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Abstract: Most of heterogeneous epidemic models assume exponentially distributed sojourn times
in infectious states, which may not be practical in reality and could affect the dynamics of the epi-
demic. This paper investigates the potential discrepancies between exponential and non-exponential
distribution models in analyzing the transmission patterns of infectious diseases and evaluating control
measures. Two SEIHR models with multiple subgroups based on different assumptions for latency are
established: Model I assumes an exponential distribution of latency, while Model II assumes a gamma
distribution. To overcome the challenges associated with the high dimensionality of GDM, we derive
the basic reproduction number (R0) of the model theoretically, and apply numerical simulations to eval-
uate the effect of different interventions on EDM and GDM. Our results show that considering a more
realistic gamma distribution of latency can change the peak numbers of infected and the timescales of
an epidemic, and GDM may underestimate the infection eradication time and overestimate the peak
value compared to EDM. Additionally, the two models can produce inconsistent predictions in esti-
mating the time to reach the peak. Our study contributes to a more accurate understanding of disease
transmission patterns, which is crucial for effective disease control and prevention.

Keywords: heterogeneous epidemic models; exponential distribution; gamma distribution; latent;
numerical simulations

1. Introduction

Throughout history, infectious diseases have posed a threat to human existence and even influenced
the course of history [1]. For example, the Black Death epidemic in Europe in the 14th century killed
more than 24 million people [2]. Now, with the outbreak of COVID-19, which has already caused
unprecedented public health challenges worldwide [3], it is more important than ever to study the
prevalence and spread of infectious diseases.

Mathematical modeling is a momentous approach to understand the transmission pattern of epi-
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demic [4]. Establishing and analyzing epidemic models plays a significant role in revealing the epi-
demic law of diseases and predicting their development trends [5]. Furthermore, it also helps to iden-
tify the causes and key factors of disease epidemics and provides theoretical guidance in the search for
appropriate control measures [5].

Epidemic models generally assume that the population is homogenous or randomly mixed, allow-
ing the model to ignore meta-population heterogeneity including gender differences, regional varia-
tions, age differences, etc. [6]. However, due to the oversimplification and idealization of homogenous
models, sometimes the analysis results deviate from the actual situation [4]. Especially for emerging
diseases such as MERS, SARS, and COVID-19, population heterogeneity has an important impact on
the epidemic law of diseases and the assessment of prevention and control measures. Therefore, it
is crucial to consider heterogeneity factors in epidemiological model in order to solve practical prob-
lems [4].

In recent years, much progress has been made in investigating how heterogeneity changes or in-
fluences the dynamic behavior of infectious diseases. Lajmanovich et al. [7] described the effect of
heterogeneity on infectious diseases by establishing a model of infectious diseases in n groups. On
this basis, Nold [8] discussed the dynamic behavior of a class of disease models by considering the
heterogeneity of infectious disease transmission in population. Wang et al. [9] considered aged het-
erogeneity factors of a COVID-19 model and further evaluated the effectiveness of control measures.
Cui et al. [4] developed a meta-population model that considered latent and asymptomatic individuals
separately and investigated the impact of heterogeneity factors. Dimarco et al. [10] analyzed the effect
of heterogeneity on the transmission pattern of infectious diseases by combining social contacts and
epidemic dynamics. Other studies related to heterogeneity can be found in the literatures [6, 11–16].

In spite of the above excellent literatures on heterogeneous epidemic models, however, most of these
references assume exponential distribution of latency, however, for many infectious diseases, this is not
realistic. Indeed, the distribution of latency maybe not exponential [17], and models with exponential
distribution may lead to bias in understanding the dynamic behavior of diseases and evaluating control
measures [18]. Moreover, there have been many cogent literatures supporting non-exponential latency
distribution for COVID-19 [19–23]: in [23], by fitting the latency data of 109 COVID-19 cases, the
results show that the gamma distribution may be the optimal distribution of COVID-19 latency. There-
fore, it is meaningful to consider that latency obeys a non-exponential distribution in the study of
infectious diseases.

In recent years, there have been some studies generated on latency obeying a non-exponential dis-
tribution. Feng et al. [24] developed a model for disease stages following a general distribution and
investigated the impact of disease stages following exponential and non-exponential distributions on
the aspects of evaluating the effectiveness of interventions. Feng et al. [25] further derived the ba-
sic reproduction number of disease stages obeying a non-exponential distribution, providing threshold
conditions for outbreak control and prevention. Capistran et al. [26] presented a COVID-19 mathemat-
ical model with a non-exponential distribution of disease stages, in order to forecast hospital demand
in urban regions throughout a COVID-19 pandemic and estimated lockdown-induced second fluctu-
ations. The above-mentioned literatures provide an in-depth study of epidemic models in which the
latent duration admits a non-exponential distribution but does not consider the influence of heteroge-
neous factors on the model.

On the other hand, Blyuss et al. [27] used an SEIR-type heterogeneous mathematical model as-

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12579–12598.



12581

suming non-exponentially distributed disease stages, in order to explore the dynamics and control of
COVID-19. Chen et al. [28] investigated the effect of mathematical models with heterogeneous suscep-
tible populations when the infectious period is non-exponentially distributed on studying COVID-19
transmission dynamics. None of the above studies have considered the potential discrepancies between
exponentially and non-exponentially distributed heterogeneous models, when applying models to re-
veal patterns of transmission of infectious diseases, predict their trends, and evaluate control measures.
It remains a worthwhile question of how the non-exponential distribution for latency of heterogeneous
models impacts the outbreak transmission dynamics and interventions compared to exponential distri-
butions. To our knowledge, this problem has not been well researched.

In this paper, motivated by the above issues, we investigate the potential differences between expo-
nentially distributed and non-exponentially distributed heterogeneous models when used to understand
patterns of transmission of infectious diseases and to evaluate control measures. To the best of our
knowledge, compared to the existing literatures, the main innovation of this paper is that it considers
for the first time the differences between latent period obeying exponential and non-exponential distri-
butions in heterogeneous models. It is believed that our research seems to bring new viewpoint for the
study and control of diseases.

The paper is organized as follows: Section 2 includes the establishment of the heterogeneous model
with m subpopulations whose disease stages obey a general distribution. Then, we reduce the general
distribution model into exponential distribution model (EDM) and gamma distribution model (GDM).
Furthermore, the basic reproduction number R0 is given a detailed theoretical derivation. In Section
3, PRCC (Partial rank correlation coefficient) is used to examine how the sensitivity of parameters
changes during disease transmission, and possible control strategies are evaluated by sensitivity anal-
ysis. Next, in order to investigate how control parameters affect the dynamic behavior of infectious
diseases and conclude differences in the assessment of the models, we use numerical simulations to
compare EDM and GDM. Section 4 involves some discussion and conclusion remarks.

2. Model and analysis

2.1. The model with general distribution of disease stages

Table 1. Explanation of symbols.
Symbol Description
Ni Total population of group i
S i Susceptible individuals of group i
Ei Exposed/Latent individuals of group i
Ii Infectious individuals of age group i
Hi Hospitalized individuals of group i
Ri Recovered/removed individuals of age group i
Qi(t) Probability that an individual in group i remains in the latent period for t time units since entering Ei stage
Pi(t) Probability that an individual in group i remains infectious for t time units since onset
Li(t) Probability that an individual in group i has not been hospitalized for t time units since onset
λi(t) Force of infection for susceptibles in group i at time t
βi j Transmission relative rate from age group j to i
κ Infectivity ratio of Hi to Ii individuals, (i = 1, 2, . . . ,m)
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In 2007, Feng et al. proposed a general distribution homogeneous model by using the method
of probability [24]. Referring to the research method, to investigate the effects of non-exponential
stage distributions assumed in heterogeneous epidemic models, we establish an SEIHR model with m
subgroups and arbitrarily distributed disease stages.

Hypothesis:
1) The total population is divided into m groups, each of which includes S i, Ei, Ii, Hi, Ri,
Ni = S i + Ei + Ii + Hi + Ri, (i = 1, 2, . . . ,m);
2) The initial conditions: S i(0) > 0, Ei(0) > 0, Ii(0) > 0,Hi(0) = Ri(0) = 0.
See other more detailed definitions of variables and parameters listed in Table 1.
The SEIHR model with m subpopulations and arbitrarily distributed disease stages consists of the

following integral and differential equations:

dS i

dt
= − λi(t)S i(t),

Ei =

∫ t

0
λi(s)S i(s)Qi(t − s)ds + Ei(0)Qi(t),

Ii =

∫ t

0

∫ τ

0
λi(s)S i(s)gQi(τ − s)dsPi(t − τ)Li(t − τ)dτ + Ii(0)Pi(t)Li(t)

+

∫ t

0
Ei(0)gQi(s)Pi(t − s)Li(t − s)ds,

Hi =

∫ t

0

∫ τ

0
λi(s)S i(s)gQi(τ − s)dsPi(t − τ)[1 − Li(t − τ)]dτ + Ii(0)Pi(t)[1 − Li(t)]

+

∫ t

0
Ei(0)gQi(s)Pi(t − s)[1 − Li(t − s)]ds,

Ri =

∫ t

0

∫ τ

0

∫ δ

0
λi(s)S i(s)gQi(δ − s)dsgPi(τ − δ)dδdτ +

∫ t

0
Ii(0)gPi(τ)dτ

+

∫ t

0

∫ τ

0
Ei(0)gQi(s)gPi(τ − s)dsdτ (i = 1, 2, . . . ,m),

(2.1)

where
gQi(s) = −Q̇i(s), gPi(s) = −Ṗi(s),

and

λi(t) =
m∑

j=1

βi j(I j(t) + κH j(t)).

The latency in the system (2.1) considered above is the general distribution. Next, we consider
exponential distribution and gamma distribution instead of general distribution to derive two ODE
models with different distributions of the latency period, respectively.

2.2. Model with exponential distribution of latency (EDM)

Let Qi(t) = e−αt, Pi(t) = e−µt, Li(t) = e−γt, then gQi(t) = αe−αt, gPi(t) = µe
−µt, gLi(t) = γe

−γt.
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Referring to Feng et al. [18,25,30], system (2.1) can be simplified to the following ODE model (see
Figure 1 for flowchart):

dS i

dt
= −λi(t)S i(t),

dEi

dt
= λi(t)S i(t) − αEi(t),

dIi

dt
= αEi(t) − (µ + γ)Ii(t),

dHi

dt
= γIi(t) − µHi(t),

dRi

dt
= µIi(t) + µHi(t) (i = 1, 2, . . . ,m).

(2.2)

Figure 1. A transition diagram of model (2.2), which is degenerated from model (2.1) when
the latency period follows an exponential distribution (i, j denote different subpopulations).

Referring to [4, 29], the basic reproduction number is obtained by the next generation matrix
method. The increasing rate of secondary infection and disease progress in disease compartment i
are denoted by Fi,Vi, (i = 1, 2, . . . ,m), respectively.

Fi =


S i(t)

∑m
j=1 βi j(I j(t) + κH j(t))

0
0

 , Vi =


αEi(t)

(µ + γ)Ii(t) − αEi(t)
µHi(t) − γIi(t)

 .
The disease-free equilibrium of system (2.2) is

Ea = (N1, 0, 0, · · · ,Ni, 0, 0, · · · ,Nm, 0, 0, 0, 0) .
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The Jacobi matrix of Fi,Vi at Ea is

Fi =


0 βi1Ni κβi1Ni · · · 0 βimNi κβimNi

0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0


3×3m

,

Vi =


0 0 0 · · · α 0 0 · · · 0 0 0
0 0 0 · · · −α µ + γ 0 · · · 0 0 0
0 0 0 · · · 0 −γ µ · · · 0 0 0


3×3m

.

F ,V are defined as the increasing rate of secondary infection and disease progress in the total popula-
tion, respectively:

F =


F1
...

Fm

 , V =

V1
...

Vm

 ,
and

F =


F1
...

Fm

 , V =


V1
...

Vm

 .
The next generation regeneration matrix is FV−1, the basic reproduction number is defined as follows:

R0 = ρ
(
FV−1

)
,

where ρ denotes the spectral radius of a matrix.

2.3. Model with gamma distribution of latency(GDM)

Let Qi(t) =
∑n

q=1
(nαt)q−1e−nαt

(q − 1)!
, Pi(t) = e−µt, Li(t) = e−γt, then gQi(t) =

nα(nαt)n−1

(n − 1)!
e−nαt, gLi(t) =

γe−γt.
Referring to Feng et al. [18,25,30], system (2.1) can be simplified to the following ODE model (see

Figure 2 for flowchart):

dS i

dt
= −λi(t)S i(t),

dE1
i

dt
= λi(t)S i(t) − nαE1

i (t),

dEq
i

dt
= nαEq−1

i (t) − nαEq
i (t), q = 2, 3, . . . , n,

dIi

dt
= nαEn

i (t) − (µ + γ)Ii(t),

dHi

dt
= γIi(t) − µHi(t),

dRi

dt
= µIi(t) + µHi(t) (i = 1, 2, . . . ,m).

(2.3)
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Figure 2. A transition diagram of model (2.3), which is degenerated from model (2.1) when
the latency period follows a gamma distribution (i, j denote different subpopulations).

Referring to [4, 29], the basic reproduction number is obtained by the next generation matrix
method. the increasing rate of secondary infection and disease progress in disease compartment i
are denoted by Fi,Vi, (i = 1, 2, . . . ,m), respectively.

Fi =



S i(t)
∑m

j=1 βi j(I j(t) + κH j(t))
0
0
...

0


(n+2)

, Vi =



nαE1
i (t)

nαE2
i (t) − nαE1

i (t)
...

nαEn
i (t) − nαEn−1

i (t)
(µ + γ)Ii(t) − αEn

i (t)
µHi(t) − γIi(t)


(n+2)

.

The disease-free equilibrium of system (2.3) is

Eb = (N1, 0, 0, · · · ,Ni, 0, 0, · · · ,Nm, 0, 0, · · · , 0) .

The Jacobi matrix of Fi,Vi at Eb is

Fi =


0 · · · 0 βi1Ni κβi1Ni · · · 0 · · · 0 βimNi κβimNi

0 · · · 0 0 0 · · · 0 · · · 0 0 0
...
. . .
...

...
...

. . .
...
. . .
...

...
...

0 · · · 0 0 0 · · · 0 · · · 0 0 0


(n+2)×(m(n+2))

,
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Vi =



0 · · · 0 nα 0 · · · 0 0 0 0 0 · · · 0
0 · · · 0 −nα nα · · · 0 0 0 0 0 · · · 0
0 · · · 0 0 −nα · · · 0 0 0 0 0 · · · 0
...
. . .
...
. . .

. . .
. . .

...
...

...
. . .
...
. . .
...

0 · · · 0 0 0 · · · −nα nα 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0 −nα µ + γ 0 0 · · · 0
0 · · · 0 0 0 · · · 0 0 −γ µ 0 · · · 0


(n+2)×(m(n+2))

.

F ,V are defined as the increasing rate of secondary infection and disease progress in the total popula-
tion, respectively:

F =


F1
...

Fm

 , V =

V1
...

Vm

 ,
and

F =


F1
...

Fm

 , V =


V1
...

Vm

 ,
The next generation regeneration matrix is FV−1, the basic reproduction number is defined as follows:

R0 = ρ
(
FV−1

)
,

where ρ denotes the spectral radius of a matrix.

3. Comparison of EDM and GDM based on real data

In this section, we divide the population of Guangdong Province into four age groups based on the
transmission characteristics of COVID-19: group 1, those ≤ 5 years old; group 2, those 6–19 years
old; group 3, those 20–64 years old; and group 4, those ≥ 65 years old, and conduct global uncertainty
and sensitivity analysis through Latin hypercube sampling (LHS) and Partial Rank Correlation Coeffi-
cients (PRCC). Then, according to Table 2, we used numerical simulations to explore the discrepancies
between EDM and GDM in revealing disease transmission and assessing control strategies.

3.1. Uncertainty and sensitivity analysis

Sensitivity analysis provides significant information concerning how uncertainty and variability of
model parameters may impact model consequences and which parameters are most influential. In
this subsection, we perform uncertainty analysis of the input data for all parameters of the model
mainly by the LHS method and further use PRCC to investigate the global sensitivity of the related
parameters [31–34]. In this way, it is determined which factors are important in the disease epidemic
for better selection of epidemic control measures.

Figure 3 depicts the correlation between parameters and the total number of infected persons over
time, and the gray area in the figure represents PRCCs that are not significantly distinct from zero. Note
that the PRCC values range from −1 to 1. Negative (positive) values represent a negative (positive)
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correlation of the parameter with the model output. A negative (positive) correlation suggests that a
negative (positive) variation of the parameter will decrease (increase) the output of the model. From
the Figure 3, we clearly notice that, for both EDM and GDM, the correlation between parameters and
total infections showed consistent results: the most significant positive effect on the number of total
infected persons is β33, κ. That is, when the transmission rate β33 between the third age group and the
hospitalization infection rate κ increase, it will make the total number of infected individuals increase
rapidly, and more people will be infected. Next, the correlation between transmission rate and total
number of infected persons varies by age group, and it can be noted that an increase in the transmission
rate of the third age group has a greater impact on the increase in the total number of infections than
the other three age groups.

In addition, the correlation of parameters may change over time. Especially, the hospitalization rate
γ have a more positive correlation with the output of the target model, which is the total number of
infected persons at the beginning of the disease. With the progression of the disease and the increase
in the total number of infected individuals, this parameter will negatively affect the target output. In
fact, due to the initial lack of understanding of the characteristics and mode of infection of the disease,
the flow of infected people is promoted as hospitalization rates continued to increase, increasing the
number of people who contracted the disease. However, as time passes, much progress has been made
in the understanding of how diseases transmitted and cured, resulting in fewer people being infected.
And α, µ show a significant negative impact on the total number of infected persons over time. Higher
progression rate of exposed individuals to infectives (α) and recovery rates (µ) directly imply a shorter
latency and recovery period, which further suggests that the time to make effective contacts are less,
thereby reduction in the spread of infection and thus the number of infections.

EDM GDM (n = 2) GDM (n = 3)

Figure 3. Time-varying PRCCs sensitivity indexes of total infectives in three differential
models.

Therefore, based on the results of sensitivity analysis, it is indicated that decreasing the transmis-
sion rate and the hospitalization infection rate or increasing the hospitalization rate could effectively
reduce the number of infected individuals. Accordingly, we can take the following control measures:
reducing contact between populations by isolating at home and wearing masks when traveling and
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the hospitalization infection rate by taking preventive measures such as sterilization and isolation in
hospitals, increasing the hospitalization rate by shortening the period of diagnosis, and improving the
medical system.

3.2. Effectiveness of different interventions on EDM and GDM

In this subsection, we perform numerical simulations for three models, including EDM and GDM
(n = 2, 3), to compare the results when the models are used to estimate different interventions speci-
fied by γ (hospitalization rate ) and/or κ (hospitalization infection rate), and then investigate how the
models may obtain different assessments on the effectiveness of various control measures. Different
control strategies are presented separately for Guangdong province, and some key indicators are used
to evaluate the effectiveness of the control strategies include the peak value, peak time, final size of an
outbreak and the infection eradication time* [36]. The simulation results are shown in Figures 4–6.

Figure 4 shows the numerical simulation of EDM, GDM (n = 2) and GDM (n = 3) based on the
parameters of Guangdong province, it plots active infectious individuals (red curve), cumulative in-
fections (blue curve). The four rows compare for scenarios based on implementing interventions such
as performing hospital sterilization to reduce the hospitalization infection rate(κ) and shortening the
diagnosis period to increase the hospitalization rate (γ). It consists of a baseline scenario and three
strategies. We observe from Figure 4 that when hospitalization rate (γ) increases (baseline scenario
and strategy I) or the hospitalization infection rate (κ) decreases (baseline scenario and Strategy II), the
final size and peak size will be reduced and the peak time will be advanced in all three models (see
rows 1–3). By comparing strategy III with Strategies I and II (see rows 2–4), it can be observed that
the most effective way to control infectious diseases is to combine the two methods (Strategy III). See
Table 3 for different strategies.

A more detailed comparison of the infection eradication time, the peak value and time for the
three control strategies is shown in Figure 5. In particular, comparing Strategies I, II and III to the
baseline scenario, they all lead to earlier end of infection, lower peak value and earlier peak time. By
comparing Figure 5(a) with Figure 5(b),(c), we found that the decrease in hospitalization infection
rate has a more pronounced effect on the end time of infection than on the peak value and time, but
increasing hospitalization rate has a similar effect on time to infection eradication, peak value and time.
What’s more, we observe that all models provided consistent assessments of control strategies, but we
also note that EDM has a later infection eradication time, smaller peak value and earlier peak time,
while GDM, specifically GDM (n = 3) has an earlier infection eradication time, larger peak value and
later peak time.

It is clear from Figure 5(a) and Figure 6 that EDM, GDM (n = 2) and GDM (n = 3) appear to have
the same final size in the case of the same control strategy, but the infection eradication time (i.e.,
the time to reach the final size) can be significantly different. By comparing three strategies with the
baseline scenario, decrease in hospitalization infection rate or increase in hospitalization rate is found
to be effective in reducing the final disease size as well as shortening the end time of the outbreak.

*The infection eradication time is denoted as T , T = in f {t ∈ R+ | I(t) = ε, 0 < ε < 1}, choose the initial number of infected units I(0)
strictly greater than ε, T is the first time at which the state variable I drops to ε. From a biological point of view, by setting ε < 1 as the
condition to identify the eradication time means assuming the infection goes extinct when there is less than one infectious individual in
the population [35].
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Figure 4. Comparison of the epidemic sizes generated by the models EDM, GDM (n = 2)
and GDM (n = 3) under the baseline scenario (top row) and strategies I, II and III (rows 2, 3
and 4, respectively).
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(a) infection eradication time (b) peak value (c) peak time

Figure 5. Comparison of infection eradication time (a), peak value (b) and peak time (c)
generated by the three models under the baseline scenario and the three control strategies I,
II and III.

Figure 6. Comparison of the final size generated by the three models under the baseline
scenario and the three control strategies I, II and III, in Guangdong Province.

3.3. A more detailed comparison of EDM and GDM on interventions

To further investigate the difference between EDM and GDM with the change of control parameters,
we simulate contour plots of the infection eradication time, peak value, peak time with respect to
hospitalization infection rate (κ) and hospitalization rate (γ) in three different models, including EDM
and GDM (n = 2, 3).
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EDM GDM (n = 2) GDM (n = 3)

Figure 7. Contour plots of the infection eradication time with respect to κ (hospitalization
infection rate) and γ ( hospitalization rate) in three different models.

EDM GDM (n = 2) GDM (n = 3)

Figure 8. Contour plots of the peak value of the total number of infected individuals with
respect to κ (hospitalization infection rate) and γ ( hospitalization rate) in three different
models.

Figures 7–9 further confirm the conclusions in Figures 4 and 5: in both EDM and GDM, as γ
increases and κ decreases, the peak time and infection elimination time are advanced, and the peak
size is lowered. This suggests that control measures such as disinfection and isolation in hospitals and
a shorter diagnosis period during the stage of the disease outbreak would reduce the severity of the
epidemic. Figures 7 and 8 indicate that EDM overestimates the infection end time and underestimates
the infection peak value when compared to GDM. Figure 9 shows that EMD and GDM are inconsistent
in their estimates of the peak time: (a) if γ < 0.24, EDM overestimates peak time compared to GDM;
(b) if 0.24 ≤ γ ≤ 0.2625, when the hospitalization infection rate is higher and the hospitalization rate
is lower (i.e., Top left corner in Figure 9 (b)), EDM overestimates the peak time compared to GDM;
when the hospitalization infection rate is low and the hospitalization rate is higher (i.e., Bottom right
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corner in Figure 9(b)), EDM underestimates the peak time compared to GDM; (c) if γ > 0.265, EDM
underestimates the peak time compared to GDM.

EDM GDM (n = 2) GDM (n = 3)

(a) κ < 0.24

(b) 0.24 ≤ κ ≤ 0.265

(c) κ > 0.265

Figure 9. Contour plots of the peak time of the total number of infected individuals with
respect to κ (hospitalization infection rate) and γ (hospitalization rate) in three different mod-
els.
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Table 2. Parameter values in Guangdong Province.
Parameters Values Unit Definitions Reference
β11 4.81 × 10−9 1/(individual × day) Transmission relative rate among age group 1 [9]
β12 6.20 × 10−10 1/(individual × day) Transmission relative rate from age group 2 to 1 [9]
β13 2.20 × 10−10 1/(individual × day) Transmission relative rate from age group 3 to 1 [9]
β14 1.01 × 10−9 1/(individual × day) Transmission relative rate from age group 4 to 1 [9]
β21 2.31 × 10−9 1/(individual × day) Transmission relative rate from age group 1 to 2 [9]
β22 2.43 × 10−9 1/(individual × day) Transmission relative rate among age group 2 [9]
β23 3.30 × 10−10 1/(individual × day) Transmission relative rate from age group 3 to 2 [9]
β24 1.82 × 10−9 1/(individual × day) Transmission relative rate from age group 4 to 2 [9]
β31 1.53 × 10−8 1/(individual × day) Transmission relative rate from age group 1 to 3 [9]
β32 4.83 × 10−9 1/(individual × day) Transmission relative rate from age group 2 to 3 [9]
β33 1.25 × 10−9 1/(individual × day) Transmission relative rate among age group 3 [9]
β34 3.42 × 10−9 1/(individual × day) Transmission relative rate from age group 4 to 3 [9]
β41 4.25 × 10−9 1/(individual × day) Transmission relative rate from age group 1 to 4 [9]
β42 2.45 × 10−9 1/(individual × day) Transmission relative rate from age group 2 to 4 [9]
β43 4.00 × 10−10 1/(individual × day) Transmission relative rate from age group 3 to 4 [9]
β44 4.83 × 10−9 1/(individual × day) Transmission relative rate among age group 4 [9]
1
α

5.2 day Latent period [9]
1
γ

2.0383 day Mean time from onset to hospitalization [9]
κ 0.091 day Infectivity ratio of Hi to Ii individuals, (i = 1, 2, . . . ,m) [37]
S 1(0) 7, 153, 800 persons Initial number of S 1 [9]
S 2(0) 7, 153, 800 persons Initial number of S 2 [9]
S 3(0) 78, 760, 477 persons Initial number of S 3 [9]
S 4(0) 10, 664, 042 persons Initial number of S 4 [9]
E1(0) 16 persons Initial number of E1 [9]
E2(0) 31 persons Initial number of E2 [9]
E3(0) 317 persons Initial number of E3 [9]
E4(0) 64 persons Initial number of E4 [9]
I1(0) 2 persons Initial number of I1 [9]
I2(0) 2 persons Initial number of I2 [9]
I3(0) 68 persons Initial number of I3 [9]
I4(0) 17 persons Initial number of I4 [9]
H1(0) 2 persons Initial number of H1 [9]
H2(0) 3 persons Initial number of H2 [9]
H3(0) 109 persons Initial number of H3 [9]
H4(0) 24 persons Initial number of H4 [9]

Table 3. Three control strategies in Guangdong Province.

Baseline scenario κ = 0.091 γ = 1/2.0383
Strategy I κ = 0.091 γ = 0.55
Strategy II κ = 0.05 γ = 1/2.0383
Strategy III κ = 0.05 γ = 0.55
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4. Conclusions and discussion

In this paper, we have developed and investigated two SEIHR epidemic models with exponential and
gamma distribution of latency, taking into account the effect of population heterogeneity and infectious
hospitalized individuals. Firstly, we have theoretically derived the formula for the basic reproduction
number R0. Secondly, we have performed sensitivity analysis of the model parameters using the partial
rank correlation coefficient (PRCC) approach and identified key parameters affecting disease transmis-
sion to derive reasonable control measures. Next, we have evaluated the impact of EDM and GDM
on interventions based on age heterogeneity. Finally, using the parameters of COVID-19 in Guang-
dong Province, we have obtained the similarities and differences between EDM and GDM in revealing
disease transmission and assessing control strategies through numerical simulation results.

Our results suggest that the evaluation of the different strategies by EDM and GDM is synchronous,
however, when control strategies are the same, it seems that GDM may not have an effect on the overall
size of an epidemic but it does affect the process of infection and further change the overall duration
of an outbreak. EDM may result in later infection eradication time and lower peak value compared
to GDM. Moreover, another finding of our study is that EDM and GDM produce inconsistent results
for predicting peak time, and the outcome of the prediction may depend on the strength of the control
strategy.

When we consider a mathematical model with population heterogeneity to describe disease trans-
mission, we underestimate the infection eradication time and overestimate the peak value, assuming
that the latent period follows a gamma distribution (actually an exponential distribution). In contrast,
when the latent period is assumed to follow an exponential distribution (actually a gamma distribu-
tion), we overestimate the infection eradication time and underestimate the peak value. Furthermore,
the strength of the control strategy (especially considering the effect of hospitalization rate) may also
have an impact on the prediction results of the peak time when the exponential distribution of latency
is replaced by a gamma distribution. Specifically, if the control is weak, the peak time may be under-
estimated, and if the control is strong, the peak time may be overestimated. Therefore, when applying
mathematical models to describe the spread of diseases, one must be careful to make assumptions
about the distribution of latency periods. If unreasonable assumptions are made about the distribution
of latency periods, we may overestimate or underestimate the peak value, peak time, and infection
eradication time. Meanwhile, estimating peak time needs to take into account the effect of control
strategies when considering different distributions of latency periods.

In contrast to the existing literatures, it should be noted that the main innovation of this paper is per-
haps the first consideration of the difference between latency obeying exponential and non-exponential
distributions in a heterogeneous model. In the literature [27], the model comparisons done in Blyuss
et al. focus on the differences between exponential and non-exponential distributions of homogeneous
models. In this paper, our results show that the estimates for the end time of infection are consistent
with the results obtained by Blyuss et al. (i.e., increasing the number of stages in the latency period
leads to an earlier overall end time), but not for the time to peak, which may depend on the intensity
of control measures. Moreover, our results suggest that in the heterogeneous model, increasing the
number of stages of latency leads to an increase in the number of infections. These results significantly
expand the understanding of the law of heterogeneous infectious disease. The model proposed in this
paper is obtained under the assumption of ignoring demographic dynamics. However, for example,
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AIDS, tuberculosis, and other such long-term epidemics, we should not ignore the influence of demo-
graphic dynamics and therefore need to consider long time scales models of heterogeneous infectious
diseases. Moreover, in our paper, the results obtained by comparing the exponential and gamma distri-
butions help to understand the disease transmission pattern more accurately, but for the latent period,
there are not only exponential and gamma distributions [38]. Hence, it is necessary to consider models
of other distributions and analyze their differences in understanding disease transmission. We leave it
to future work to address these questions.
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