Research article Special Issues

Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect

  • Received: 21 September 2023 Revised: 27 January 2024 Accepted: 01 February 2024 Published: 28 February 2024
  • The refuge effect is critical in ecosystems for stabilizing predator-prey interactions. The purpose of this research was to investigate the complexities of a discrete-time predator-prey system with a refuge effect. The analysis investigated the presence and stability of fixed points, as well as period-doubling and Neimark-Sacker (NS) bifurcations. The bifurcating and fluctuating behavior of the system was controlled via feedback and hybrid control methods. In addition, numerical simulations were performed as evidence to back up our theoretical findings. According to our findings, maintaining an optimal level of refuge availability was critical for predator and prey population cohabitation and stability.

    Citation: Parvaiz Ahmad Naik, Muhammad Amer, Rizwan Ahmed, Sania Qureshi, Zhengxin Huang. Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4554-4586. doi: 10.3934/mbe.2024201

    Related Papers:

  • The refuge effect is critical in ecosystems for stabilizing predator-prey interactions. The purpose of this research was to investigate the complexities of a discrete-time predator-prey system with a refuge effect. The analysis investigated the presence and stability of fixed points, as well as period-doubling and Neimark-Sacker (NS) bifurcations. The bifurcating and fluctuating behavior of the system was controlled via feedback and hybrid control methods. In addition, numerical simulations were performed as evidence to back up our theoretical findings. According to our findings, maintaining an optimal level of refuge availability was critical for predator and prey population cohabitation and stability.



    加载中


    [1] L. Edelstein-Keshet, Mathematical Models in Biology, Society for Industrial and Applied Mathematics, 2005. https://doi.org/10.1137/1.9780898719147
    [2] A. J. Lotka, Science Progress in the Twentieth Century (1919–1933), Elem. Phys. Biol., 21 (1926), 341–343.
    [3] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0
    [4] X. Chen, X. Zhang, Dynamics of the predator-prey model with the sigmoid functional response, Stud. Appl. Math., 147 (2021), 300–318. https://doi.org/10.1111/sapm.12382 doi: 10.1111/sapm.12382
    [5] M. A. Shahzad, R. Ahmed, Dynamic complexity of a discrete predator-prey model with prey refuge and herd behavior, VFAST Trans. Math., 11 (2023), 194–216. https://doi.org/10.21015/vtm.v11i1.1512 doi: 10.21015/vtm.v11i1.1512
    [6] H. Deng, F. Chen, Z. Zhu, Z. Li, Dynamic behaviors of Lotka-Volterra predator-prey model incorporating predator cannibalism, Adv. Differ. Equations, 2019 (2019), 359. https://doi.org/10.1186/s13662-019-2289-8 doi: 10.1186/s13662-019-2289-8
    [7] R. Ahmed, Complex dynamics of a fractional-order predator-prey interaction with harvesting, Open J. Discrete Appl. Math., 3 (2020), 24–32. https://doi.org/10.30538/psrp-odam2020.0040 doi: 10.30538/psrp-odam2020.0040
    [8] S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex., 39 (2019), 100770. https://doi.org/10.1016/j.ecocom.2019.100770 doi: 10.1016/j.ecocom.2019.100770
    [9] Y. Ma, M. Zhao, Y. Du, Impact of the strong Allee effect in a predator-prey model, AIMS Math., 7 (2022), 16296–16314. https://doi.org/10.3934/math.2022890 doi: 10.3934/math.2022890
    [10] M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal Fract., 4 (2020), 35. https://doi.org/10.3390/fractalfract4030035 doi: 10.3390/fractalfract4030035
    [11] J. Danane, M. Yavuz, M. Yildiz, Stochastic modeling of three-species prey-predator model driven by levy jump with mixed Holling-ii and Beddington-Deangelis functional responses, Fractal Fract., 7 (2023), 751. https://doi.org/10.3390/fractalfract7100751 doi: 10.3390/fractalfract7100751
    [12] A. Chatterjee, S. Pal, A predator-prey model for the optimal control of fish harvesting through the imposition of a tax, Int. J. Optim. Control Theor. Appl., 13 (2023), 68–80. https://doi.org/10.11121/ijocta.2023.1218 doi: 10.11121/ijocta.2023.1218
    [13] E. Gonzalez-Olivares, J. Mena-Lorca, A. Rojas-Palma, J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model as consequences of the Allee effect on prey, Appl. Math. Modell., 35 (2011), 366–381. https://doi.org/10.1016/j.apm.2010.07.001 doi: 10.1016/j.apm.2010.07.001
    [14] M. Anacleto, C. Vidal, Dynamics of a delayed predator-prey model with Allee effect and Holling type ii functional response, Math. Methods Appl. Sci., 43 (2020), 5708–5728. https://doi.org/10.1002/mma.6307 doi: 10.1002/mma.6307
    [15] D. Sen, S. Ghorai, M. Banerjee, A. Morozov, Bifurcation analysis of the predator-prey model with the allee effect in the predator, J. Math. Biol., 84 (2022), 7. https://doi.org/10.1007/s00285-021-01707-x doi: 10.1007/s00285-021-01707-x
    [16] B. Mondal, S. Sarkar, U. Ghosh, Complex dynamics of a generalist predator-prey model with hunting cooperation in predator, Eur. Phys. J. Plus, 137 (2022), 43. https://doi.org/10.1140/epjp/s13360-021-02272-4 doi: 10.1140/epjp/s13360-021-02272-4
    [17] Y. Chou, Y. Chow, X. Hu, S. R. J. Jang, A Ricker-type predator-prey system with hunting cooperation in discrete time, Math. Comput. Simul., 190 (2021), 570–586. https://doi.org/10.1016/j.matcom.2021.06.003 doi: 10.1016/j.matcom.2021.06.003
    [18] M. Y. Hamada, T. El-Azab, H. El-Metwally, Allee effect in a Ricker type predator-prey model, J. Math. Comput. Sci., 29 (2023), 239–251. https://doi.org/10.22436/jmcs.029.03.03 doi: 10.22436/jmcs.029.03.03
    [19] M. Y. Hamada, T. El-Azab, H. El-Metwally, Bifurcation analysis of a two-dimensional discrete-time predator-prey model, Math. Methods Appl. Sci., 46 (2023), 4815–4833. https://doi.org/10.1002/mma.8807 doi: 10.1002/mma.8807
    [20] D. Ghosh, P. K. Santra, G. S. Mahapatra, A three-component prey-predator system with interval number, Math. Modell. Numer. Simul. Appl., 3 (2023), 1–16. https://doi.org/10.53391/mmnsa.1273908 doi: 10.53391/mmnsa.1273908
    [21] A. Q. Khan, I. Ahmad, H. S. Alayachi, M. S. M. Noorani, A. Khaliq, Discrete-time predator-prey model with flip bifurcation and chaos control, Math. Biosci. Eng., 17 (2020), 5944–5960. https://doi.org/10.3934/mbe.2020317 doi: 10.3934/mbe.2020317
    [22] Z. AlSharawi, S. Pal, N. Pal, J. Chattopadhyay, A discrete-time model with non-monotonic functional response and strong Allee effect in prey, J. Differ. Equations Appl., 26 (2020), 404–431. https://doi.org/10.1080/10236198.2020.1739276 doi: 10.1080/10236198.2020.1739276
    [23] R. Ahmed, A. Ahmad, N. Ali, Stability analysis and Neimark-Sacker bifurcation of a nonstandard finite difference scheme for Lotka-Volterra prey-predator model, Commun. Math. Biol. Neurosci., 2022 (2022), 61. https://doi.org/10.28919/cmbn/7534 doi: 10.28919/cmbn/7534
    [24] A. Khan, S. Bukhari, M. Almatrafi, Global dynamics, Neimark-Sacker bifurcation and hybrid control in a Leslie's prey-predator model, Alexandria Eng. J., 61 (2022), 11391–11404. https://doi.org/10.1016/j.aej.2022.04.042 doi: 10.1016/j.aej.2022.04.042
    [25] A. Suleman, R. Ahmed, F. S. Alshammari, N. A. Shah, Dynamic complexity of a slow-fast predator-prey model with herd behavior, AIMS Math., 8 (2023), 24446–24472. https://doi.org/10.3934/math.20231247 doi: 10.3934/math.20231247
    [26] Z. Wei, W. Tan, A. A. Elsadany, I. Moroz, Complexity and chaos control in a cournot duopoly model based on bounded rationality and relative profit maximization, Nonlinear Dyn., 111 (2023), 17561–17589. https://doi.org/10.1007/s11071-023-08782-3 doi: 10.1007/s11071-023-08782-3
    [27] L. Zhang, H. Jiang, Y. Liu, Z. Wei, Q. Bi, Controlling hidden dynamics and multistability of a class of two-dimensional maps via linear augmentation, Int. J. Bifurcation Chaos, 31 (2021), 2150047. https://doi.org/10.1142/s0218127421500474 doi: 10.1142/s0218127421500474
    [28] I. Džafić, R. A. Jabr, Discrete-time analytic signals for power system phasor and frequency tracking, Int. J. Electr. Power Energy Syst., 148 (2023), 109003. https://doi.org/10.1016/j.ijepes.2023.109003 doi: 10.1016/j.ijepes.2023.109003
    [29] E. Khalife, D. Abou Jaoude, M. Farhood, P. L. Garoche, Computation of invariant sets for discrete-time uncertain systems, Int. J. Rob. Nonlinear Control, 33 (2023), 8452–8474. https://doi.org/10.1002/rnc.6834 doi: 10.1002/rnc.6834
    [30] R. W. Ibrahim, K-symbol fractional order discrete-time models of lozi system, J. Differ. Equations Appl., 29 (2023), 1045–1064. https://doi.org/10.1080/10236198.2022.2158736 doi: 10.1080/10236198.2022.2158736
    [31] Z. U. A. Zafar, M. A. Khan, A. Akgül, M. Asiri, M. B. Riaz, The analysis of a new fractional model to the Zika virus infection with mutant, Heliyon, 10 (2024), e23390. https://doi.org/10.1016/j.heliyon.2023.e23390 doi: 10.1016/j.heliyon.2023.e23390
    [32] M. W. Yasin, N. Ahmed, M. S. Iqbal, A. Raza, M. Rafiq, E. M. T. Eldin, et al., Spatio-temporal numerical modeling of stochastic predator-prey model, Sci. Rep., 13 (2023) 1990. https://doi.org/10.1038/s41598-023-28324-6 doi: 10.1038/s41598-023-28324-6
    [33] P. Baydemir, H. Merdan, E. Karaoglu, G. Sucu, Complex dynamics of a discrete-time prey-predator system with Leslie type: Stability, bifurcation analyses and chaos, Int. J. Bifurcation Chaos, 30 (2020), 2050149. https://doi.org/10.1142/s0218127420501497 doi: 10.1142/s0218127420501497
    [34] N. Sk, B. Mondal, A. Sarkar, S. S. Santra, D. Baleanu, M. Altanji, Chaos emergence and dissipation in a three-species food web model with intraguild predation and cooperative hunting, AIMS Math., 9 (2024), 1023–1045. https://doi.org/10.3934/math.2024051 doi: 10.3934/math.2024051
    [35] P. A. Naik, Z. Eskandari, H. E. Shahraki, Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model, Math. Modell. Numer. Simul. Appl., 1 (2021), 95–101. https://doi.org/10.53391/mmnsa.2021.01.009 doi: 10.53391/mmnsa.2021.01.009
    [36] Z. Eskandari, P. A. Naik, M. Yavuz, Dynamical behaviors of a discrete-time prey-predator model with harvesting effect on the predator, J. Appl. Anal. Comput., 14 (2024), 283–297.
    [37] Z. Eskandari, Z. Avazzadeh, R. K. Ghaziani, B. Li, Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method, Math. Methods Appl. Sci., 2022 (2022). https://doi.org/10.1002/mma.8859 doi: 10.1002/mma.8859
    [38] P. A. Naik, Z. Eskandari, Z. Avazzadeh, J. Zu, Multiple bifurcations of a discrete-time prey-predator model with mixed functional response, Int. J. Bifurcation Chaos, 32 (2022), 2250050. https://doi.org/10.1142/s021812742250050x doi: 10.1142/s021812742250050x
    [39] P. A. Naik, Z. Eskandari, A. Madzvamuse, Z. Avazzadeh, J. Zu, Complex dynamics of a discrete-time seasonally forced SIR epidemic model, Math. Methods Appl. Sci., 46 (2023), 7045–7059. https://doi.org/10.1002/mma.8955 doi: 10.1002/mma.8955
    [40] P. A. Naik, Z. Eskandari, H. E. Shahkari, K. M. Owolabi, Bifurcation analysis of a discrete-time prey-predator model, Bull. Biomath., 1 (2023), 111–123. https://doi.org/10.59292/bulletinbiomath.2023006 doi: 10.59292/bulletinbiomath.2023006
    [41] W. Ou, C. Xu, Q. Cui, Y. Pang, Z. Liu, J. Shen, et al., Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Math., 9 (2024), 1622–1651. http://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
    [42] Y. Li, F. Zhang, X. Zhuo, Flip bifurcation of a discrete predator-prey model with modified Leslie-Gower and Holling-type iii schemes, Math. Biosci. Eng., 17 (2020), 2003–2015. https://doi.org/10.3934/mbe.2020106 doi: 10.3934/mbe.2020106
    [43] B. Rajni, Ghosh, Multistability, chaos and mean population density in a discrete-time predator-prey system, Chaos Solitons Fractals, 162 (2022), 112497. https://doi.org/10.1016/j.chaos.2022.112497 doi: 10.1016/j.chaos.2022.112497
    [44] A. Yousef, A. M. Algelany, A. Elsadany, Codimension one and codimension two bifurcations in a discrete Kolmogorov type predator-prey model, J. Comput. Appl. Math., 428 (2023), 115171. https://doi.org/10.1016/j.cam.2023.115171 doi: 10.1016/j.cam.2023.115171
    [45] A. Q. Khan, I. M. Alsulami, Complicate dynamical analysis of a discrete predator-prey model with a prey refuge, AIMS Math., 8 (2023), 15035–15057. https://doi.org/10.3934/math.2023768 doi: 10.3934/math.2023768
    [46] A. Tassaddiq, M. S. Shabbir, Q. Din, H. Naaz, Discretization, bifurcation, and control for a class of predator-prey interactions, Fractal Fract., 6 (2022), 31. https://doi.org/10.3390/fractalfract6010031 doi: 10.3390/fractalfract6010031
    [47] Q. Zhou, F. Chen, S. Lin, Complex dynamics analysis of a discrete amensalism system with a cover for the first species, Axioms, 11 (2022), 365. https://doi.org/10.3390/axioms11080365 doi: 10.3390/axioms11080365
    [48] D. Mukherjee, Global stability and bifurcation analysis in a discrete-time two prey one predator model with help, Int. J. Modell. Simul., 43 (2023), 752–763. https://doi.org/10.1080/02286203.2022.2121676 doi: 10.1080/02286203.2022.2121676
    [49] S. Lin, F. Chen, Z. Li, L. Chen, Complex dynamic behaviors of a modified discrete Leslie-Gower predator-prey system with fear effect on prey species, Axioms, 11 (2022), 520. https://doi.org/10.3390/axioms11100520 doi: 10.3390/axioms11100520
    [50] P. A. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math., 413 (2022), 114401. https://doi.org/10.1016/j.cam.2022.114401 doi: 10.1016/j.cam.2022.114401
    [51] R. Ahmed, M. Rafaqat, I. Siddique, M. A. Arefin, Complex dynamics and chaos control of a discrete-time predator-prey model, Discrete Dyn. Nat. Soc., 2023 (2023), 8873611. https://doi.org/10.1155/2023/8873611 doi: 10.1155/2023/8873611
    [52] M. Y. Hamada, T. El-Azab, H. El-Metwally, Bifurcations and dynamics of a discrete predator-prey model of Ricker type, J. Appl. Math. Comput., 69 (2023), 113–135. https://doi.org/10.1007/s12190-022-01737-8 doi: 10.1007/s12190-022-01737-8
    [53] E. Gonzalez-Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Modell., 166 (2003), 135–146. https://doi.org/10.1016/s0304-3800(03)00131-5 doi: 10.1016/s0304-3800(03)00131-5
    [54] Z. Ma, F. Chen, C. Wu, W. Chen, Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference, Appl. Math. Comput., 219 (2013), 7945–7953. https://doi.org/10.1016/j.amc.2013.02.033 doi: 10.1016/j.amc.2013.02.033
    [55] F. Chen, L. Chen, X. Xie, On a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Anal. Real World Appl., 10 (2009), 2905–2908. https://doi.org/10.1016/j.nonrwa.2008.09.009 doi: 10.1016/j.nonrwa.2008.09.009
    [56] H. Molla, S. Sarwardi, S. R. Smith, M. Haque, Dynamics of adding variable prey refuge and an Allee effect to a predator-prey model, Alexandria Eng. J., 61 (2022), 4175–4188. https://doi.org/10.1016/j.aej.2021.09.039 doi: 10.1016/j.aej.2021.09.039
    [57] D. Mukherjee, The effect of refuge and immigration in a predator-prey system in the presence of a competitor for the prey, Nonlinear Anal. Real World Appl., 31 (2016), 277–287. https://doi.org/10.1016/j.nonrwa.2016.02.004 doi: 10.1016/j.nonrwa.2016.02.004
    [58] J. Ghosh, B. Sahoo, S. Poria, Prey-predator dynamics with prey refuge providing additional food to predator, Chaos Solitons Fractals, 96 (2017), 110–119. https://doi.org/10.1016/j.chaos.2017.01.010 doi: 10.1016/j.chaos.2017.01.010
    [59] R. Ahmed, J. Mushtaq, S. Saher, H. M. A. Saeed, Dynamic analysis of a predator-prey model with Holling type-ii functional response and prey refuge by using a NSFD scheme, Commun. Math. Biol. Neurosci., 2022 (2022), 111. https://doi.org/10.28919/cmbn/7735 doi: 10.28919/cmbn/7735
    [60] Q. Shu, J. Xie, Stability and bifurcation analysis of discrete predator-prey model with nonlinear prey harvesting and prey refuge, Math. Methods Appl. Sci., 45 (2022), 3589–3604. https://doi.org/10.1002/mma.8005 doi: 10.1002/mma.8005
    [61] R. Ahmed, M. S. Yazdani, Complex dynamics of a discrete-time model with prey refuge and Holling type-ii functional response, J. Math. Comput. Sci., 12 (2022), 113. https://doi.org/10.28919/jmcs/7205 doi: 10.28919/jmcs/7205
    [62] W. Lu, Y. Xia, Multiple periodicity in a predator-prey model with prey refuge, Mathematics, 10 (2022), 421. https://doi.org/10.3390/math10030421 doi: 10.3390/math10030421
    [63] B. Hong, C. Zhang, Neimark-Sacker bifurcation of a discrete-time predator-prey model with prey refuge effect, Mathematics, 11 (2023), 1399. https://doi.org/10.3390/math11061399 doi: 10.3390/math11061399
    [64] Z. Ma, W. Li, Y. Zhao, W. Wang, H. Zhang, Z. Li, Effects of prey refuges on a predator-prey model with a class of functional responses: The role of refuges, Math. Biosci., 218 (2009), 73–79. https://doi.org/10.1016/j.mbs.2008.12.008 doi: 10.1016/j.mbs.2008.12.008
    [65] S. Rana, A. R. Bhowmick, S. Bhattacharya, Impact of Prey Refuge on a Discrete Time Predator-Prey System with Allee Effect, Int. J. Bifurcation Chaos, 24 (2014), 1450106. https://doi.org/10.1142/S0218127414501065 doi: 10.1142/S0218127414501065
    [66] M. H. Mohd, M. S. M. Noorani, M. F. F. A. Kadir, N. Zakariya, Contrasting effects of prey refuge on biodiversity of species, Int. J. Nonlinear Sci. Numer. Simul., 24 (2021), 811–829. https://doi.org/10.1515/ijnsns-2021-0213 doi: 10.1515/ijnsns-2021-0213
    [67] A. C. J. Luo, Regularity and Complexity in Dynamical Systems, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-1524-4
    [68] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. https://doi.org/10.1007/978-1-4612-1140-2
    [69] S. Wiggins, M. Golubitsky, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 2003. https://doi.org/10.1007/b97481
    [70] S. M. S. Rana, U. Kulsum, Bifurcation analysis and chaos control in a discrete-time predator-prey system of Leslie type with simplified Holling type iv functional response, Discrete Dyn. Nat. Soc., 2017 (2017), 9705985. https://doi.org/10.1155/2017/9705985 doi: 10.1155/2017/9705985
    [71] Y. Zhou, W. Sun, Y. Song, Z. Zheng, J. Lu, S. Chen, Hopf bifurcation analysis of a predator-prey model with Holling-ii type functional response and a prey refuge, Nonlinear Dyn., 97 (2019), 1439–1450. https://doi.org/10.1007/s11071-019-05063-w doi: 10.1007/s11071-019-05063-w
    [72] P. Chakraborty, U. Ghosh, S. Sarkar, Stability and bifurcation analysis of a discrete prey-predator model with square-root functional response and optimal harvesting, J. Biol. Syst., 28 (2020), 91–110. https://doi.org/10.1142/s0218339020500047 doi: 10.1142/s0218339020500047
    [73] M. B. Ghori, P. A. Naik, J. Zu, Z. Eskandari, M. Naik, Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate, Math. Methods Appl. Sci., 45 (2022), 3665–3688. https://doi.org/10.1002/mma.8010 doi: 10.1002/mma.8010
    [74] K. Fang, Z. Zhu, F. Chen, Z. Li, Qualitative and bifurcation analysis in a Leslie-Gower model with Allee effect, Qual. Theory Dyn. Syst., 21 (2022), 86. https://doi.org/10.1007/s12346-022-00591-0 doi: 10.1007/s12346-022-00591-0
    [75] D. Mua, C. Xub, Z. Liua, Y. Panga, Further insight Into bifurcation and hybrid control tactics of a chlorine Dioxide-Iodine-Malonic Acid chemical reaction model incorporating delays, MATCH Commun. Math. Comput. Chem., 89 (2023), 529–566. https://doi.org/10.46793/match.89-3.529m doi: 10.46793/match.89-3.529m
    [76] C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 55 (2023), 6125–6151. https://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [77] C. Xu, X. Cui, P. Li, J. Yan, L. Yao, Exploration on dynamics in a discrete predator-prey competitive model involving feedback controls, J. Biol. Dyn., 17 (2023), 2220349. https://doi.org/10.1080/17513758.2023.2220349 doi: 10.1080/17513758.2023.2220349
    [78] P. Li, Y. Lu, C. Xu, J. Ren, Insight into Hopf bifurcation and control methods in fractional order BAM neural networks incorporating symmetric structure and delay, Cognit. Comput., 15 (2023), 1825–1867. https://doi.org/10.1007/s12559-023-10155-2 doi: 10.1007/s12559-023-10155-2
    [79] C. Xu, Q. Cui, Z. Liu, Y. Pan, X. H. Cui, W. Ou, et al., Extended hybrid controller design of bifurcation in a delayed chemostat model, MATCH Commun. Math. Comput. Chem., 90 (2023), 609–648. https://doi.org/10.46793/match.90-3.609X doi: 10.46793/match.90-3.609X
    [80] P. Li, X. Peng, C. Xu, L. Han, S. Shi, Novel extended mixed controller design for bifurcation control of fractional-order Myc/E2F/miR-17-92 network model concerning delay, Math. Methods Appl. Sci., 46 (2023), 18878–18898. https://doi.org/10.1002/mma.9597 doi: 10.1002/mma.9597
    [81] Y. Zhang, P. Li, C., Xu, X. Peng, R. Qiao, Investigating the effects of a fractional operator on the evolution of the ENSO model: Bifurcations, stability and numerical analysis, Fractal Fract., 7 (2023), 602. https://doi.org/10.3390/fractalfract7080602 doi: 10.3390/fractalfract7080602
    [82] W. J. McShea, Ecology and management of white-tailed deer in a changing world, Ann. New York Acad. Sci., 1249 (2012), 45–56. https://doi.org/10.1111/j.1749-6632.2011.06376.x doi: 10.1111/j.1749-6632.2011.06376.x
    [83] F. J. Kroon, P. Thorburn, B. Schaffelke, S. Whitten, Towards protecting the Great Barrier Reef from land-based pollution, Global Change Biol., 22 (6) (2016), 1985–2002. https://doi.org/10.1111/gcb.13262 doi: 10.1111/gcb.13262
    [84] C. Fabricius, E. Koch, S. Turner, H. Magome, Rights Resources and Rural Development: Community-Based Natural Resource Management in Southern Africa, Routledge, 2004. https://doi.org/10.4324/9781849772433
    [85] G. Chen, X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific, 1998. https://doi.org/10.1142/3033
    [86] C. Lei, X. Han, W. Wang, Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor, Math. Biosci. Eng., 19 (2022), 6659–6679. https://doi.org/10.3934/mbe.2022313 doi: 10.3934/mbe.2022313
    [87] X. S. Luo, G. Chen, B. H. Wang, J. Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Solitons Fractals, 18 (2003), 775–783. https://doi.org/10.1016/s0960-0779(03)00028-6 doi: 10.1016/s0960-0779(03)00028-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1441) PDF downloads(178) Cited by(16)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog