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Abstract: In this paper, considering the aggregation effect and Allee effect of cyanobacteria popu-
lations and the harvesting of both cyanobacteria and fish by human beings, a new cyanobacteria-fish
model with two harvesting terms and a modified Holling type IV functional response function is pro-
posed. The main purpose of this paper is to further elucidate the influence of harvesting terms on the
dynamic behavior of a cyanobacteria-fish model. Critical conditions for the existence and stability of
several interior equilibria are given. The economic equilibria and the maximum sustainable total yield
problem are also studied. The model exhibits several bifurcations, such as transcritical bifurcation,
saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation. It is concluded from a
biological perspective that the survival mode of cyanobacteria and fish can be determined by the har-
vesting terms. Finally, concrete examples of our model are given through numerical simulations to
verify and enrich the theoretical results.
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1. Introduction

Cyanobacteria are the oldest photosynthesizers and they have promoted the formation of the bio-
sphere on the earth. However, cyanobacteria are increasingly becoming dominant among other phyto-
plankton with the concentrations of TP and TN increasing in the eutrophication process of rivers and
lakes. Compared with other beneficial phytoplankton, cyanobacteria bloom will produce various toxic
secondary metabolites (for example, cyanotoxins) [1,2], which will further cause certain damage to the
natural ecosystems and human health. Nevertheless, cyanobacteria can be regarded as a potential solar
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biorefinery and continuously provide biofuels and chemicals when used properly [3–5]. Harvesting
cyanobacteria can greatly reduce TP, TN and other nutrients and then effectively prevent the deteriora-
tion of water eutrophication. The harvested cyanobacteria can be processed into compound organic fer-
tilizer, organic biogas fertilizer as well as biogas with energy value for power generation or deep com-
prehensive utilization. Thus, artificial harvesting of cyanobacteria can serve a dual purpose in aquatic
environments where cyanobacteria blooms occur. Among the various methods to control cyanobacte-
ria bloom, the biological method based on the predation relationship between fish and cyanobacteria
populations is widely used for its effectiveness, harmlessness and economic benefits. In recent years,
researchers have done a lot of research on the control of algae by fish and zooplankton [6, 7]. And
mathematical researchers usually use differential equation models to analyze the dynamic relationship
between species; the predator-prey model has been widely studied by researchers [8–11] since it was
put forward. On the other hand, the extensive human demand for fish resources has also prompted the
cultivation and harvesting of fish in as many water ecosystems as possible. Considering the growth
rates, biomasses and harvesting intensities of cyanobacteria and fish, a reasonable harvesting plan
should be made by the managers of biological resources to maintain sustainable fish resources and a
low density of cyanobacteria population.

The harvesting term is a vital element in ecological models, since it has great significance for the de-
velopment of species population and economic growth. A previous paper [12] explored the harvesting
of biological resources, utilizing a delayed reaction diffusion three-species model, and presented the
conclusion that the harvesting terms significantly affect the existence of species. Another group [13]
found that there exists a bistable region of their model when a Michaelis-Menten harvesting term for
the predator population was introduced; they also derived the threshold of harvesting efforts to achieve
the maximum economic benefits under the premise of sustainable development. The authors of [14]
proposed a deterministic and stochastic fractional-order model of a tri-trophic food chain with a har-
vesting term, and they concluded that the dynamics of the second predator can be controlled by the
harvesting parameters. The authors of [15] concluded that the harvesting term plays an important
role in the dynamic properties of a predator-prey model with a nonlinear harvesting term and a square
root type functional response for prey. More influence of harvesting on dynamic behaviors has been
investigated in [16–19].

The Allee effect is a research hotspot in the field of population dynamics. The study of it helps
to understand the survival and reproductive mechanisms of species. It is also of great significance
for the conservation of endangered species. The authors of [20] investigated a predator-prey diffusion
model with a strong Allee effect, and the results showed that a small initial value of prey population
would lead to the extinction of both populations. The model studied in [21] can undergo a saddle-node
bifurcation when the intensity of the Allee effect at the tipping point without delay and diffusions.
The Allee effect has also received extensive attention in infectious disease models, and the authors
of [22] demonstrated that both strong and weak Allee effects have a significant impact on the spread of
infectious diseases. Further studies on the Allee effect can be found in [23–25].

Furthermore, there are many papers that have introduced a prey refuge term to the interaction math-
ematical model [26–28]. The authors of [29] proposed a modified algae-fish model:
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
dx
dt
= r1x

(
1 −

x
k

) ( x
n
− 1

)
− y
α1 (x − m)
a + x − m

,

dy
dt
= β1y

α1 (x − m)
a + x − m

+ r2y
(
1 −

x − m
k

)
− dy;

(1.1)

they then explained the influence on the dynamic properties of it caused by prey refuge and the Allee
effect. The functional response function represents the biomass of prey captured by each predator in
unit time, and it is always used to express the dynamics of predator and prey. This function represents
the flow of matter from the prey population to the predator population. A modified Holling type II
functional response function was constructed in model (1.1) according to the prey refuge. However,
the function α(x−m)y

a+b(x−m)+(x−m)2 is more practical, which is an improved Holling type IV and it can show such
a phenomenon that the defense ability of cyanobacteria population is improved after aggregation. It is
also worth mentioning that the harvesting terms of algae and fish by human beings are not considered
in [29]. Therefore, in order to effectively control the outbreak of cyanobacteria blooms, this paper
mainly considers the physical harvesting strategy to control the outbreak of cyanobacteria blooms, and
it implements the cycling mechanism of biological control of algae growth. At the same time, utilizing
the bifurcation dynamics evolution behavior of ecological models, we not only explore the feasibility of
a physical harvesting strategy and biological control technologies, but we also discover the interaction
mechanism between fish and cyanobacteria, which can provide some theoretical support and numerical
simulations for the implementation of physical spraying algae control technology in Taihu South Lake.
In this paper, we study the following cyanobacteria-fish model with two harvesting terms:

dx
dt
= r1x

(
1 −

x
k

) ( x
n
− 1

)
−

α (x − m) y
a + b (x − m) + (x − m)2 − q1γEx,

dy
dt
= β

α (x − m) y
a + b (x − m) + (x − m)2 − d1y − q2Ey,

(1.2)

where E is the harvesting effort of fish, γ is the proportional coefficient of harvesting effort between
fish and cyanobacteria and qi (i = 1, 2) represents the catchability coefficients of cyanobacteria and
fish respectively. The biological significance of other parameters in model (1.2) is consistent with that
in [29]. For the convenience of discussion, we do the following parameter substitutions to reduce the
number of parameters:

τ = αt, r =
r1

α
, d =

d1

α
, e1 =

q1γE
α
, e2 =

q2E
α
,

retanining t to denote τ then model (1.2) can be expressed as follows:
dx
dt
= rx

(
1 −

x
k

) ( x
n
− 1

)
−

(x − m) y
a + b (x − m) + (x − m)2 − e1x

de f
==== g1 (x, y) ,

dy
dt
= β

(x − m) y
a + b (x − m) + (x − m)2 − dy − e2y

de f
==== g2 (x, y) .

(1.3)

The rest of the present paper is organized as follows. In Section 2, we give the critical conditions
for the existence and stability of each equilibrium. The economic equilibrium and the maximum sus-
tainable total yield problem for model (1.3) are studied in Section 3. In Section 4, we discuss the local
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bifurcations of model (1.3), such as transcritical bifurcation, saddle-node bifurcation, Hopf bifurca-
tion and Bogdanov-Takens bifurcation. With the help of numerical simulation, the dynamic behaviors
of model (1.3) are studied when bifurcation occurs in Section 5. Finally, the paper ends with brief
concluding remarks in Section 6.

2. Analysis of equilibria

In this section, we will discuss the critical conditions for the existence and stability of potential
equilibria in model (1.3).

It is obvious that the trivial equilibrium E0 (0, 0) of model (1.3) always exists, and there exists a
predator-free equilibrium (x1, 0) [res. (x2, 0)] when ∆1 ≥ 0 and x1 ≥ m [res. x2 ≥ m], where

x1 =
kr + nr −

√
∆1

2r
, x2 =

kr + nr +
√
∆1

2r
, ∆1 = r2 (k − n)2

− 4re1nk.

Otherwise, model (1.3) will have two interior equilibria
(
x∗1, y

∗
1

)
and

(
x∗2, y

∗
2

)
when ∆2 ≥ 0; x∗1 and x∗2

are the zeros of the function f (x), where

f (x) = − (d + e2) (x − m)2 +
[
β − (d + e2) b

]
(x − m) − a (d + e2) ,

and the expression of the two interior equilibria can be written as follows:

x∗1 = m −
b
2
+
β −
√
∆2

2 (d + e2)
, x∗2 = m −

b
2
+
β +
√
∆2

2 (d + e2)
,

where
∆2 = (bd + be2 − β)2

− 4a(d + e2)2;

correspondingly, the expression of y∗i (i = 1, 2) can be expressed as follows:

y∗i =

[
a + b

(
x∗i − m

)
+

(
x∗i − m

)2
] [

rx∗i
(
1 − x∗i

k

) ( x∗i
n − 1

)
− e1x∗i

]
x∗i − m

.

It is worth mentioning that y∗i > 0 satisfied the biological significance when x1 < x∗1 ≤ x∗2 < x2.
The interior equilibrium E∗1

(
x∗1, y

∗
1

) [
res. E∗2

(
x∗2, y

∗
2

)]
exists under the biological significances when

(1), (2) and (3) [res. (4)] of the following conditions are satisfied:
(1) β > b (d + e2),
(2) ∆1 > 0, ∆2 > 0,
(3) k + n + b − 2m −

√
∆1
r <

β−
√
∆2

d+e2
< k + n + b − 2m +

√
∆1
r ,

(4) k + n + b − 2m −
√
∆1
r <

β+
√
∆2

d+e2
< k + n + b − 2m +

√
∆1
r .

By model (1.3), the Jacobian matrix at E (x, y) can be expressed as follows:

JE(x,y) =

(
a11(x, y) a12(x)
a21(x, y) a22(x)

)
,
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where

a11 (x, y) = −
3r
nk

x2 + 2r
(
1
n
+

1
k

)
x − r +

y
(
m2 − 2mx + x2 − a

)
[
(x − m)2 + b (x − m) + a

]2 − e1,

a12 (x) = −
x − m

(x − m)2 + b (x − m) + a
,

a21 (x, y) = −
βy

(
m2 − 2mx + x2 − a

)
[
(x − m)2 + b (x − m) + a

]2 ,

a22 (x) =
β (x − m)

(x − m)2 + b (x − m) + a
− d − e2.

Based on the above analysis, we have the following theorems about the stability of the equilibria
from the viewpoint of mathematics.

Theorem 1. Trivial extinction equilibrium E0 (0, 0) always exists and is a stable equilibrium.

Proof. The value of m must be equal to zero when x = 0 since the biomass of cyanobacteria must be
greater than the aggregation amount according to the definition of model (1.3) in the biological sense;
therefore the Jacobian matrix of E0 can be written as follows:

JE0(0,0) =

(
−r − e1 0

0 −d − e2

)
;

it is obvious that matrix JE0(0,0) has two negative characteristic roots λ1 = −r − e1 and λ2 = −d − e2.
Therefore E0 is stable according to the Routh-Hurwitz criterion. □

Theorem 2. The predator-free equilibrium E1 (x1, 0) is always unstable whenever it exists. E1 is an
unstable node or focus when the following three conditions are satisfied:

(1) ∆1 > 0,
(2) ∆2 > 0,
(3) x1 ∈ [m, k] ∩

[
x∗1, x

∗
2

]
;

otherwise E1 is a saddle under the following three conditions:
(4) ∆1 > 0,
(5) x1 ∈ [m, k],
(6) ∆2 < 0 ∨ x1 <

[
x∗1, x

∗
2

]
.

Proof. We know that x1 is one of the roots of the equation g1 (x, 0) = 0 according to the previous
definition. It can be easily obtained that a11 (x1, 0) = dg1(x,0)

dx

∣∣∣∣
x=x1
> 0 for 0 < x1 < x2 based on

the properties of the cubics function g1 (x, 0). Since a21 (x1, 0) = 0, then a11 (x1, 0) is one of the
characteristic roots of the Jacobian matrix JE1(x1,0) and another root is a22 (x1, 0). It is only when the
two conditions (2) and (3) are satisfied that a22 (x1, 0) > 0, which means that both the two characteristic
roots of JE1(x1,0) are positive, then, E1 is an unstable node or focus. Otherwise, a22 (x1, 0) < 0 when
the conditions (5) and (6) are satisfied, then, the equilibrium E1 is a saddle since the two roots have
opposite signs. □
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Theorem 3. The other predator-free equilibrium E2 (x2, 0) is a saddle when the following three con-
ditions are satisfied:

(1) ∆1 > 0,
(2) ∆2 > 0,
(3) x2 ∈ [m, k] ∩

[
x∗1, x

∗
2

]
;

otherwise it is a locally asymptotically stable node or focus under the following three conditions:
(4) ∆1 > 0,
(5) x2 ∈ [m, k],
(6) ∆2 < 0 ∨ x2 <

[
x∗1, x

∗
2

]
.

Proof. Obviously, x2 is also a root of equation g1 (x, 0) = 0, and we can obtain a11 (x2, 0) =
dg1(x,0)

dx

∣∣∣∣
x=x2
< 0 through a similiar analysis. The element a11 (x2, 0) is one of the characteristic roots

of the Jacobian matrix JE2(x2,0) since a21 (x2, 0) = 0, and the other root is a22 (x2, 0). The inequality
a22 (x2, 0) > 0 will hold if and only if the conditions (2) and (3) are satisfied; in which case the Jaco-
bian matrix JE2(x2,0) has two characteristic roots with opposite signs; then, E2 is a saddle. Otherwise,
both two roots are negative under the conditions (4)–(6); then, E2 is a stable node or focus. □

Theorem 4. The interior equilibrium E∗1
(
x∗1, y

∗
1

)
is a saddle when it exists and x∗1 > m +

√
a. As

for x∗1 < m +
√

a, E∗1 is a locally asymptotically stable equilibrium when a11

(
x∗1, y

∗
1

)
< 0, while E∗1 is

an unstable node or focus when a11

(
x∗1, y

∗
1

)
> 0. The other interior equilibrium E∗2

(
x∗2, y

∗
2

)
is a saddle

whenever it exists.

Proof. The Jacobian matrix of model (1.3) evaluated at the equilibrium E∗i (i = 1, 2) can be written as
follows:

JE∗i (x∗i ,y
∗
i ) =


− 3r

nk x∗2i + 2r
(

1
n +

1
k

)
x∗i − r + y∗i (m2−2mx∗i +x∗2i −a)[

(x∗i −m)2
+b(x∗i −m)+a

]2 − e1 −
d+e2
β

−β
y∗i (m2−2mx∗i +x∗2i −a)[

(x∗i −m)2
+b(x∗i −m)+a

]2 0

 ;

then the trace and the determinant of the Jacobian matrix can be written as follows:

Tr
(
JE∗i

)
= a11

(
x∗i , y

∗
i
)
, Det

(
JE∗i

)
= −

y∗i
(
m2 − 2mx∗i + x∗2i − a

)
(d + e2)[(

x∗i − m
)2
+ b

(
x∗i − m

)
+ a

]2 .

The sign of Tr
(
JE∗i

)
cannot be directly obtained since the expression is too complicated, while the

sign for Det
(
JE∗i

)
is determined by the relationship between the values of x∗i and m+

√
a. It can be easily

obtained that Det
(
JE∗1

)
> 0 when x∗1 < m +

√
a and Det

(
JE∗1

)
< 0 when x∗1 > m +

√
a. Furthermore,

the Jacobian matrix has two characteristic roots with opposite signs and E∗1 is a saddle as x∗1 > m+
√

a.
As for x∗1 < m +

√
a being satisfied, the Jacobian matrix has two negative characteristic roots and E∗1

is a locally asymptotically stable equilibrium when a11

(
x∗1, y

∗
1

)
< 0, but the Jacobian matrix has two

positive characteristic roots and E∗1 is an unstable node or focus when a11

(
x∗1, y

∗
1

)
> 0. However, it can

be easily judged that the sign of Det
(
JE∗2

)
is negative under the necessary condition for the existence

of E∗2: β > b (d + e2). Thus, E∗2 is always a saddle whenever it exists. □
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3. Analysis of harvesting

In this section, we will investigate the existence of an economic equilibrium and discuss the maxi-
mum sustainable total yield (MSTY) problem in model (1.3).

3.1. Economic equilibrium

The economic equilibrium can be obtained by the definition of TC = TR, where TC repre-
sents the cost for harvesting and TR refers to the full economic return on the obtained through
harvesting. It is of great significance to study the existence of economic equilibria since the total
profit is directly determined by the relationship between TC and TR. Let c1 and c2 represent the
cost of unit effort e1 and e2, respectively. Let p1 represent the sum of the direct economic value
generated by the comprehensive utilization of cyanobacteria per unit and the indirect economic
value generated by the environmental quality improvement brought by harvesting cyanobacteria per
unit. p2 represents the economic benifit of unit population of fish. Then we have the following theorem.

Theorem 5. Model (1.3) has a non-trivial economic equilibrium when harvesting cyanobacteria and
fish is profitable and the following condition is satisfied.

rc1 p2 (kp1 − c1) (c1 − np1)
knc2 p3

1

>
c2 p1 (c1 − mp1)

p2

[
ap2

1 + bp1 (c1 − mp1) + (c1 − mp1)2
] > d
β
.

Proof. The possible economic equilibria are determined by the following equations:
rx

(
1 −

x
k

) ( x
n
− 1

)
−

(x − m) y
a + b (x − m) + (x − m)2 − e1x = 0,

β
(x − m) y

a + b (x − m) + (x − m)2 − dy − e2y = 0,

S = (p1x − c1) e1 + (p2y − c2) e2 = 0.

From the above equations, we can obtain

x∞ =
c1

p1
, y∞ =

c2

p2
,

e1∞ = r
(
1 −

x∞
k

) ( x∞
n
− 1

)
−

(x∞ − m) y∞[
a + b (x∞ − m) + (x∞ − m)2

]
x∞
,

e2∞ = β
x∞ − m

a + b (x∞ − m) + (x∞ − m)2 − d,

and the efforts are positive when the above condition is satisfied; therefore, there exists a non-trival
econimic equilibrium (x∞, y∞, e1∞, e2∞) in model (1.3). □

3.2. Maximum sustainable total yield

For a multi-species model with several harvesting terms, we always tend to gain the MSTY [30,31],
which is the maximum biomass of total harvested populations and it varies with harvesting efforts
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under the premise of ensuring that all species can survive continuously. It is necessary to ensure the
persistence of the populations; however, interior equilibrium E∗2 is a saddle whenever it exists; thus,
we analyze the existence of the MSTY in model (1.3) at interior equilibrium E∗1. The expression of the
total yield function at E∗1 can be written as follows:

Y (e1, e2) = e1x∗1 + e2y∗2 = e1x∗1 +
e2

[
a + b

(
x∗1 − m

)
+

(
x∗1 − m

)2
] [

rx∗1
(
1 − x∗1

k

) ( x∗1
n − 1

)
− e1x∗1

]
x∗1 − m

.

Figure 1. (a) The biomass of prey at E∗1 with varying harvesting efforts. (b) The biomass of
the predator at E∗1 with varying harvesting efforts. (c) The total yield biomass of predator and
prey at E∗1 with varying harvesting efforts. (d) The stable area of interior equilibrium E∗1; in
this area Det

(
E∗1

)
is always positive.

The two efforts of harvesting e∗1 and e∗2 should satisfy

∂Y (e1, e2)
∂e1

∣∣∣∣∣(e∗1,e
∗
2)
=
∂Y (e1, e2)
∂e2

∣∣∣∣∣(e∗1,e
∗
2)
= 0,

or that Y
(
e∗1, e

∗
2

)
is the nondifferentiable point of function Y (e1, e2) when the MSTY exists. It is obvious

that Y (e1, e2) is a linear function with respect to e1, which means that ∂2Y (e1, e2) /∂e2
1 = 0. Therefore,

we cannot directly tell the exsitence of the MSTY through the Hessian matrix. We give a numerical
simulation since the expression of the yield function is too complex to analyze, and the values are taken
as follows:

k = 100, n = 3, m = 6, β = 3, r = 1.5, d = 1, a = 0.2, b = 0.3.
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The biomasses of prey and predator at equilibrium E∗1 and the total yield for various harvesting efforts
e1 and e2 are shown as Figure 1. It can be seen in Figure 1(a) that the influences of e1 and e2 on
the biomass of cyanobacteria at E∗1 are very small initially, but that cyanobacteria will become extinct
when e2 > 1.5117 or fish is extinct. With the increase of the harvesting efforts e1 and e2, the biomass
of fish at E∗1 gradually decreases and tends to become extinct, as is shown in Figure 1(b). From
Figure 1(c), we can get that the total yield biomass reaches the maximum at the nondifferentiable point
(0, 1.5117, 18.7706). However, the interior equilibrium E∗1 is unstable at this point according to Figure
1(d), which implies that there is no MSTY in model (1.3). We always harvest both cyanobacteria and
fish at different efforts in real life. Moreover, we study the MSTY problem of model (1.3) when the
two harvesting efforts are in a certain proportion. Assume that the harvesting efforts e1 = λe2. In this
paper, we assume that the harvesting efforts of humans on both the cyanobacteria and fish populations
are non-zero. Therefore, λ , 0 here. As a result, the total yield function can be expressed as follows:

H (e) = Y
(
e,

e
λ

)
.

Let us take a different value of λ and analyze it by numerical simulations. It can be seen in
Figure 2 that with the increase of harvesting effort e, the fish population decreases sharply and tends
to be extinct at E∗1, while the cyanobacteria population keep steady; and, the total yield biomass
increases first and then changes smoothly, and the interior equilibrium E∗1 disappears with the
extinction of fish finally. In addition, the solid line in Figure 2 indicates stability and the dashed line
indicates instability based on Theorem 4. The total yield function reaches its sustainable maximum at
H (1.0389) = 10.8641 when λ = 1, and at H (1.2701) = 9.2723 when λ = 2.
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Figure 2. The population densities and total yield biomass H (e) with varying harvesting
efforts at E∗1. (a) λ = 0.5. (b) λ = 1. (c) λ = 2.
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4. Local bifurcation

In this section, we will discuss the local bifurcation in model (1.3) theoretically. We take the ag-
gregration parameter m and harvesting efforts e1 and e2 as the bifurcation parameters; transcritical
bifurcation, saddle-node bifurcation and Hopf bifurcation with codimension 1 and Bogdanov-Takens
bifurcation with codimension 2 are analyzed successively.

4.1. Transcritical bifurcation

Transcritical bifurcation always occurs at the boundary equilibria; since the equilibrium E1 is unsta-
ble whenever it exists, transcritical bifurcation will only happen at E2. The transcritical bifurcations are
caused by the collisions of interior equilibria E∗1 or E∗2 with E2, so we choose aggregration parameter m
as the bifurcation parameter; then, we can obtain the expressions of the critical value correspondingly

m1 =
b + k + n

2
+

√
∆1

2r
+

√
∆2 − β

2 (d + e2)
, m2 =

b + k + n
2

+

√
∆1

2r
−

√
∆2 + β

2 (d + e2)
.

Then, if m1 or m2 are in the set [0, k], the predator-free equilibrium E2 will translate its stability as
the value of parameter m passes through m1 or m2.

Theorem 6. The model (1.3) will undergo a transcritical bifurcation at the equilibrium E2 when
m = m1 ∈ [0, k] or m = m2 ∈ [0, k] and

kr + nr +
√

r2(k − n)2 − 4re1nk − 2rm1 or 2 , 0, 2r
√

a,
2r(k + n) + −

√
4r2(k + n)2 − 12rkn(r + e1)

3
.

Proof. When m = m1 ∈ [0, k], the elements of Jacobian matrix J(E2;m1) are

a11 (x2, 0) , a12 (x2) |m=m1 , a21 (x2, 0) = a22 (x2) |m=m1 = 0,

letting V and W are eigenvectors of zero eigenvalues of J(E2;m1) and JT
(E2;m1) respectively. Without loss

of generality, we can take

V =
(

v1

v2

)
=

(
−a12 (x2)|m=m1

a11 (x2, 0)

)
, W =

(
w1

w2

)
=

(
0
1

)
;

then

WT Fm (E2; m1) =
(

0 1
)  −

y[(x−m)2−a]
[a+b(x−m)+(x−m)2]2

βy[(x−m)2−a]
[a+b(x−m)+(x−m)2]2


∣∣∣∣∣∣∣∣∣
(E2;m1)

=
(

0 1
) ( 0

0

)
= 0,

WT [DFm (E2; m1) V] =
(

0 1
)  0 −

(x−m)2−a

[a+b(x−m)+(x−m)2]2

0 β[(x−m)2−a]
[a+b(x−m)+(x−m)2]2


∣∣∣∣∣∣∣∣∣
(E2;m1)

(
−a12 (x2)|m=m1

a11 (x2, 0)

)

=
a11 (x, y) β

[
(x − m)2

− a
]

[
a + b (x − m) + (x − m)2

]2

∣∣∣∣∣∣∣∣
(E2;m1)

,
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WT
[
D2Fm(E2; m1) (V,V)

]
=

(
w1 w2

) (
g1

xx g1
xy g1

yx g1
yy

g2
xx g2

xy g2
yx g2

yy

)∣∣∣∣∣∣
(E2;m1)


v1v1

v1v2

v2v1

v2v2


=

2β
[
a − (x2 − m1)2

] [
3rx2

2 − 2r (k + n) x2 + kn (r + e1)
]

(m1 − x2)

nk
[
a + b (x2 − m1) + (x2 − m1)2

]3 .

It can be easily verified that the following inequalities hold when the conditions given by the theo-
rem are satisfied:

WT [DFm(E2; m1)V] , 0, WT
[
D2Fm(E2; m1) (V,V)

]
, 0,

which means that the model (1.3) undergoes a transcritical bifurcation at equilibrium E2 according to
Sotomayor’s theorem [32].

The proof process of the theorem when m = m2 ∈ [0, k] is omitted since it is similar to the above. □

4.2. Saddle-node bifurcation

On the basis of the previous analysis of the existence of the equilibria and some appropriate condi-
tions, it is obvious that the predator-free equilibria E1 and E2 will overlap as an equilibrium Esn (xsn, ysn)
when ∆1 = 0, and the interior equilibria will also overlap as an equilibrium E∗sn

(
x∗sn, y

∗
sn
)

when ∆2 = 0.
These dynamic phenomena are caused by two saddle-node bifurcations; then, we have the following
two theorems.
Theorem 7. Model (1.3) will undergo a saddle-node bifurcation at the equilibrium Esn (xsn, ysn) with
respect to e1 as the bifurcation parameter when the parameters satisfy the following two conditions:

(1) 2m < k + n,
(2) e1 = e1sn =

r(k−n)2

4nk .

Proof. Now we verify the transversality condition for the occurrence of saddle-node bifurcation at
e1 = e1sn using Sotomayor’s theorem. The equilibrium Esn exists under the conditions (1) and (2)
according to the previous analysis; the Jacobian matrix at Esn can be written as

JEsn =

 0 −
xsn−m

(xsn−m)2+b(xsn−m)+a

0 β(xsn−m)
(xsn−m)2+b(xsn−m)+a

− d − e2

 ,
where xsn =

k+n
2 , corresponding to ysn = 0. It is obvious that Det

(
JEsn

)
= 0 such that zero is one of the

eigenvalues of JES n . Letting V and W represent eigenvectors corresponding to the eigenvalue zero for
the matrices JEsn and JT

Esn
. Assuming that the equilibrium Esn does not coincide with E∗1 or E∗2 such that

f (xsn) , 0, then without loss of generality, we can take

V =
(

v1

v2

)
=

(
1
0

)
, W =

(
w1

w2

)
=

(
1

xsn−m
f (xsn)

)
such that

WT Fe1 (Esn; e1sn) =
(

w1 w2

) ( −xsn

0

)
= −xsn , 0,
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WT
[
D2Fe1 (Esn; e1sn) (V,V)

]
=

(
w1 w2

) (
g1

xx g1
xy g1

yx g1
yy

g2
xx g2

xy g2
yx g2

yy

)∣∣∣∣∣∣
(Esn;e1sn)


v1v1

v1v2

v2v1

v2v2


= −

r (k + n)
kn

, 0.

Hence the eigenvectors V and W satisfy the transversality conditions such that model (1.3) has a
saddle-node bifurcation at Esn when e1 = e1sn. □

Theorem 8. Model (1.3) will undergo a saddle-node bifurcation at the equilibrium E∗sn
(
x∗sn, y

∗
sn
)

with
respect to e2 as the bifurcation parameter when the parameters satisfy the following three conditions:

(1) β > b (d + e2),
(2) e2 = e2sn =

β

2
√

a+b − d > 0,

(3)
(
2mr + 2r

√
a − kr − nr

)2
< ∆1.

Proof. Similiar to the proof process for the above theorem, we need to verify the transversality condi-
tion for the occurrence of saddle-node bifurcation at e2 = e2sn. The interior equilibrium E∗sn

(
x∗sn, y

∗
sn
)

exists under the above three conditions according to the previous analysis of equilibria, where

x∗sn = m +
√

a, y∗sn =
(
2
√

a + b
) [

rx∗sn

(
1 −

x∗sn

k

) (
x∗sn

n
− 1

)
− e1x∗sn

]
,

and the Jacobian matrix at E∗sn can be written as

JE∗sn =

(
a11

(
x∗sn, y

∗
sn
)
− 1

b+2
√

a

0 0

)
.

Letting V and W represent eigenvectors corresponding to the eigenvalue zero for the matrices JE∗sn and
J∗TEsn

, and without loss of generality, we can take

V =
(

v1

v2

)
=

( 1
b+2
√

a

a11
(
x∗sn, y

∗
sn
) )
, W =

(
w1

w2

)
=

(
0
1

)
;

hence

WT Fe2

(
E∗sn; e2sn

)
=

(
w1 w2

) ( 0
−y∗sn

)
= −y∗sn , 0,

WT
[
D2Fe2

(
E∗sn; e2sn

)
(V,V)

]
=

(
w1 w2

) (
g1

xx g1
xy g1

yx g1
yy

g2
xx g2

xy g2
yx g2

yy

)∣∣∣∣∣∣(E∗sn;e2sn)


v1v1

v1v2

v2v1

v2v2


= −

2βy∗sn
√

a
(
b + 2

√
a
)4 , 0.

Therefore, the eigenvectors V and W satisfy the transversality conditions for the occurrence of
saddle-node bifurcation at the interior equilibrium E∗sn when e2 = e2sn. In addition, as the value of e2

passes through e2sn, there is an interior equilibrium in model (1.3) and then it becomes two. □
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4.3. Hopf bifurcation

In this subsection, we concentrate on the occurrence of Hopf bifurcation at the interior equilibrium
E∗1 of model (1.3) based on the previous discussion about the stability of the interior equilibria.

In order to study Hopf bifurcation in model (1.3), we take harvesting effort e1 as the bifurca-
tion parameter, and we require that e1 = e1hp is a positive root of a11

(
x∗1, y

∗
1

)
= 0. The stability of

the interior equilibrium E∗1 changes when e1 passes through e1hp; then, we obtain the following theorem.

Theorem 9. Model (1.3) will undergo a Hopf bifurcation at the interior equilibrium E∗1
(
x∗1, y

∗
1

)
when

e1 = e1hp and the other parameters satisfy the following three conditions:
(1) ∆1 > 0,
(2) ∆2 > 0,
(3) max {m, x1} < x∗1 < min

{
m +
√

a, x2, k
}
,

(4) a < m2.

Proof. It is easy to testify that the interior equilibrium E∗1 exists and Det
(
JE∗1

)
|e1=e1hp > 0 is satisfied

under the conditions (1)–(3). Since we have the set a11

(
x∗1, y

∗
1

)
|e1=e1hp = 0, i.e. the trace of JE∗1

is zero,
we only need to verify the transversality condition for Hopf bifurcation. It can be easily obtained that

d
de1

Tr
(
JE∗1

)∣∣∣∣∣
e1=e1hp

=
−2x∗31 + (5m − b) x∗21 + 2m (b − 2m) x∗1 + m

(
m2 − bm + a

)
(
x∗1 − m

)3
+ b

(
x∗1 − m

)2
+ a

(
x∗1 − m

) .

Since the inequality d
de1

Tr
(
JE∗1

)∣∣∣∣
e1=e1hp

> 0 holds under the condition (4), the transversality condition

for Hopf bifurcation is satisfied.
The first Lyapunov coefficient l1 in Hopf bifurcation determines the stability of the limit cycle that

emerges from a bifurcation of an equilibrium. A positive value for the coefficient indicates an unstable
limit cycle, while a negative value indicates a stable limit cycle. In order to evaluate the stability of the
limit cycle after Hopf bifurcation at interior equilibrium E∗1, we calculate the first Lyapunov number l1

at the equilibrium E∗1 of model (1.3) using the method described in [33, 34]. First, translate E∗1 into the
origin (0, 0), letting x∗ = x − x∗1 and y∗ = y − y∗1; then, model (1.3) can be expressed asẋ∗ = α10x∗ + α01y∗ + α20x∗2 + α11x∗y∗ + α02y∗2 + α30x∗3 + α21x∗2y∗ + α12x∗y∗2 + α03y∗3 + P1,

ẏ∗ = β10x∗ + β01y∗ + β20x∗2 + β11x∗y∗ + β02y∗2 + β30x∗3 + β21x∗2y∗ + β12x∗y∗2 + β03y∗3 + +P2.

According to the previous content, we can obtain that Tr
(
JE∗1

)
= α10 + β01 = 0 and Det

(
JE∗1

)
=

α10β01 − α01β10 > 0; the other parameters αi j and βi j can be seen in Appendix A. P1 and P2 are the
remainder terms in the Taylor series of ẋ∗ and ẏ∗. The first Lyapunov number l1 can be expressed as
follows:

l1 =
−3π

2α01Det
(
JE∗1

)3/2

{[
α10β10(α2

11 + α11β02 + α02β11) + α10α01(β2
11 + α20β11 + α11β02)

− 2α10β10(β2
02 − α20α02) − 2α10α01(α2

20 − β20β02) − α2
01(2α20β20 + β11β20)

+(α01β10 − 2α2
10)(β11β02 − α11α20) + β2

10(α11α02 + 2α02β02)
]
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−(α2
10 + α01β10)

[
3(β10β03 − α01α30) + 2α10(α21 + β12) + (β10α12 − α01β21)

]}
,

=
−3π

2
√
−α3

01β10

(α11α20 − 3α01α30 − α01β21) .

Furthermore, when e1 = e1hp, model (1.3) will undergo a supercritical Hopf bifurcation at the interior
equilibrium E∗1 if l1 < 0, but the Hopf bifurcation is subcritical if l1 > 0. Because the expression of l1

is too cumbersome to determine the sign of it, we will give a numerical example in the next section to
increase its reliability. □

4.4. Bogdanov-Takens bifurcation

It is necessary for us to investigate the joint influence of e1 and e2 on model (1.3) since the
harvesting efforts of cyanobacteria and fish are not always constant in real life. In this subsection, we
select e1 and e2 as Bogdanov-Takens bifurcation parameters to study the influence on the dynamic
behavior caused by the harvesting efforts theoretically.

Theorem 10. When e1 and e2 are selected as the bifurcation parameters for model (1.3), a Bogdanov-
Takens bifurcation will occur at the point (e1bt, e2bt), provided that the two harvesting efforts e1bt and
e2bt satisfy the following two conditions:

Det
(
JE∗1

)
|(e1bt ,e2bt) = 0, Tr

(
JE∗1

)
|(e1bt ,e2bt) = 0.

Proof. In order to analyze the dynamic behavior of model (1.3) within a small range of the Bogdanov-
Takens point, we first calculate the local expressions of saddle-node bifurcation, Hopf bifurcation and
homoclinic bifurcation by translating model (1.3) into a normal form.

For harvesting efforts, we introduce two small disturbances ξ1 and ξ2, i.e., substituting e1 = e1bt + ξ1
and e1 = e2bt + ξ2 in model (1.3); then, we get

dx
dt
= rx

(
1 −

x
k

) ( x
n
− 1

)
−

(x − m) y
a + b (x − m) + (x − m)2 − (e1bt + ξ1) x,

dy
dt
= β

(x − m) y
a + b (x − m) + (x − m)2 − dy − (e2bt + ξ2) y.

(4.1)

After taking the variable substitutions u1 = x − x∗1 and u2 = y − y∗1, the equilibrium E∗1 comes to the
origin, and model (4.1) becomes

du1

dt
= p00 (ξ1, ξ2) + p10 (ξ1, ξ2) u1 + α01u2 + α20u2

1 + α11u1u2 + α02u2
2 + P3,

du2

dt
= q00 (ξ1, ξ2) + β10u1 + q01 (ξ1, ξ2) u2 + β20u2

1 + β11u1u2 + β02u2
2 + P4,

(4.2)

where p00 (ξ1, ξ2) = −ξ1x∗1, p10 (ξ1, ξ2) = −ξ1, q00 (ξ1, ξ2) = −ξ2y∗1 and q01 (ξ1, ξ2) = −ξ2, and the other
parameters αi j and βi j are consistent with the previous respective definitions. Besides, P3 and P4 are
the remainder terms in the Taylor series of du1

dt and du2
dt respectively in model (4.2).

Then we substitute the variables in model (4.2) near the origin as follows:

v1 = u1, v2 = p00 (ξ1, ξ2) + p10 (ξ1, ξ2) u1 + α01u2 + α20u2
1 + α11u1u2 + α02u2

2 + P3;
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under the substitutions, model (4.2) becomes
dv1

dt
= v2,

dv2

dt
= c00 (ξ1, ξ2) + c10 (ξ1, ξ2) v1 + c01 (ξ1, ξ2) v2 + c20 (ξ1, ξ2) v2

1 + c11 (ξ1, ξ2) v1v2

+ c02 (ξ1, ξ2) v2
2 + P5,

(4.3)

where the expressions of ci j can be seen in Appendix B and P5 is the remainder term in the Taylor
series of dv2

dt in model (4.3).
A new time variable τ is introduced to further transform model (4.3) into the normal form such that

(1 − c02 (ξ) v1) dτ = dt. We rewrite t to denote τ for simplicity. Then, under the change of w1 = v1 and
w2 = v2 (1 − c02v1), model (4.3) becomes

dw1

dt
= w2,

dw2

dt
= θ00 (ξ1, ξ2) + θ10 (ξ1, ξ2) w1 + θ01 (ξ1, ξ2) w2 + θ20 (ξ1, ξ2) w2

1 + θ11 (ξ1, ξ2) w1w2 + P6,

(4.4)

where

θ00 (ξ1, ξ2) = c00 (ξ1, ξ2) , θ10 (ξ1, ξ2) = c10 (ξ1, ξ2) − 2c00 (ξ1, ξ2) c02 (ξ1, ξ2) , θ01 (ξ1, ξ2) = c01 (ξ1, ξ2) ,
θ20 (ξ1, ξ2) = c20 (ξ1, ξ2) − 2c10 (ξ1, ξ2) c02 (ξ1, ξ2) + c00 (ξ1, ξ2) c2

02 (ξ1, ξ2) ,
θ11 (ξ1, ξ2) = c11 (ξ1, ξ2) − 2c01 (ξ1, ξ2) c02 (ξ1, ξ2) ,

and P6 is the remainder term in the Taylor series of dw2
dt in model (4.4).

Assuming that θ20 (ξ1, ξ2) , 0, we define z1 = w1 +
θ10(ξ1,ξ2)

2θ20(ξ1,ξ2) , z2 = w2. As a result, model (4.4) takes
on the following new form:

dz1

dt
= z2,

dz2

dt
= σ00 (ξ1, ξ2) + σ01 (ξ1, ξ2) z2 + σ20 (ξ1, ξ2) z2

1 + σ11 (ξ1, ξ2) z1z2 + P7,

(4.5)

where

σ00 (ξ1, ξ2) = θ00 (ξ1, ξ2) −
θ210 (ξ1, ξ2)

4θ20 (ξ1, ξ2)
, σ01 (ξ1, ξ2) = θ01 (ξ1, ξ2) −

θ10 (ξ1, ξ2) θ11 (ξ1, ξ2)
2θ20 (ξ1, ξ2)

,

σ20 (ξ1, ξ2) = θ20 (ξ1, ξ2) , σ11 (ξ1, ξ2) = θ11 (ξ1, ξ2) ,

and P7 is the remainder term in the Taylor series of dz2
dt in model (4.5).

In order to simplify the coefficient of term σ20 (ξ1, ξ2) z2
1 in model (4.5), we let

s1 = z1, s2 =
z2√

|σ20 (ξ1, ξ2)|
, τ = t

√
|σ20 (ξ1, ξ2)|;

rewriting t to denote τ, then model (4.5) has a new form:
ds1

dt
= s2,

ds2

dt
= γ00 (ξ1, ξ2) + γ01 (ξ1, ξ2) s2 + γ20 (ξ1, ξ2) s2

1 + γ11 (ξ1, ξ2) s1s2 + P8,

(4.6)
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where
γ00 (ξ1, ξ2) =

σ00 (ξ1, ξ2)
|σ20 (ξ1, ξ2)|

, γ01 (ξ1, ξ2) =
σ01 (ξ1, ξ2)√
|σ20 (ξ1, ξ2)|

,

γ20 (ξ1, ξ2) =
σ20 (ξ1, ξ2)
|σ20 (ξ1, ξ2)|

, γ11 (ξ1, ξ2) =
σ11 (ξ1, ξ2)√
|σ20 (ξ1, ξ2)|

,

and P8 is the remainder term in the Taylor series of ds2
dt in model (4.6).

Supposing that σ11 , 0, then γ11 , 0. Further setting

x =
σ20 (ξ1, ξ2)
|σ20 (ξ1, ξ2)|

γ2
11 (ξ1, ξ2) s1, y = γ3

11 (ξ1, ξ2) s2, τ =
σ20 (ξ1, ξ2)

|σ20 (ξ1, ξ2)| γ11 (ξ1, ξ2)
t,

and rewriting t to denote τ, we obtain the normal form of model (4.1) at the Bogdanov-Takens point
dx
dt
= y,

dy
dt
= ϖ00 (ξ1, ξ2) +ϖ01 (ξ1, ξ2) y + x2 + xy + P9,

(4.7)

where

ϖ00 (ξ1, ξ2) =
σ20 (ξ1, ξ2)
|σ20 (ξ1, ξ2)|

γ00 (ξ1, ξ2) γ4
11 (ξ1, ξ2) , ϖ01 (ξ1, ξ2) =

σ20 (ξ1, ξ2)
|σ20 (ξ1, ξ2)|

γ01 (ξ1, ξ2) γ11 (ξ1, ξ2) ,

and P9 is the remainder term in the Taylor series of dϖ2
dt in model (4.7).

Based on the results of [35], model (1.3) undergoes a Bogdanov-Takens bifurcation when (e1, e2) =
(e1bt, e2bt) and (ξ1, ξ2) is in a small domain of the origin. We obtain the local expressions of the following
three bifurcation curves.

(1) The curve of saddle-node bifurcation:

S N = {(ξ1, ξ2) : ϖ00 (ξ1, ξ2) = 0, ϖ01 (ξ1, ξ2) , 0} ;

(2) The curve of Hopf bifurcation:

Hp =
{

(ξ1, ξ2) : ϖ01 (ξ1, ξ2) =
σ20 (ξ1, ξ2)
|σ20 (ξ1, ξ2)|

√
−ϖ00 (ξ1, ξ2), ϖ00 (ξ1, ξ2) < 0

}
;

(3) The curve of homoclinic bifurcation:

HL =
{

(ξ1, ξ2) : ϖ01 (ξ1, ξ2) =
5σ20 (ξ1, ξ2)

7 |σ20 (ξ1, ξ2)|

√
−ϖ00 (ξ1, ξ2), ϖ00 (ξ1, ξ2) < 0

}
.

□

5. Numerical simulation

Although we have obtained some theoretical results for model (1.3) in the previous sections, it is
not easy to get intuitive knowledge about the dynamic behaviors of the model since some expressions
in the theoretical analysis are truly complicated. Thus, we perform some precise numerical simulations
to further research the model and investigate the dynamic behavior of it in this section. Throughout
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the numerical simulations, we consider a set of hypothetical values of parameters according to their
biological significance in model (1.3):

k = 50, n = 3, m = 30, β = 0.6, r = 1.5, d = 1, a = 0.02, b = 0.1.

Given these parameters, we can obtain the Hopf bifurcation curves of model (1.3) as Figure 3(a).
Then, we fix the harvesting effort e1 = 3.194748196, and let the other effort e2 vary within a small
range. We can get a bifurcation diagram of model (1.3) as Figure 3(b). Hopf bifurcation and saddle-
node bifurcation occur when e2 = 0.5672232479 and e2 = 0.5672232498 respectively. The solid
line in Figure 3(b) indicates stability and the dashed line indicates instability. Figure 4 reveals the
detailed evolution process of Hopf bifurcation. The Bogdanov-Takens bifurcation parameters were

0.567223246 0.567223248 0.56722325
e

2

30.141405

30.14141

30.141415

30.14142

30.141425

30.14143

30.141435

x

x
1

*

x
2

*

saddle-node

Hopf

homoclinic

Figure 3. (a). Hopf bifurcation curves of model (1.3) given the previous parameters. (b).
Bifurcation diagram of model (1.3) given the previous parameters and e1 = 3.174748196.

calculated as e1bt = 3.194748196 and e2bt = 0.5672232498 on the premise of the above parameters.
The biomasses of cyanobacteria at interior equilibria E∗1 and E∗2 with varying harvesting efforts are
shown in Figure 5(a). Although it is not obvious, the curves lying on the curved surface of x∗1 in
Figure 5(a) are saddle-node, Hopf and homoclinic bifurcation curves respectively. The projections of
these curves on the e1 − e2 plane within a small range of (e1bt, e2bt) can be clearly seen in Figure 5(b).
These bifurcation curves divide the left area of the Bogdanov-Takens bifurcation point in the ξ1 − ξ2
plane into four blocks named I, II, III and IV. Going through the SN curve top-down, one can observe
an interior equilibrium that then evolves into two. There appears or disappears a periodic oscillation
solution with the transform of the stability of interior equilibrium E∗1 when the parameters are located
on the Hp curve. Along the HL curve, the limit cycle becomes a homoclinic orbit after connecting
with E∗2 and then it disappears. Next, we will investigate the dynamic properties and corresponding
biological significance within the four regions and on the curves by analyzing the phase diagrams at
the six locations (a)–(f) in Figure5 (b).

At location (a): (−0.02, 0.0000000002) there exist trivial equilibrium E0 (black dot in Figure 6(a))
and predator-free equilibria E1 (red dot in Figure 6 (a)) and E2 (blue dot in Figure 6(a)). But only the
equilibrium E2 is meaningful in the perspective of biology since the biomass of cyanobacteria must
be greater than the aggregation amount according to the definition of model (1.3), and the parameter
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of aggregation is m = 30 at this time. The predator-free equilibrium E2 is a globally stable node here
in the biological sense, which means that the population of fish will become extinct eventually and
the cyanobacteria will remain at the corresponding density of E2. The time series evolution and phase
portrait of the model at location (a) can be seen as Figure 6(a).

The location (b): (−0.02, 0), is on the SN curve. There exists a saddle-node equilibrium E∗sn (blue
dot in Figure 6(b)), which will evolve into two interior equilibria E∗1 and E∗2 as the two parameters
enter region II from region I. In addition, the trivial equilibrium and the two predator-free equilibria
also exist at this time. Similar to location (a), only E∗sn and E2 are meaningful from the biological
point of view. Fish will eventually become extinct and the density of cyanobacteria will remain at the
corresponding density of E2 due to the instability of E∗sn. The time series evolution and phase portrait
near interior equilibrium E∗sn are presented in Figure 6(b).

Figure 4. The progresses of homoclinic bifurcation and Hopf bifurcation in model (1.3) with
the previous parameters and e1 = 3.174748196.
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Figure 5. (a) The biomasses of prey at E∗1 and E∗2 with varying harvesting efforts. (b) Three
bifurcation curves of model (1.3), which is another manifestation of lines between x∗1 and x∗2
in (a).
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Figure 6. Phase portraits and time series evolution of model (1.3) with varying ξ1 and ξ2
around Bogdanov-Takens point (0, 0).
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There arise two interior equilibria E∗1 (red dot in Figure 6(c)) and E∗2 (blue dot in Figure 6(c)) from
E∗sn at location (c): (−0.02,−0.0000000016); E∗1 and E∗2 are the unstable focus and unstable saddle
respectively. The remaining equilibrium at this position has similar dynamic behavior as at position
(b). Figure 6(c) presents the time series evolution and phase portrait around the interior equilibria.
With the evolution of time, the final destiny of the two populations is consistent with that of position
(b), that is, the fish is extinct and the population density of cyanobacteria tends to become stable.

The Hp curve has a significant influence on the dynamic behavior of model (1.3). When we move
position (c) through the Hp curve to (d): (−0.02,−0.0000000029), a Hopf bifurcation occurs in the
model. A semistable limit cycle (red cycle in Figure 6(d)) arises around the interior equilibrium E∗1; the
value of the first Lyapunov number l1 is −3149722.203π at this time, which indicates that the interior
equilibrium E∗1 becomes stable after a supercritical Hopf bifurcation. With the evolution of time, the
trajectory within a small range outside the limit cycle tends to the limit cycle, while the trajectory of
the inside is far away from it and converges to the interior equilibrium E∗1. Therefore, when the initial
population densities of fish and cyanobacteria fall in different areas on the ξ1 − ξ2 plane, three different
biological phenomena may occur. The first destiny is the same as the results for positions (a)–(c),
which means that the fish will become extinct and the population density of cyanobacteria will remain
at a stable state. The second result is that fish and cyanobacteria coexist and their population densities
maintain periodic oscillation with time, but this periodic oscillation coexistence mode is unstable, and
it leads to the third coexistence mode at stable focus E∗1 under the conditions a small disturbance from
outside.

The limit cycle becomes larger gradually, and then connects with saddle equilibrium E∗2 to form
a homoclinic orbit (red cycle in Figure 6(e)) in the process of moving down from position (d) to
position (e): (−0.02,−0.0000000037) on curve HL. The remaining equilibrium at this position has
similar dynamic behavior as at position (d). The two species of fish and cyanobacteria will eventually
coexist at the interior equilibrium E∗1 when the initial densities of the two populations falls within the
homoclinic orbit. While on the homoclinic orbit or outside, the fish will eventually become extinct and
the population density of cyanobacteria tends to the predator-free equilibrium of E2 and then remains
stable.

When the parameters are located at position (f): (−0.02,−0.0000000048) in region IV, the homo-
clinic orbit disappears, and E∗1 is a stable focus and E∗2 is a saddle; the properties of other equilibria
are consistent with those at position (e). The two populations will coexist at the interior equilibrium
E∗1, or the fish will become extinct and the cyanobacteria population will finally become stable depend-
ing on the initial population density. Therefore, an ideal ecological pattern can be guided to form by
controlling the initial population density artificially.

6. Conclusions

This paper presented a cyanobacteria-fish model with two harvesting terms and a modified Holling
type IV functional response function on the basis of a predator-prey model. The critical conditions
were analyzed first to make certain the existence and stability of the potential equilibria in model (1.3),
which is the preparatory work for the later theoretical analysis. We concluded that there is an economic
equilibrium in model (1.3), and that the MSTY exists at the interior equilibrium E∗1 given certain
parameters after analyzing the harvesting efforts. The numerical simulation suggests that a global
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MSTY may not exist at equilibrium E∗1 for model (1.3), as illustrated in Figure 1. Nonetheless, the
results presented in Figure 2 indicate that a local MSTY can be achieved for some given proportional
coefficient of harvesting efforts λ. This has an enlightening effect on the managers of water ecological
resources. That is, on the premise of ensuring that cyanobacteria do not break out and fish do not
become extinct, they can choose to obtain the maximum and stable total yield at the MSTY point.
Harvesting efforts e1 and e2 were chosen as our bifurcation parameters, and the existence of saddle-
node bifurcation and Hopf bifurcation with codimension 1 and Bogdanov-Takens bifurcation with
codimension 2 in the model are analyzed. The theoretical conditions of their occurrence have been
concurrently given.

In the section of simulation analysis, the analysis of bifurcation theory for model (1.3) was further
enriched with concrete numerical examples and corresponding biological explanations. The harvesting
efforts of the two populations by humans affect the dynamic survival mode of the populations signifi-
cantly. The harvesting efforts were selected for different regions in Figure 5(b), and the corresponding
phase portraits and time series evolution of model (1.3) can be seen in Figure 6(a)–(f). Initially, the fish
population goes extinct, then the two populations coexist in periodic oscillations within a certain range,
and finally, they coexist at the internal equilibrium. According to the phase portraits and time series
evolution of the model when the parameters are taken in different regions on the bifurcation diagram,
we obtained the dynamic behaviors and explained the corresponding biological significances. This
provides inspiration for the water ecological resource managers to formulate reasonable harvesting
strategies. That is, they can promote the development of the two populations to reach their expected
target by controlling the initial population densities of cyanobacteria and fish and adopting harvest-
ing efforts with corresponding intensity. It is also one of the important contributions of our paper. In
addition, formulating mature and practical harvesting strategies in further research is necessary.

Based on the results of our research, it is worth noting that appropriate physical harvesting can in-
duce significant changes in the coexistence mode of cyanobacteria and fish through the utilization of
the dynamic transition between saddle-node bifurcation and Hopf bifurcation. In addition, Hopf bifur-
cation can result in a periodic oscillation coexistence mode between cyanobacteria and fish. Although
the periods of these oscillations along different closed trajectories may differ, the average number of
cyanobacteria and fish should remain constant within one cycle. Therefore, this research shows that
cyanobacteria and fish can gradually form a new cyclic coexistence mode through physical harvest-
ing strategies and biological algae control technologies. Furthermore, the numerical simulation results
of Bogdanov-Takens bifurcation suggest that small changes in ecological environmental factors could
lead to different coexistence modes of cyanobacteria and fish. Thus, when implementing physical har-
vesting strategies and ecological algae control technologies in the field, it is necessary to effectively
and timely control the implementation process and related quantity limits based on the actual situation
in the field.

Although this study has yielded some good results, its research results were mainly obtained through
the evolutionary characteristics of bifurcation dynamics, which had certain limitations. At the same
time, the construction of the model (1.2) overlooked some of the interaction mechanisms between
cyanobacteria and fish, which could lead to incomplete analysis of their interaction mechanisms. The
influence of different harvesting terms on the dynamic behaviors of the model needs further consid-
eration, and we will verify the reliability of the model through experiments in follow-up work. Of
course, in order to make our model reflect the real situation within a small range of error, we need to
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improve the model according to many factors. For example, after introducing other species, a multi-
prey or multi-predator model can be constructed according to a series of survival relationships between
them. We can further enhance our model by incorporating the spatial diffusion behavior of the species.
This can help us better understand the nature of the relationship between fish and cyanobacteria by
considering the different population distributions.
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Appendix A
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x∗1 − m

)
+ ab[(

x∗1 − m
)2
+ b

(
x∗1 − m

)
+ a

]3 , β10 = −

βy∗1
[(

x∗1 − m
)2
− a

]
[(

x∗1 − m
)2
+ b

(
x∗1 − m

)
+ a

]2 ,

β11 = −

β
[(

x∗1 − m
)2
− a

]
[(

x∗1 − m
)2
+ b

(
x∗1 − m

)
+ a

]2 , β20 =

βy∗1
[(

x∗1 − m
)3
− 3a

(
x∗1 − m

)
− ab

]
[(

x∗1 − m
)2
+ b

(
x∗1 − m

)
+ a

]3 ,

β30 =

βy∗1
[
7
(
x∗1 − m

)2
+ 5b

(
x∗1 − m

)
+ b2 − a

]
[(

x∗1 − m
)2
+ b

(
x∗1 − m

)
+ a

]3 −
βy∗1

[
2
(
x∗1 − m

)
+ b

]3[(
x∗1 − m

)2
+ b

(
x∗1 − m

)
+ a

]4 ,

β21 =

β
[(

x∗1 − m
)3
− 3a

(
x∗1 − m

)
− ab

]
[(

x∗1 − m
)2
+ b

(
x∗1 − m

)
+ a

]3 .
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Appendix B

c00 (ξ1, ξ2) = α01 (ξ1, ξ2) q00 (ξ1, ξ2) − p00 (ξ1, ξ2) q01 (ξ1, ξ2) ,
c10 (ξ1, ξ2) = α01 (ξ1, ξ2) β10 (ξ1, ξ2) + α11 (ξ1, ξ2) q00 (ξ1, ξ2) − p00 (ξ1, ξ2) β11 (ξ1, ξ2) − p10 (ξ1, ξ2) q01 (ξ1, ξ2) ,

c01 (ξ1, ξ2) = p10 (ξ1, ξ2) + q01 (ξ1, ξ2) −
α11 (ξ1, ξ2) p00 (ξ1, ξ2)

α01 (ξ1, ξ2)
, c02 (ξ1, ξ2) =

α11 (ξ1, ξ2)
α01 (ξ1, ξ2)

,

c20 (ξ1, ξ2) = α01β20 (ξ1, ξ2) + α11β10 (ξ1, ξ2) − α20 (ξ1, ξ2) q01 (ξ1, ξ2) − p10 (ξ1, ξ2) β11 (ξ1, ξ2) ,

c11 (ξ1, ξ2) = β11 (ξ1, ξ2) + 2α20 (ξ1, ξ2) −
α11 (ξ1, ξ2) p10 (ξ1, ξ2)

α01 (ξ1, ξ2)
+
α2

11 (ξ1, ξ2) p00 (ξ1, ξ2)

α2
01 (ξ1, ξ2)

.
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