inf. Forensics Secur., 13 (2018), 2393–2403. https://doi.org/10.1109/TIFS.2018.2819125 doi: 10.1109/TIFS.2018.2819125 |
[19] | S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, X. Tang, EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory, Inf. Sci., 621 (2023), 766–781. https://doi.org/10.1016/j.ins.2022.11.121 doi: 10.1016/j.ins.2022.11.121 |
[20] | Y. Ren, F. Liu, T. Guo, R. Feng, D. Lin, Cheating prevention visual cryptography scheme using Latin square, IET Inf. Secur., 11 (2017), 211–219. https://doi.org/10.1049/iet-ifs.2016.0126 doi: 10.1049/iet-ifs.2016.0126 |
[21] | G. S. Mary, A. J. Blesswin, S. M. M. Kumar, A self-verifiable computational visual cryptographic protocol for secure two-dimensional image communication, Meas. Sci. Technol., 30 (2019), 125404. https://doi.org/10.1088/1361-6501/ab2faa doi: 10.1088/1361-6501/ab2faa |
[22] | D. Zhang, L. Ren, M. Shafiq, Z. Gu, A privacy protection framework for medical image security without key dependency based on visual cryptography and trusted computing, Comput. Intell. Neurosci., 2023 (2023), 6758406. https://doi.org/10.1155/2023/6758406 doi: 10.1155/2023/6758406 |
[23] | A. J. Blesswin, P. Visalakshi, A new semantic visual cryptographic protocol (SVCP) for securing multimedia communications, Int. J. Soft Comput., 10 (2015), 175–182. https://dx.doi.org/10.36478/ijscomp.2015.175.182 |
[24] | R. Wu, S. Gao, X. Wang, S. Liu, Q. Li, U. Erkan, et al., AEA-NCS: An audio encryption algorithm based on a nested chaotic system, Chaos Solitons Fractals, 165 (2022), 112770. https://doi.org/10.1016/j.chaos.2022.112770 doi: 10.1016/j.chaos.2022.112770 |
[25] | N. Rani, S. R. Sharma, V. Mishra, Grayscale and colored image encryption model using a novel fused magic cube, Nonlinear Dyn., 108 (2022), 1773–1796. https://doi.org/10.1007/s11071-022-07276-y doi: 10.1007/s11071-022-07276-y |
[26] | M. Z. Salim, A. J. Abboud, R. Yildirim, A visual cryptography-based watermarking approach for the detection and localization of image forgery, Electronics, 11 (2022), 136. https://doi.org/10.3390/electronics11010136 doi: 10.3390/electronics11010136 |
[27] | A. Sherine, G. Peter, A. A. Stonier, K. Praghash, V. Ganji, CMY color spaced-based visual cryptography scheme for secret sharing of data, Wireless Commun. Mob. Comput., 2022 (2022), 1–12. https://doi.org/10.1155/2022/6040902 doi: 10.1155/2022/6040902 |
[28] | L. Wang, B. Yan, H. M. Yang, J. S. Pan, Flip extended visual cryptography for gray-scale and color cover images, Symmetry, 13 (2020), 65. https://doi.org/10.3390/sym13010065 doi: 10.3390/sym13010065 |
[29] | X. Wu, C. N. Yang, Probabilistic color visual cryptography schemes for black and white secret images, J. Visual Commun. Image Representation, 70 (2020), 102793. https://doi.org/10.1016/j.jvcir.2020.102793 doi: 10.1016/j.jvcir.2020.102793 |
[30] | S. Gao, R. Wu, X. Wang, J. Liu, Q. Li, C. Wang, et al., Asynchronous updating boolean network encryption algorithm, IEEE Trans. Circuits Syst. Video Technol., 33 (2023), 4388-4400. https://doi.org/10.1109/TCSVT.2023.3237136 doi: 10.1109/TCSVT.2023.3237136 |