Research article

Synchronization of time-delay systems with impulsive delay via an average impulsive estimation approach


  • Received: 20 December 2023 Revised: 04 February 2024 Accepted: 19 February 2024 Published: 28 February 2024
  • We investigated synchronization of dynamic systems with mixed delays and delayed impulses. Using impulsive control method and the average impulsive interval approach, several Lyapunov sufficient conditions were given for ensuring synchronization in terms of impulsive perturbation and impulsive control, respectively. The derived conditions indicated that delays in continuous dynamical systems were flexible under impulsive perturbation and were not strictly dependent on the size of impulsive delays, and they may have a potential impact on synchronization of the considered system. In addition, applying the proposed concepts of average positive impulsive estimation and average impulsive estimation, we integrated the information in impulsive delay into the rate coefficient to eliminate the limitation of having the same threshold at each impulse point, while the impulsive delay maintained the synchronization effect. This was an improvement on the previous results obtained. Finally, we provided two numerical examples to illustrate the validity of our results.

    Citation: Biwen Li, Qiaoping Huang. Synchronization of time-delay systems with impulsive delay via an average impulsive estimation approach[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4501-4520. doi: 10.3934/mbe.2024199

    Related Papers:

  • We investigated synchronization of dynamic systems with mixed delays and delayed impulses. Using impulsive control method and the average impulsive interval approach, several Lyapunov sufficient conditions were given for ensuring synchronization in terms of impulsive perturbation and impulsive control, respectively. The derived conditions indicated that delays in continuous dynamical systems were flexible under impulsive perturbation and were not strictly dependent on the size of impulsive delays, and they may have a potential impact on synchronization of the considered system. In addition, applying the proposed concepts of average positive impulsive estimation and average impulsive estimation, we integrated the information in impulsive delay into the rate coefficient to eliminate the limitation of having the same threshold at each impulse point, while the impulsive delay maintained the synchronization effect. This was an improvement on the previous results obtained. Finally, we provided two numerical examples to illustrate the validity of our results.



    加载中


    [1] S. Dashkovskiy, P. J. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal. Hybrid Syst., 26 (2017), 190–200. https://doi.org/10.1016/j.nahs.2017.06.004 doi: 10.1016/j.nahs.2017.06.004
    [2] G. Bertola, W. J. Runggaldier, K. Yasuda, On classical and restricted impulse stochastic control for the exchange rate, Appl. Math. Optim., 74 (2016), 423–454. https://doi.org/10.1007/s00245-015-9320-6 doi: 10.1007/s00245-015-9320-6
    [3] C. Treesatayapun, Impulsive optimal control for drug treatment of influenza A virus in the host with impulsive-axis equivalent model, Inf. Sci., 576 (2021), 122–139. https://doi.org/10.1016/j.ins.2021.06.051 doi: 10.1016/j.ins.2021.06.051
    [4] T. Ensari, S. Arik, Global stability analysis of neural networks with multiple time varying delays, IEEE Trans. Autom. Control, 50 (2005), 1781–1785. https://doi.org/10.1109/TAC.2005.858634 doi: 10.1109/TAC.2005.858634
    [5] M. A. Davo, A. Banos, F. Gouaisbaut, S. Tarbouriech, A. Seuret, Stability analysis of linear impulsive delay dynamical systems via looped-functionals, Automatica, 81 (2017), 107–114. https://doi.org/10.1016/j.automatica.2017.03.029 doi: 10.1016/j.automatica.2017.03.029
    [6] W. Chen, K. Zhang, X. Lu, A refined discretized timer-dependent Lyapunov functional for impulsive delay systems, Automatica, 134 (2021), 109929. https://doi.org/10.1016/j.automatica.2021.109929 doi: 10.1016/j.automatica.2021.109929
    [7] Z. Tang, J. H. Park, J. Feng, Impulsive effects on quasi-synchronization of neural networks with parameter mismatches and time-varying delay, IEEE Trans. Neural Networks Learn. Syst., 29 (2017), 908–919. https://doi.org/10.1109/TNNLS.2017.2651024 doi: 10.1109/TNNLS.2017.2651024
    [8] W. Ren, J. Xiong, Stability analysis of impulsive switched time-delay systems with state-dependent impulses, IEEE Trans. Autom. Control, 64 (2019), 3928–3935. https://doi.org/10.1109/TAC.2018.2890768 doi: 10.1109/TAC.2018.2890768
    [9] J. Lu, B. Jiang, W. Zheng, Potential impacts of delay on stability of impulsive control systems, IEEE Trans. Autom. Control, 67 (2021), 5179–5190. https://doi.org/10.1109/TAC.2021.3120672 doi: 10.1109/TAC.2021.3120672
    [10] A. Khadra, X. Z. Liu, X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication, Automatica, 41 (2005), 1491–1502. https://doi.org/10.1016/j.automatica.2005.04.012 doi: 10.1016/j.automatica.2005.04.012
    [11] K. P. Wijaya, J. P. Chavez, T. Gotz, A dengue epidemic model highlighting vertical-sexual transmission and impulsive control strategies, Appl. Math. Modell., 95 (2021), 279–296. https://doi.org/10.1016/j.apm.2021.02.008 doi: 10.1016/j.apm.2021.02.008
    [12] F. Cacace, V. Cusimano, P. Palumbo, Optimal impulsive control with application to antiangiogenic tumor therapy, IEEE Trans. Control Syst. Technol., 28 (2018), 106–117. https://doi.org/10.1109/TCST.2018.2861410 doi: 10.1109/TCST.2018.2861410
    [13] P. S. Rivadeneira, C. H. Moog, X. Zhao, F. E. Alsaadi, Observability criteria for impulsive control systems with applications to biomedical engineering processes, Automatica, 55 (2015), 125–131. https://doi.org/10.1016/j.automatica.2015.02.042 doi: 10.1016/j.automatica.2015.02.042
    [14] X. Li, W. Liu, S. Gorbachev, J. Cao, Event-Triggered impulsive control for Input-to-State stabilization of nonlinear Time-Delay systems, IEEE Trans. Cybern., 2023. https://doi.org/10.1109/TCYB.2023.3270487 doi: 10.1109/TCYB.2023.3270487
    [15] X. Li, K. Zhang, Synchronization of linear dynamical networks on time scales: Pinning control via delayed impulses, Automatica, 72 (2016), 147–152. https://doi.org/10.1016/j.automatica.2016.06.001 doi: 10.1016/j.automatica.2016.06.001
    [16] X. Li, P. Li, Stability of time-delay systems with impulsive control involving stabilizing delays, Automatica, 124 (2021), 109336. https://doi.org/10.1016/j.automatica.2020.109336 doi: 10.1016/j.automatica.2020.109336
    [17] B. Jiang, J. Lu, Y. Liu, Exponential stability of delayed systems with average-delay impulses, SIAM J. Control Optim., 58 (2020), 3763–3784. https://doi.org/10.1137/20M1317037 doi: 10.1137/20M1317037
    [18] X. Li, S. Song, Stabilization of delay systems: delay-dependent impulsive control, IEEE Trans. Autom. Control, 62 (2016), 406–411. https://doi.org/10.1109/TAC.2016.2530041 doi: 10.1109/TAC.2016.2530041
    [19] X. Liu, K. Zhang, Input-to-state stability of time-delay systems with delay-dependent impulses, IEEE Trans. Autom. Control, 65 (2019), 1676–1682. https://doi.org/10.1109/TAC.2019.2930239 doi: 10.1109/TAC.2019.2930239
    [20] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [21] W. Chen, W. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects, Automatica, 47 (2011), 1075–1083. https://doi.org/10.1016/j.automatica.2011.02.031 doi: 10.1016/j.automatica.2011.02.031
    [22] T. Huang, C. Li, S. Duan, J. A. Starzyk, Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects, IEEE Trans. Neural Networks Learn. Syst., 23 (2012), 866–875. https://doi.org/10.1109/TNNLS.2012.2192135 doi: 10.1109/TNNLS.2012.2192135
    [23] J. Lu, D. W. C. Ho, J. Cao, J. Kurths, Exponential synchronization of linearly coupled neural networks with impulsive disturbances, IEEE Trans. Neural Networks, 6 (2018), 52570–52581. https://doi.org/10.1109/TNN.2010.2101081 doi: 10.1109/TNN.2010.2101081
    [24] X. Li, X. Zhang, S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378–382. https://doi.org/10.1016/j.automatica.2016.08.009 doi: 10.1016/j.automatica.2016.08.009
    [25] X. Lv, J. Cao, X. Li, M. Abdel-Aty, U. A. Al-Juboori, Synchronization analysis for complex dynamical networks with coupling delay via event-triggered delayed impulsive control, IEEE Trans. Cybern., 51 (2020), 5269–5278. https://doi.org/10.1109/TCYB.2020.2974315 doi: 10.1109/TCYB.2020.2974315
    [26] N. Wang, X. Li, J. Lu, M. F. E. Alsaadi, Unified synchronization criteria in an array of coupled neural networks with hybrid impulses, Neural Networks, 101 (2018), 25–32. https://doi.org/10.1016/j.neunet.2018.01.017 doi: 10.1016/j.neunet.2018.01.017
    [27] X. Li, N. Wang, J. Lou, J. Lu, Global $\mu$-synchronization of impulsive pantograph neural networks, Neural Networks, 131 (2020), 78–92. https://doi.org/10.1016/j.neunet.2020.07.004 doi: 10.1016/j.neunet.2020.07.004
    [28] Z. Guan, Z. Liu, G. Feng, Y. Wang, Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Trans. Circuits Syst. I Regul. Pap., 57 (2010), 2182–2195. https://doi.org/10.1109/TCSI.2009.2037848 doi: 10.1109/TCSI.2009.2037848
    [29] W. Chen, W. Zheng, Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays, Automatica, 45 (2009), 1481–1488. https://doi.org/10.1016/j.automatica.2009.02.005 doi: 10.1016/j.automatica.2009.02.005
    [30] W. Chen, J. Chen, X. Lu, Effects of impulse delays on Lp-stability of a class of nonlinear time-delay systems, J. Franklin. Inst., 357 (2020), 7983–8007. https://doi.org/10.1016/j.jfranklin.2020.05.028 doi: 10.1016/j.jfranklin.2020.05.028
    [31] W. Chen, Z. Ruan, W. X. Zheng, Stability and $ L_2 $-gain analysis for linear time-delay systems with delayed impulses: An augmentation-based switching impulse approach, IEEE Trans. Autom. Control, 64 (2019), 4209–4216. https://doi.org/10.1109/TAC.2019.2893149 doi: 10.1109/TAC.2019.2893149
    [32] W. Chen, J. Wen, X. Lu, S. Niu, New stability criteria for linear impulsive systems with interval impulse-delay, J. Franklin. Inst., 358 (2021), 6775–6797. https://doi.org/10.1016/j.jfranklin.2021.07.011 doi: 10.1016/j.jfranklin.2021.07.011
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(620) PDF downloads(67) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog