Research article

Nonlocal delay gives rise to vegetation patterns in a vegetation-sand model

  • Received: 10 December 2023 Revised: 09 January 2024 Accepted: 17 January 2024 Published: 28 February 2024
  • The vegetation pattern generated by aeolian sand movements is a typical type of vegetation patterns in arid and semi-arid areas. This paper presents a vegetation-sand model with nonlocal interaction characterized by an integral term with a kernel function. The instability of the Turing pattern was analyzed and the conditions of stable pattern occurrence were obtained. At the same time, the multiple scales method was applied to obtain the amplitude equations at the critical value of Turing bifurcation. The spatial distributions of vegetation under different delays were obtained by numerical simulation. The results revealed that the vegetation biomass increased as the interaction intensity decreased or as the nonlocal interaction distance increased. We demonstrated that the nonlocal interaction between vegetation and sand is a crucial mechanism for forming vegetation patterns, which provides a theoretical basis for preserving and restoring vegetation.

    Citation: Jichun Li, Gaihui Guo, Hailong Yuan. Nonlocal delay gives rise to vegetation patterns in a vegetation-sand model[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4521-4553. doi: 10.3934/mbe.2024200

    Related Papers:

  • The vegetation pattern generated by aeolian sand movements is a typical type of vegetation patterns in arid and semi-arid areas. This paper presents a vegetation-sand model with nonlocal interaction characterized by an integral term with a kernel function. The instability of the Turing pattern was analyzed and the conditions of stable pattern occurrence were obtained. At the same time, the multiple scales method was applied to obtain the amplitude equations at the critical value of Turing bifurcation. The spatial distributions of vegetation under different delays were obtained by numerical simulation. The results revealed that the vegetation biomass increased as the interaction intensity decreased or as the nonlocal interaction distance increased. We demonstrated that the nonlocal interaction between vegetation and sand is a crucial mechanism for forming vegetation patterns, which provides a theoretical basis for preserving and restoring vegetation.



    加载中


    [1] UNCED, The United Nations conference on environment and development, 1992.
    [2] A. J. Bach, Assessing conditions leading to severe wind erosion in the Antelope Valley, California, 1990–1991, Prof. Geogr., 50 (2010), 87–97. https://doi.org/10.1111/00330124.00106 doi: 10.1111/00330124.00106
    [3] J. Leys, G. Mctainsh, Soil loss and nutrient decline by wind erosion-cause for concern, Aust. J. Soil Water Conserv., 7 (1994), p30–35.
    [4] D. P. C. Peters, K. M. Havstad, Nonlinear dynamics in arid and semi-arid systems: Interactions among drivers and processes across scales, J. Arid Environ., 65 (2006), 196–206. https://doi.org/10.1016/j.jaridenv.2005.05.010 doi: 10.1016/j.jaridenv.2005.05.010
    [5] D. D. Breshears, J. J. Whicker, M. P. Johansen, J. E. Pinder, Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems: quantifying dominance of horizontal wind-driven transport, Earth Surf. Processes Landf., 28 (2003), 1189–1209. https://doi.org/10.1002/esp.1034 doi: 10.1002/esp.1034
    [6] J. F. Weltzin, M. E. Loik, S. Schwinning, D. G. William, P. A. Fay, B. M. Haddad, et al., Assessing the response of terrestrial ecosystems to potential changes in precipitation, BioScience, 53 (2003), 941–952. https://doi.org/10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2 doi: 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2
    [7] N. English, J. Weltzin, A. Fravolini, L. Thomas, D. G. Williams, The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland, J. Arid Environ., 63 (2005), 324–343. https://doi.org/10.1016/j.jaridenv.2005.03.013 doi: 10.1016/j.jaridenv.2005.03.013
    [8] G. H. Guo, J. J. Wang, Pattern formation and qualitative analysis for a vegetation-water model with diffusion, Nonlinear Anal. Real World Appl., 76 (2024), 104008. https://doi.org/10.1016/j.nonrwa.2023.104008 doi: 10.1016/j.nonrwa.2023.104008
    [9] G. H. Guo, S. H. Zhao, J. J. Wang, Y. X. Gao, Positive steady-state solutions for a water-vegetation model with the infiltration feedback effect, Discrete Contin. Dyn. Syst. B, 29 (2023), 426–458. https://doi.org/10.3934/dcdsb.2023101 doi: 10.3934/dcdsb.2023101
    [10] G. H. Guo, Q. J. Qin, D. F. Pang, Y. H. Su, Positive steady-state solutions for a vegetation-water model with saturated water absorption, Commun. Nonlinear Sci. Numer. Simul., 131 (2024), 107802. https://doi.org/10.1016/j.cnsns.2023.107802 doi: 10.1016/j.cnsns.2023.107802
    [11] R. Bastiaansen, M. Chirilus-Bruckner, A. Doelman, Pulse solutions for an extended Klausmeier model with spatially varying coefficients, SIAM J. Appl. Dyn. Syst., 19 (2020), 1–57. https://doi.org/10.1137/19M1255665 doi: 10.1137/19M1255665
    [12] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828. https://doi.org/10.1126/science.284.5421.1826 doi: 10.1126/science.284.5421.1826
    [13] E. Meron, E. Gilad, J. Von Hardenberg, M. Shachak, Y. Zarmi, Vegetation patterns along a rainfall gradient, Chaos Soliton. Fract., 19 (2004), 367–376. https://doi.org/10.1016/S0960-0779(03)00049-3 doi: 10.1016/S0960-0779(03)00049-3
    [14] G. McTainsh, C. Strong, The role of aeolian dust in ecosystems, Geomorphology, 89 (2006), 39–54. https://doi.org/10.1016/j.geomorph.2006.07.028 doi: 10.1016/j.geomorph.2006.07.028
    [15] P. P. Hesse, L. R. Simpson, Variable vegetation cover and episodic sand movement on longitudinal desert sand dunes, Geomorphology, 81 (2006), 276–291. https://doi.org/10.1016/j.geomorph.2006.04.012 doi: 10.1016/j.geomorph.2006.04.012
    [16] K. Burri, C. Gromke, M. Lehning, F. Graf, Aeolian sediment transport over vegetation canopies: A wind tunnel study with live plants, Aeolian Res., 3 (2011), 205–213. https://doi.org/10.1016/j.aeolia.2011.01.003 doi: 10.1016/j.aeolia.2011.01.003
    [17] Y. C. Yan, X. L. Xu, X. P. Xin, G. X. Yang, X. Wang, R. Yan, et al., Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of northern China, Catena, 87 (2011), 351–356. https://doi.org/10.1016/j.catena.2011.07.002 doi: 10.1016/j.catena.2011.07.002
    [18] F. F. Zhang, L. Yao, W. J. Zhou, Q. J. You, H. Y. Zhang, Using shannon entropy and contagion index to interpret pattern self-organization in a dynamic vegetation-sand model, IEEE Access, 8 (2020), 17221–17230. https://doi.org/10.1109/ACCESS.2020.2968242 doi: 10.1109/ACCESS.2020.2968242
    [19] F. F. Zhang, Y. X. Li, Y. L. Zhao, Z. Liu, Vegetation pattern formation and transition caused by cross-diffusion in a modified vegetation-sand model, Int. J. Bifurcat. Chaos, 32 (2022), 2250069. https://doi.org/10.1142/S0218127422500699 doi: 10.1142/S0218127422500699
    [20] F. F. Zhang, H. Y. Zhang, M. R. Evans, T. Huang, Vegetation patterns generated by a wind driven sand-vegetation system in arid and semi-arid areas, Ecol. Complex., 31 (2017), 21–33. https://doi.org/10.1016/j.ecocom.2017.02.005 doi: 10.1016/j.ecocom.2017.02.005
    [21] M. Alfaro, H. Izuhara, M. Mimura, On a nonlocal system for vegetation in drylands, J. Math. Biol., 77 (2018), 1761–1793. https://doi.org/10.1007/s00285-018-1215-0 doi: 10.1007/s00285-018-1215-0
    [22] L. Eigentler, J. A. Sherratt, Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal, J. Math. Biol., 7 (2018), 739–763. https://doi.org/10.1007/s00285-018-1233-y doi: 10.1007/s00285-018-1233-y
    [23] Y. Maimaiti, W. B. Yang, J. H. Wu, Turing instability and coexistence in an extended Klausmeier model with nonlocal grazing, Nonlinear Anal. Real World Appl., 64 (2022), 103443. https://doi.org/10.1016/j.nonrwa.2021.103443 doi: 10.1016/j.nonrwa.2021.103443
    [24] E. Siero, Nonlocal grazing in patterned ecosystems, J. Theor. Biol., 436 (2018), 64–71. https://doi.org/10.1016/j.jtbi.2017.10.001 doi: 10.1016/j.jtbi.2017.10.001
    [25] S. Zaytseva, L. B. Shaw, J. P. Shi, M. L. Kirwan, R. N. Lipcius, Pattern formation in marsh ecosystems modeled through the interaction of marsh vegetation, mussels and sediment, J. Theor. Biol., 543 (2022), 111102. https://doi.org/10.1016/j.jtbi.2022.111102 doi: 10.1016/j.jtbi.2022.111102
    [26] C. H. Zeng, H. Wang, Noise and large time delay: Accelerated catastrophic regime shifts in ecosystems, Ecol. Model., 233 (2012), 52–58. https://doi.org/10.1016/j.ecolmodel.2012.03.025 doi: 10.1016/j.ecolmodel.2012.03.025
    [27] L.F. Lafuerza, R. Toral, Exact solution of a stochastic protein dynamics model with delayed degradation, Phys. Rev. E, 84 (2011), 051121. https://doi.org/10.1103/PhysRevE.84.051121 doi: 10.1103/PhysRevE.84.051121
    [28] S. L. Pan, Q. M. Zhang, T. Kang, A. Meyer-Baese, X. Li, Finite-time stability of a stochastic tree-grass-water-nitrogen system with impulsive and time-varying delay, Int. J. Biomath., 17 (2023), 2350052. https://doi.org/10.1142/S1793524523500523 doi: 10.1142/S1793524523500523
    [29] Q. L. Han, T. Yang, C. H. Zeng, H. Wang, Z. Liu, Y. Fu, et al., Impact of time delays on stochastic resonance in an ecological system describing vegetation, Physica A, 408 (2014), 96–105. https://doi.org/10.1016/j.physa.2014.04.015 doi: 10.1016/j.physa.2014.04.015
    [30] J. Li, G. Q. Sun, Z. Jin, Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 2147–2172. https://doi.org/10.3934/dcdsb.2021127 doi: 10.3934/dcdsb.2021127
    [31] N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663–1688. https://doi.org/10.1137/0150099 doi: 10.1137/0150099
    [32] H. Wang, On the existence of traveling waves for delayed reaction-diffusion equations, J. Differ. Equ., 247 (2015), 887–905. https://doi.org/10.1016/j.jde.2009.04.002 doi: 10.1016/j.jde.2009.04.002
    [33] G. Y. Lue, M. X. Wang, Stability of planar waves in reaction-diffusion system, Sci. China Math., 54 (2011), 1403–1419. https://doi.org/10.1007/s11425-011-4210-0 doi: 10.1007/s11425-011-4210-0
    [34] M. D. Burlica, D. Rosu, I. I. Vrabie, Abstract reaction-diffusion systems with nonlocal initial conditions, Nonlinear Anal-Theor., 94 (2014), 107–119. https://doi.org/10.1016/j.na.2013.07.033 doi: 10.1016/j.na.2013.07.033
    [35] G. F. Webb, A reaction-diffusion model for a deterministic diffusive epidemic, J. Math. Anal. Appl., 84 (1981), 150–161. https://doi.org/10.1016/0022-247X(81)90156-6 doi: 10.1016/0022-247X(81)90156-6
    [36] S. J. Guo, S. Z. Li, On the stability of reaction-diffusion models with nonlocal delay effect and nonlinear boundary condition, Appl. Math. Lett., 103 (2020), 106197. https://doi.org/10.1016/j.aml.2019.106197 doi: 10.1016/j.aml.2019.106197
    [37] M. Aguerrea, G. Valenzuela, On the minimal speed of traveling waves for a nonlocal delayed reaction-diffusion equation, Nonlinear Oscil., 13 (2010), 1–9. https://doi.org/10.1007/s11072-010-0096-y doi: 10.1007/s11072-010-0096-y
    [38] Q. Xue, G. Q. Sun, C. Liu, Z. G. Guo, Z. Jin, Y. P. Wu, et al., Spatiotemporal dynamics of a vegetation model with nonlocal delay in semi-arid environment, Nonlinear Dyn., 99 (2020), 3407–3420. https://doi.org/10.1007/s11071-020-05486-w doi: 10.1007/s11071-020-05486-w
    [39] C. Liu, F. G. Wang, Q. Xue, L. Li, Z. Wang, Pattern formation of a spatial vegetation system with root hydrotropism, Appl. Math. Comput., 420 (2022), 126913. https://doi.org/10.1016/j.amc.2021.126913 doi: 10.1016/j.amc.2021.126913
    [40] Q. Xue, C. Liu, L. Li, G.Q. Sun, Z. Wang, Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments, Appl. Math. Computation, 399 (2021), 126038. https://doi.org/10.1016/j.amc.2021.126038 doi: 10.1016/j.amc.2021.126038
    [41] S. J. GUO, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differ. Equ., 259 (2015), 1409–1448. https://doi.org/10.1016/j.jde.2015.03.006 doi: 10.1016/j.jde.2015.03.006
    [42] C. H. Wang, H. Wang, S. L. Yuan, Precipitation governing vegetation patterns in an arid or semi-arid environment, J. Math. Biol., 87 (2023), 22. https://doi.org/10.1007/s00285-023-01954-0 doi: 10.1007/s00285-023-01954-0
    [43] L. Eigentler, J. A. Sherratt, An integrodifference model for vegetation patterns in semi-arid environments with seasonality, J. Math. Biol., 81 (2020), 875–904. https://doi.org/10.1007/s00285-020-01530-w doi: 10.1007/s00285-020-01530-w
    [44] Z. L. Zhen, J. D. Wei, J. B. Zhou, L. X. Tian, Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects, Appl. Math. Comput., 339 (2018), 15–37. https://doi.org/10.1016/j.amc.2018.07.007 doi: 10.1016/j.amc.2018.07.007
    [45] S. A. Gourley, S. JWH, Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49–78. https://doi.org/10.1007/s002850100109 doi: 10.1007/s002850100109
    [46] G. Q. Sun, C. H. Wang, Z. Y. Wu, Pattern dynamics of a Gierer-Meinhardt model with spatial effects, Nonlinear Dyn., 88 (2017), 1385–1396. https://doi.org/10.1007/s11071-016-3317-9 doi: 10.1007/s11071-016-3317-9
    [47] Y. L. Song, R. Yang, G. Q. Sun, Pattern dynamics in a Gierer-Meinhardt model with a saturating term, Appl. Math. Model., 46 (2017), 476–491. https://doi.org/10.1016/j.apm.2017.01.081 doi: 10.1016/j.apm.2017.01.081
    [48] C. Liu, L. L. Chang, Y. Huang, Z. Wang, Turing patterns in a predator-prey model on complex networks, Nonlinear Dyn., 99 (2020), 3313–3322. https://doi.org/10.1007/s11071-019-05460-1 doi: 10.1007/s11071-019-05460-1
    [49] J. Y. Zhou, Y. Ye, A. Arenas, S. Gomz, Y. Zhao, Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks, Chaos, Soliton. Fract., 174 (2023), 113805. https://doi.org/10.1016/j.chaos.2023.113805 doi: 10.1016/j.chaos.2023.113805
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(688) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog