
http://www.aimspress.com/journal/mbe

MBE, 21(3): 4501–4520.
DOI: 10.3934/mbe.2024199
Received: 20 December 2023
Revised: 04 February 2024
Accepted: 19 February 2024
Published: 28 February 2024

Research article

Synchronization of time-delay systems with impulsive delay via an average
impulsive estimation approach

Biwen Li and Qiaoping Huang*

School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, China

* Correspondence: Email: hqp15572910919@163.com; Tel: +8615572910919; Fax:
+8615572910919.

Abstract: We investigated synchronization of dynamic systems with mixed delays and delayed impulses.
Using impulsive control method and the average impulsive interval approach, several Lyapunov sufficient
conditions were given for ensuring synchronization in terms of impulsive perturbation and impulsive
control, respectively. The derived conditions indicated that delays in continuous dynamical systems were
flexible under impulsive perturbation and were not strictly dependent on the size of impulsive delays,
and they may have a potential impact on synchronization of the considered system. In addition, applying
the proposed concepts of average positive impulsive estimation and average impulsive estimation, we
integrated the information in impulsive delay into the rate coefficient to eliminate the limitation of having
the same threshold at each impulse point, while the impulsive delay maintained the synchronization
effect. This was an improvement on the previous results obtained. Finally, we provided two numerical
examples to illustrate the validity of our results.
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1. Introduction

When control systems produce a state change at one discrete instant suddenly, system evolutions
exhibit impulsive behavior, and such systems can also be called impulsive dynamical systems, which
belong to a special class of hybrid systems. Impulsive systems have attracted the attention of many
researchers due to their important applications in various fields such as network control systems [1],
financial interest rate adjustment [2], and pharmaceutical management [3]. It is well known that delays
are inevitable in signal transmission and impulsive input, so the study of impulsive delay is very
necessary. Furthermore, time delay systems have been widely studied in many fields, such as neural
networks [4]. Recently, impulsive time-delay systems have been studied in some studies [5–9]. Specially,
reference [9] obtained an implicit function related time delay and synchronization rate of impulsive
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systems. This function was used to reveal the potential influence of delay in continuous dynamical
systems on the synchronization of the systems. However, there are few studies on synchronization of
hybrid time-delay systems, which is a topic worth investigating.

In addition, impulsive control is an effective method of regulating the synchronization of time-delay
systems, as it has a simple structure and makes it possible to change the state of the systems in a
fraction of a second and transmit information at discrete times. This feature of impulsive control
reduces communication costs to a certain extent and has been used effectively in secure communication,
epidemiological model control, and biomedical systems [10–13]. Unstable or asynchronous systems
tend to be stable or synchronous under impulsive control. For instance, reference [14] proposed a class
of event-triggered impulsive controllers with time delay for system stability. The synchronization of
linear dynamical systems with impulsive delay was discussed in [15] by pinning control. However, the
interaction between the system time delay and the impulsive delay can increase the difficulty of analyzing
stability and synchronization, and there are fewer relevant studies. The literature [16] concluded that the
impulsive delay had a beneficial effect on the stability of time-delay systems through a Razumikhin-type
inequality with impulsive delay. Based on the idea of average impulsive delay (AID), reference [17]
addressed the influence of impulsive delay on time-delay systems. However, the impulsive control in
most researches usually does not take into account delay, i.e., ∆z(tu) = z(tu) − z(t−u ) = Auz(t−u ) [18,19],
or just consider “pure” delay, that is, ∆z(tu) = f (z(tu − ρu)−) [16,17,20]. We consider a more universal
impulsive delay: z(tu) = Duz(t−u ) + Euz((tu − ρu)−). Furthermore, many related works imposed strict
limitations on impulsive size or impulsive interval length [17,19,21]. For instance, reference [21]
required that input delays must be small enough, whereas time delays may even be longer than impulsive
intervals. Reference [19] considered more general input delays, but required that the length of impulsive
interval is subject to a common upper or lower bound. Therefore, obtaining relaxing criterion for the
synchronization of impulsive time-delay systems is crucial.

On the other hand, if the time-delay system is stable or synchronous but the impulses are unstable,
we refer to this situation as an impulsive perturbation [22,23]. However, in the vast majority of
current studies on impulsive perturbation problems usually in the Lyapunov sense, requires that V(tu) ≤
exp {σ}V((tu − ρu)−) with σ > 0 [17,20]. However, due to the fact that impulsive delays may not
be invariable forever, it is more practical to set a flexible σu rather than setting the same threshold
at every impulsive moment. Additionally impulsive delays may affect the characteristics of original
system [20,24]. It is natural to consider the question: Can we extract the delay information of the
impulse term and then integrate it into the rate coefficient σu so to ensure the influence of impulsive
perturbation even though a number of σu < 0?

Based on the above proposed problems, we employ the Razumikhin-type Lyapunov function to give
sufficient conditions for synchronization of the impulsive system with mixed time delays, and the key
contributions of this paper are as follows:

1). Differ from [9] proposed an implicit function, we consider the relationship between the sys-
tem time delay and the rate of synchronization through a display inequality ϵ = q1exp

{
ρ
λαt̄−pρ∗+σ̂∗+

t̄

}
+

q2exp
{
µ
λαt̄−pρ∗+σ̂∗+

t̄

}
which shows that the system time delay has a positive or negative effect on synchro-

nization in this paper.
2). The size relationship between impulsive delay and impulsive interval length has no strict

limitation, which was restricted in [16,20]. In addition, the time delay in continuous dynamics is smaller
or greater than impulsive delay.
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3). Through the presented concept of average impulsive estimation (AIE), the effect of impul-
sive perturbation is ensured by integrating the delay information obtained in impulse into impulsive
estimation σu, even if some σu are negative. Furthermore, the limitation of having an universal thresh-
old for impulsive estimates at every impulsive point is eliminated. Compared with recent relevant
studies [16,17,20,25], the results in this paper are less conservative.

2. Model description and preliminaries

2.1. Notations

Let R and R+ denote the set of real numbers and positive real numbers, respectively. Denote the set
of positive integers byZ+, the set of nonnegative integers byZ0

+, the set of n-dimensional real-valued
vectors by Rn, and the set of n × m-dimensional real matrices by Rn×m. ∥·∥ denotes the vector Euclidean
norm. Let PCv := PC([−v, 0],Rn) is the set of piece-wise right-continuous function ϕ : [−v, 0]→ R+
with the norm ∥ϕ∥v := sup−v≤θ≤0 ∥ϕ(θ)∥. D+ℏ(·) denotes the upper-right Dini-derivative of ℏ(·).

2.2. Model

Consider a class of delayed system involved finite distributed delay:

ξ̇(t) = Cξ(t) + A f (ξ(t)) + B f̄ (ξ(t − ρ)) + B̂
∫ µ

0
k(s)ξ(t − ρ)ds + J, t ≥ t0,

ξ(t0 + s) = ψ(s), s ∈ [−v, 0] ,
(2.1)

where ξ(t) = (ξ1(t), · · · , ξn(t))T ∈ Rn is the state vector, C, A, B, B̂ ∈ Rn×n are constant system matrices,
f (·), f̄ (·) ∈ Rn represent the neuron activation functions and f (0) ≡ 0 and f̄ (0) ≡ 0. ρ and µ denote time
delay and distributed delay, respectively. k(·) : [0, µ]→ R+ is the delay kernel satisfying

∫ µ

0
k(s)ds = 1,∫ µ

0
sk(s)ds < +∞. v = max{ρ, µ}. Let the initial condition is ψ ∈ PCv. Denote external input by J.

Consider Eq (2.1) as drive system, then corresponding response system with delayed impulsive
control can be


ζ̇(t) = Cζ(t) + A f (ζ(t)) + B f̄ (ζ(t − ρ)) + B̂

∫ µ

0
k(s)ζ(t − ρ)ds + J, t ≥ t0 , tu,

ζ(t) − ζ(t−) = H(t), t = tu,

ζ(t0 + s) = φ(s), s ∈ [−v, 0] ,

(2.2)

in which {tu} is a strictly increasing sequence such that limu→+∞ tu = +∞ and t0 is the initial
time. ζ(t−) and ζ(t+) denote the left limit and right limit at time t, respectively. For this paper,
let ζ(t) is right-continuous at every tu, that is, ζ(t+u ) = ζ(tu). ρu, u ∈ Z+ , is impulse input delays
satisfying 0 ≤ ρu ≤ tu − tu−1, ρ0 = 0 and ρu ≤ v. Let synchronization error is z(t) = ζ(t) − ξ(t)
and impulsive control input is H(tu) = Duz(t−u )+Euz((tu−ρu)−)−z(t−u ), such that z(tu) can be expressed by
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z(tu) = hu(z(0), z((−τu)−))
= ζ(tu) − ξ(tu)
= ζ(tu) − ζ(t−u ) + ζ(t−u ) − ξ(tu)
= ζ(t−u ) + Duz(t−u ) + Euz((tu−ρu)−)−z(t−u )−ξ(t−u )
= Duz(t−u ) + Euz((tu − ρu)−) − z(t−u ) + z(t−u )
= Duz(t−u ) + Euz((tu − ρu)−).

Then it is easy to obtain error system as follows:
ż(t) = Cz(t) + Ag(z(t)) + Bḡ(z(t − ρ)) + B̂

∫ µ

0
k(s)z(t − ρ)ds, t , tu,

z(t) = Duz(t−) + Euz((t − ρu)−), t = tu,

z(t0 + s) = φ(s) − ψ(s), s ∈ [−v, 0] ,

(2.3)

where g(z(t)) = f (ζ(t)) − f (ξ(t)), ḡ(z(t − ρ)) = f̄ (ζ(t − ρ)) − f̄ (ξ(t − ρ)).

2.3. Properties and definitions

Definition 1. [26] Suppose that there are positive numbers N0 and t̄, such that

t̂ − ť
t̄
− N0 ≤ N(t̂, ť) ≤

t̂ − ť
t̄
+ N0, (2.4)

where N(t̂, ť) is the number of impulsive times {tu} occurring in (t̂, ť], ť > t̂ > t0. Then t̄ is the average
impulsive interval (AII) of impulsive instant sequence {tu} and N0 is the chatter bound.

Definition 2. [27] Suppose that there exist positive numbers ρ̂0 and ρ∗ such that

N(t,t0)∑
j=1

ρ j ≤ ρ
∗N(t, t0) + ρ̂0, (2.5)

where N(t, t0) is the number of impulses on the interval (t0, t], then ρ∗ is the AID of impulsive delay
sequence {ρu}.

Let H
[
{tu, ρu}

]
is the class consisting of impulse time sequence {tu} satisfying AII condition Eq (2.4)

and impulsive delay sequence {ρu} satisfying AID condition Eq (2.5).

Definition 3. [28] Response system (2.2) can achieve exponential synchronization with drive
system (2.1) if there exist positive scalars χ, λ satisfy

∥δ(t)∥ ≤ χ(∥φ − ψ∥v exp(−λ(t − t0))),∀t ≥ t0. (2.6)

Definition 4. [29] Function V : [t0 − v,+∞) × Rn −→ R+ belong to the classV∗ when following
conditions are met:

(1). V is continuous on each set [tu−1, tu) × Rnz and lim(t,z)→(t−u ,z) V(t, z) = V(t−u , z) exists;
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(2). V(t, z) is locally Lipschitz in z and V(t, 0) ≡ 0, ∀t ∈ R+;
(3). V(t, z) satisfies l1 ∥z∥α ≤ V(t, z) ≤ l2 ∥z∥α, where l1, l2, α are positive scalars.
If V ∈ V∗ is a locally Lipschitz function, then D+V(t, z(0)) along with the state trajectory of

system (2.3) is defined by

D+V(t, z(0))= lim
r→0+

sup
1
r
[
V(t + r, z(0) + r f ) − V(t, z(0))

]
,

in which (t, z) ∈ [t0,+∞) × PCv.

Assumption 1: For any s ∈ R, z ∈ R, there exist Lipschitz constants ri > 0 and r̄i > 0, such that

| fi(s) − fi(z)| ≤ ri|s − z|,

| f̄i(s) − f̄i(z)| ≤ ri|s − z|,

where i = 1, 2, · · ·, n and fi(0) = f̄i(0) = 0.

3. Main results

In this section, we obtain some sufficient conditions for exponential synchronization of systems (2.1)
and (2.2).

3.1. The case of impulsive perturbation

From impulsive perturbations point of view, we establish some criteria for exponential synchronization.

Theorem 1: Considering system (2.3) under Assumption 1. Suppose that there exists a function
V ∈ V∗, scalars p > 0, c with p > c > 0, q1 =

∑n
i=1 ri max j

∣∣∣gi j

∣∣∣, q2 =
∑n

i=1 r̄i max j

∣∣∣ĝi j

∣∣∣, ϵ =
q1 exp {cρ} + q2 exp {cµ}, σu = ln

(∑n
i=1 max j

∣∣∣∣d(u)
i j

∣∣∣∣ +∑n
i=1 max j

∣∣∣∣e(u)
i j

∣∣∣∣), Γu =

∑n
i=1 max j

∣∣∣∣d(u)
i j

∣∣∣∣
exp{σu}

, Γ̂u =

∑n
i=1 max j

∣∣∣∣e(u)
i j

∣∣∣∣
exp{σu}

,

σ̂0
+ > 0, and σ∗+ > 0 such that for every t ∈ R+, we have

D+V (t, z (0)) ≤ −pV(t, z(0)),whenever

q1V(t − ρ, z(−ρ)) + q2

∫ µ

0
k(s)V(t − s, z(−s))ds ≤ ϵV(t, z(0)), t , tu, (3.1)

V(tu, hu(z(0), z((−τu)−))) ≤ exp {σu}
(
ΓuV(t−u , z(0−)) + Γ̂uV((tu − ρu)−, z((−ρu)−))

)
, (3.2)

N(t,t0)∑
j=0,σ j>0

σ j ≤ σ
∗
+N(t, t0) + σ̂0

+, (3.3)

where N(t, t0) is the same as in Definition 1, and

−ct̄ + pρ∗ + σ∗+ < 0. (3.4)

Then drive system (2.1) can achieve exponential synchronization with response system (2.2) over the
class H

[
{tu, ρu}

]
.
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Proof: Define V(t) = V(t, z(t)) = ∥z(t)∥ =
∑n

i=1 |zi(t)|, and V0 = supu∈[t0−v,t0] V(u).
The proof is divided into the next three steps.
Step 1: We firstly need to prove that for some t ∈ [t0, tu) one has

V(t) ≤ ΩuV0 exp(−c(t − t0)), t ∈ [t0, tu) , u ∈ Z+, (3.5)

where Ωu = exp
{∑u−1

j=0,pρ j+σ j>0(pρ j + σ j)
}
.

In order to prove Eq (3.5), we construct the function

Λ(t) =

V(t) exp {c(t − t0)} , t ≥ t0,

V(t), t0 − v ≤ t ≤ t0.

From Eq (3.5), it yields that

Λ(t) ≤ ΩuV0, t ∈ [t0, tu) , u ∈ Z+. (3.6)

We will show that Eq (3.6) holds for u = 1, i.e.,

Λ(t) ≤ Ω1V0 = V0, t ∈ [t0, t1) . (3.7)

It is easy for us to get Λ(t) ≤ V0 for t ∈ [t0 − v, t0], which indicates that Λ(t0) ≤ V0. If (3.7) is not
true, then there exists t∗ ∈ (t0, t1) such that Λ(t∗) > V0, Λ(t) ≤ V0 for t ∈ (t0 − v, t∗) and D+Λ(t)|t=t∗ ≥ 0.
Obviously, Λ(t∗) > Λ(t) for t ∈ (t∗ − µ, t∗), then we have

q1V(t∗ − ρ) + q2

∫ µ

0
k(s)V(t∗ − s)ds

=

n∑
i=1

ri max
j

∣∣∣bi j

∣∣∣ V(t∗ − ρ) +
n∑

i=1

r̄i max
j

∣∣∣b̂i j

∣∣∣ ∫ µ

0
k(s)V(t∗ − s)ds

<

n∑
i=1

ri max
j

∣∣∣bi j

∣∣∣ exp {cρ}V(t∗)+
n∑

i=1

r̄i max
j

∣∣∣b̂i j

∣∣∣ ∫ µ

0
k(s) exp {cs}V(t∗)ds

≤

n∑
i=1

ri max
j

∣∣∣bi j

∣∣∣ exp {cρ}V(t∗)+
n∑

i=1

r̄i max
j

∣∣∣b̂i j

∣∣∣ ∫ µ

0
k(s) exp {cµ}V(t∗)ds

=

n∑
i=1

ri max
j

∣∣∣bi j

∣∣∣ exp {cρ}V(t∗)+
n∑

i=1

r̄i max
j

∣∣∣b̂i j

∣∣∣ exp {cµ}V(t∗)

= ϵV(t∗).

From Eq (3.1) we can obtain
D+V(t)|t=t∗ ≤ −pV(t∗). (3.8)

Hence, there is
D+Λ(t)|t=t∗ =[D+V(t)|t=t∗ + cV(t∗)] exp {c(t∗ − t0)}

≤(c − p)V(t∗) exp {c(t∗ − t0)}
<0,
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which contradicts D+Λ(t)|t=t∗ ≥ 0. Then, provided that (3.6) is true when t ∈ [t0, tm), 1 ≤ m ≤ u − 1, that
is Λ(t) ≤ ΩmV0, t ∈ [t0, tm). Next, we will show that (3.6) is true when t ∈ [t0, tm+1), i.e., we need to
prove that Λ(t) ≤ Ωm+1V0, for t ∈ [tm, tm+1).

When t = tm, from (3.2) we can get

Λ(tm) =V(tm) exp {c(tm − t0)}

=

n∑
i=1

|δi(t)| exp {c(tm − t0)}

≤ exp {σm}


∑n

i=1 max j

∣∣∣∣d(u)
i j

∣∣∣∣
exp(σu)

V(t−m) +

∑n
i=1 max j

∣∣∣∣e(u)
i j

∣∣∣∣
exp(σu)

V((tm−ρm)−)

 exp {c(tm−t0))}

= exp {σm}
(
ΓmV(t−m) + Γ̂m(V(tm − ρm)−)

)
exp {c(tm − t0)}

≤ exp {σm}
(
ΓmV(t−m) exp {c(tm − t0)} + Γ̂mV((tm−ρm)−) exp {c(tm−ρm−t0)} exp {cρm}

)
≤ exp {σm}

(
ΓmΩmV0 + Γ̂mΩmV0 exp(cρm)

)
≤ exp {σm + pρm}ΩmV0

≤Ωm+1V0.

Therefore, Eq (3.6) holds for t = tm. Provided that Eq (3.6) is not true for t ∈ (tm, tm+1), then there
exists t∗ ∈ (tm, tm+1) has Λ(t∗) > Ωm+1V0, Λ(t) ≤ Ωm+1V0 for t ∈ (t0 − v, t∗) and D+Λ(t)|t=t∗ ≥ 0. Similar
with the argument used in Eq (3.7), we can obtain D+Λ(t)|t=t∗ < 0, it contradicts D+Λ(t)|t=t∗ ≥ 0. Hence,
we can found Eq (3.6) holds through using mathematical induction, in which t ∈ [t0, tu), which implies
Eq (3.5) holds for t ∈ [t0, tu), u ∈ Z+.

Step 2: According to Eq (3.5), condition Eqs (2.4), (2.5) and (3.3), we have

V(t) ≤V0 exp {−c(t − t0)} · exp


u−1∑

j=0,pρ j+σ j>0

(pρ j + σ j)


≤V0 exp

−c(t − t0) + p
u−1∑
j=0

ρ j +

u−1∑
j=0,σ j>0

σ j


≤V0 exp

{
−c(t − t0) + p(ρ∗(u − 1) + ρ̂0) + σ∗+(u − 1) + σ̂0

+

}
≤V0 exp

{
−c(t − t0) + p(ρ∗N(t, t0) + ρ̂0) + σ∗+N(t, t0) + σ̂0

+

}
≤V0 exp

{
−c(t − t0) + p

(
ρ∗(t − t0)

t̄
+ N0ρ

∗ + ρ̂0

)
+
σ∗+(t − t0)

t̄
+ N0σ

∗
+ + σ̂

0
+

}
≤V0 exp

{
pN0ρ

∗ + pρ̂0 + N0σ
∗
+ + σ̂

0
+

}
exp

{(
−c +

pρ∗ + σ∗+
t̄

)
(t − t0)

}
,

(3.9)

where t ≥ t0.
Step 3: Based on condition Eqs (3.4), (3.9) and Assumption l1 ∥z∥α ≤ V(t, z) ≤ l2 ∥z∥α, which can

derive that
∥z(t)∥ ≤ χ(∥φ − ψ∥v exp(−λ(t − t0))), ∀t ≥ t0,
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where χ =
(

l2
l1

exp
{
pN0ρ

∗ + pρ̂0 + N0σ
∗
+ + σ̂

0
+

}) 1
α , λ = ct̄−pρ∗−σ̂∗+

αt̄ , which implies the system (2.2) can be
exponentially synchronized with System (2.1) over the class H

[
{tu, ρu}

]
.

Remark 1: System under consideration with hybrid delayed impulses is discussed in Theorem 1
using the Lyapunov–Razumikhin method. Condition Eq (3.1) describes the continuous evolution of the
considered system, and it follows from a > 0 that the continuous dynamics are stabilizing. Condition
Eq (3.2) overviews the impulsive effect. In the case where Γu = 0, Γ̂u = 1, Eq (3.2) simplifies to
U(tu, h(z)) ≤ exp {d}U(π, z), where π = tu − ρu [20]. In the case where Γu = 1, Γ̂u = 0, Eq (3.2)
simplifies to U(tu, hu(z(0))) ≤ exp {d}U(t−u , z(0)) [7].

Remark 2: According to the derivation condition ϵ = q1 exp {cρ}+q2 exp {cµ} of Theorem 1, it can be
learnt that the parameter c will increase with the decrease of ρ and µ. Furthermore, the synchronization
rate λ = ct̄−pρ∗−σ̂∗+

αt̄ will increase. Therefore we have ϵ = q1exp
{
ρ
λαt̄−pρ∗+σ̂∗+

t̄

}
+ q2exp

{
µ
λαt̄−pρ∗+σ̂∗+

t̄

}
. This

means that, in some cases, system delays ρmight have potentially negative impact on the synchronization
between the systems (2.1) and (2.2).

Remark 3: According to condition Eq (3.2), σu is called as impulsive estimate. In order to analyze
the function of the impulsive estimation sequence {σu}, the concepts of average positive impulsive
estimation (APIE) and AIE are introduced in this paper.

Assuming the existence of scalars σ̂0
+ > 0 and σ∗+ > 0 satisfying condition Eq (3.3), σ∗+ is called

as APIE.
Supposing that there are some σ̂0 > 0 and σ∗ > 0 such that

σ∗N(t, t0) − σ̂0 ≤

N(t,t0)∑
j=1

σ j ≤ σ
∗N(t, t0) + σ̂0, (3.10)

where N(t, t0) is given in Definition 2, thus σ∗ is referred to as AIE of the impulsive estimation sequence
{σu}. When σu > 0, there is σ∗ = σ∗+. Since t0 does not act as an impulse point, we assume that σ0 = 0.

Remark 4: Actually, there exist some results about impulsive delays. In [30,31], the time delays
had to have strict upper and lower bounds, or to be smaller than the length of impulse interval [16,20].
Even if [19,21,32] relaxed impulsive delays, impulsive interval should meet that infu∈Z+ {tu − tu−1} ≥ ϱ

or supu∈Z+ {tu − tu−1} ≤ ϱ for some ϱ ≥ 0. The length of impulsive interval is flexible in Theorem 1.
When the delays of the continuous dynamics are not to be considered, systems (2.1) and (2.2) can be

represented as ξ̇(t) = Cξ(t) + A f (ξ(t)) + B f̄ (ξ(t)) + J, t , tu,

ξ(t0 + s) = ψ(s), s ∈ [−v, 0] ,
(3.11)

ζ̇(t) = Cζ(t) + A f (ζ(t)) + B f̄ (ζ(t)) + J, t , tu,

ζ(t) − ζ(t−) = H(t), t = tu,

ζ(t0 + s) = φ(s), s ∈ [−v, 0] ,

(3.12)

and the resulting error system for systems (1) and (2) follows as
ż(t) = Cz(t) + Ag(z(t)) + Bḡ(z(t)), t , tu,

z(t) = Duz(t−) + Euz((t − ρu)−), t = tu,

z(t0 + s) = φ(s) − ψ(s), s ∈ [−v, 0] ,

(3.13)
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Corollary 1: Suppose that Assumption 1 holds. If there exists a function V ∈ V∗, scalars p > 0,

c with p > c > 0, σu = ln
(∑n

i=1 max j

∣∣∣∣d(u)
i j

∣∣∣∣ +∑n
i=1 max j

∣∣∣∣e(u)
i j

∣∣∣∣), σu with pρu + σu > 0, σ∗ > 0 satisfying

condition Eq (3.10), Γu =

∑n
i=1 max j

∣∣∣∣d(u)
i j

∣∣∣∣
exp(σu) , Γ̂u =

∑n
i=1 max j

∣∣∣∣e(u)
i j

∣∣∣∣
exp(σu) . In that case the exponential synchronization

of systems (3.11) and (3.12) can be achieved while Eq (3.1) holds with ϵ = q1 = q2 = 0 and Eq (3.2)
holds, and

−ct̄ + pρ∗ + σ∗ < 0.

Remark 5: Corollary 1 offers some criteria for exponential synchronization between system (2.1)
and system (2.2) from the point of view of impulsive perturbation, which lowers the limitation on
σu > 0. Most of previous works [17,20,25] need σu < 0 in the impulsive control case and σu > 0 in the
impulsive perturbation case. Corollary 1 presents condition pρu + σu > 0 which makes σu is flexible. If
σu > 0, pρu + σu > 0 always holds. If σu < 0, we just need ρu > −

σu
p which ensures above condition to

hold. It’s worth noting that, in the impulsive perturbation problem, the smaller σu is, ρu must be larger
to compensate.

3.2. The case of impulsive control

In this subsection, from the perspective of impulsive control, we establish a number of criteria
of exponential synchronization based on the concepts of AID and AIE. Moreover, we assume that
tu − tu−1 ≥ ρ > ρu and tu − tu−1 ≥ η > ρu, u ∈ Z+.

Theorem 2: Considering system (2.3) under Assumption 1. Suppose that there exists a function
V ∈ V∗, scalars b1 = maxi cii +

∑n
i=1 max j, j,i

∣∣∣ci j

∣∣∣ + ∑n
i=1 max j

∣∣∣ai j

∣∣∣, b2 =
∑n

i=1 ri max j

∣∣∣gi j

∣∣∣ and b3 =∑n
i=1 r̄i max j

∣∣∣ĝi j

∣∣∣, σu = − ln
(∑n

i=1 max j

∣∣∣∣d(u)
i j

∣∣∣∣ +∑n
i=1 max j

∣∣∣∣e(u)
i j

∣∣∣∣) with σ̄ = supu∈Z+ σu > 0, γ > 0 such

that γ > b1 + b2 exp {σ̄} + b3 exp {σ̄}, Γu =

∑n
i=1 max j

∣∣∣∣d(u)
i j

∣∣∣∣
exp{σu}

, Γ̂u =

∑n
i=1 max j

∣∣∣∣e(u)
i j

∣∣∣∣
exp{σu}

, the impulsive estimation
sequence {σu} satisfies the condition Eq (3.10), for every t > 0, the following inequalities hold:

D+V(t, z(0)) ≤b1V(t, z(0)) + b2V(t − ρ, z(−ρ)) + b3

∫ µ

0
k(s)V(t − s, z(−s))ds, t , tu,

V(tu, hu(−z(0), z(−τu)) ≤ exp(σu)
(
ΓuV(t−u , z(0)) + Γ̂uV((tu − ρu)−, z(−ρu))

)
,

γt̄ − σ∗ < 0.

Then, drive system (2.1) can achieve exponential synchronization with response system (2.2) over the
class H

[
{tu, ρu}

]
.
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Proof: Define V(t) = V(t, z(t)) = ∥z(t)∥ =
∑n

i=1 |zi(t)|, and V0 = supu∈[t0−v,t0] V(u), such that

D+V(t) =D+ ∥z(t)∥ = D+
n∑

i=1

|zi(t)|

≤

max
i

cii +

n∑
i=1

max
j, j,i

∣∣∣ci j

∣∣∣ + n∑
i=1

max
j

∣∣∣ai j

∣∣∣ V(t) +
n∑

i=1

ri max
j

∣∣∣gi j

∣∣∣ V(t − ρ)

+

n∑
i=1

r̄i max
j

∣∣∣ĝi j

∣∣∣ ∫ µ

0
k(s)V(t − s)ds

=b1V(t, z(0)) + b2V(t − ρ, z(−ρ)) + b3

∫ µ

0
k(s)V(t − s, z(−s))ds, t , tu.

The proof is divided into three steps.
Step 1 : We will demonstrate that

V(t) ≤ ΩuV0 exp {γ(t − t0)} , (3.14)

where Ωu = exp
{
−

∑u
j=0 σ j

}
.

First, we need show that the following two situations for u ∈ Z0
+.

(i). If t△ ∈ [t0, t1), one has

Θ(s) ≤ Θ(t△), t0 − v ≤ s ≤ t△. (3.15)

(ii). If t△ ∈ [tu, tu−1), u ∈ Z+, one can obtain that

Θ(s) ≤ Θ(t△), tu ≤ s ≤ t△, (3.16)

and

Θ(s) exp {γ(tu − tu−1)} ≤ Θ(t△) exp {σ̄} , tu−1 ≤ s ≤ tu. (3.17)

Then D+Θ(t)|t=t△ < 0, where

Θ(t) =

V exp {−γ(t − tu)} , t ∈ [tu, tu+1) , u ∈ Z+,
V(t), t0 − v ≤ t ≤ t0.

Construct an auxiliary function with ι > 0

Θι(t) =

V exp {−(γ+ ι)(t − tu)} , t ∈ [tu, tu+1) , u ∈ Z+,
V(t), t0 − v ≤ t ≤ t0.

Without loss of generality, we assume ρ ≥ η. First, provided that Eq (3.15) holds.
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If t△ − η ≥ t△ − ρ ≥ t0, based on Eq (3.16), one has

exp
{
ι(t△ − t0)

}
D+Θι(t)|t=t△

=
(
D+V(t)|t=t△ − (γ + ι)V(t△)

)
exp

{
−γ(t△ − t0)

}
≤ (b1 − γ − ι)V(t△) exp

{
−γ(t△ − t0)

}
+ b2V(t△ − ρ) exp

{
−γ(t△ − ρ − t0)

}
exp {−γρ}

+ b3

∫ µ

0
k(s)V(t△ − s) exp(−γ(t△ − s − t0)) exp {−γs} ds

≤ (b1 − γ − ι)Θ(t△) + b2Θ(t△ − ρ) exp {−γρ} + b3

∫ µ

0
k(s)Θ(t△ − s) exp {−γs} ds

≤ (b1 − γ − ι + b2 + b3)Θ(t△).

If t△ − ρ < t0 < t△ − η or t△ − ρ ≤ t△ − η < t0, we can derive similarly that

exp
{
ι(t△ − t0)

}
D+Θι(t)|t=t△

≤ (b1 − γ − ι)V(t△) exp
{
−γ(t△ − t0)

}
+ b2V(t△ − ρ) exp

{
−γ(t△ − t0)

}
+ b3

∫ µ

0
k(s)V(t△ − s)ds exp

{
−γ(t△ − t0)

}
≤ (b1 − γ − ι + b2 + b3)Θ(t△).

Next, suppose that Eqs (3.16) and (3.17) hold.
If t△ − η ≥ t△ − ρ ≥ tu, using Eq (3.16) we can found

exp
{
ι(t△ − tu)

}
D+Θι(t)|t=t△

≤ (b1 − γ − ι)V(t△) exp
{
−γ(t△ − tu)

}
+ b2V(t△ − ρ) exp

{
−γ(t△ − ρ − tu)

}
exp {−γρ}

+ b3

∫ µ

0
k(s)V(t△ − s) exp

{
−γ(t△ − s − tu)

}
exp {−γs} ds

≤ (b1 − γ − ι)Θ(t△) + b2Θ(t△ − ρ) exp {−γρ} + b3

∫ µ

0
k(s)Θ(t△ − s) exp {−γs} ds

≤ (b1 − γ − ι + b2 + b3)Θ(t△).

If t△ − ρ < tu ≤ t△ − η, by the fact tu−1 ≤ t△ − ρ < tu, Eqs (3.16) and (3.17), it leads to

exp
{
ι(t△ − t0)

}
D+Θι(t)|t=t△

≤ (b1 − γ − ι)V(t△) exp
{
−γ(t△ − tu)

}
+ b2V(t△ − ρ) exp

{
−γ(t△ − ρ − tu−1)

}
exp {γ(tu − tu−1 − ρ)}

+ b3

∫ µ

0
k(s)V(t△ − s) exp

{
−γ(t△ − s − tu)

}
exp {−γs} ds

≤ (b1 − γ − ι)Θ(t△) + b2Θ(t△ − ρ) exp {γ(tu − tu−1 − ρ)} + b3

∫ µ

0
k(s)Θ(t△ − s) exp {−γs} ds

≤ (b1 − γ − ι + b2 exp {σ̄} + b3)Θ(t△).
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If t△ − ρ ≤ t△ − η < tu, because of tu−1 ≤ t△ − ρ < tu, Eqs (3.16) and (3.17), one has

exp
{
ι(t△ − t0)

}
D+Θι(t)|t=t△

≤ (b1 − γ − ι)Θ(t△) + b2Θ(t△ − ρ) exp {γ(tu − tu−1 − ρ)}

+ b3

∫ µ

0
k(s)V(t△ − s) exp

{
−γ(t△ − s − tu)

}
) exp {−γs} ds

≤ (b1 − γ − ι)Θ(t△) + b2Θ(t△ − ρ) exp {γ(tu − tu−1 − ρ)} + b3

∫ t△−tu

0
k(s)Θ(t△ − s) exp {−γs} ds

+ b3

∫ η

t△−tu
k(s)Θ(t△ − s) exp {γ(tu − tu−1 − s)} ds

≤ (b1 − γ − ι + b2 exp {σ̄})Θ(t△) + b3 exp {σ̄}Θ(t△)
∫ t△−tu

0
k(s)ds +

∫ η

t△−tu
k(s)ds


≤ (b1 − γ − ι + b2 exp {σ̄} + b3 exp {σ̄})Θ(t△).

According to the above situations and γ > b1 + b2 exp(σ̄) + b3 exp(σ̄), one can obtain that

exp
{
ι(t△ − tu)

}
D+Θι(t)|t=t△ ≤ (b1 − γ − ι + b2 exp {σ̄} + b3 exp {σ̄})Θ(t△)

< −ιΘ(t△).

It can be further deduced that

D+Θ(t)|t=t△ = exp
{
ι(t△ − tu)

}
D+Θι(t)|t=t△ + ι exp

{
ι(t△ − tu)

}
Θι(t)|t=t△

<ιΘ(t△) − ιΘ(t△)
=0.

Then, we shall show that

Θ(t) ≤ ΩuV0 exp(γ(tu − t0)), t ∈ [tu, tu−1) , u ∈ Z+. (3.18)

We can easily get Θ(t) ≤ V0 when t ∈ [t0 − v, t0], so that Θ(t0) ≤ V0. Suppose Eq (3.18) is false for
u=0, then there exists t▽ ∈ (t0, t1) makes Θ(t▽) > V0, Θ(t) ≤ V0 for t ∈ (t0 − v, t▽) and D+Θ(t)|t=t▽ ≥ 0,
which is contrary to D+Θ(t)|t=t▽ < 0 in previous discussion. Provided that (3.18) holds for u ≤ U, next
we will prove that Eq (3.18) holds for u = U + 1. Based on Θ(t) ≤ ΩUV0exp {γ(tU − t0)}, t ∈ [tU , tU+1),
we have

Θ(tU+1) =V(tU+1)

≤ exp {−σU+1}
(
ΓU+1V(t−U+1) + Γ̂U+1V((tU+1 − ρU+1)−)

)
≤ exp {−σU+1}

(
ΓU+1ΩUV0 exp {γ(tU+1 − t0)} + Γ̂U+1ΩUV0 exp {γ(tU+1 − ρU+1 − t0)}

)
≤ exp {−σU+1}ΩUV0 exp {γ(tU+1 − t0)}
≤ΩU+1V0 exp {γ(tU+1 − t0)} .

Therefore, Eq (3.18) holds for t = tU+1. Suppose that there are some t ∈ (tU+1, tU+2) which
leads to Θ(t) ≥ ΩUV0 exp {γ(tu − t0)}, through the continuity of V(t) in (tU+1, tU+2), we can get t̂ ∈
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(tU+1, tU+2) such that Θ(t̂) = ΩU+1V0 exp {γ(tU+1 − t0)}, Θ(t) < ΩU+1V0 exp {γ(tU+1 − t0)}, t ∈
(
tU+1, t̂

)
and D+Θ(t)|t=t̂ ≥ 0. When s ∈ [tU , tU+1), it leads to

Θ(s) exp {γ(tU+1 − tU)}
≤ΩUV0 exp {γ(tU − t0)} exp {γ(tU+1 − tU)}
=ΩUV0 exp {γ(tU+1 − t0)}
=ΩU+1 exp {σU+1}V0 exp {γ(tU+1 − t0)}
=Θ(t̂) exp {σ̄} .

Thus, it follows from Eqs (3.16) and (3.17) that D+Θ(t)|t=t̂ < 0, which is a contradiction with
D+Θ(t)|t=t̂ ≥ 0.

Then we can conclude that Eq (3.18) is true through using mathematical induction.
Step 2 : From Eqs (3.8) and (3.10), it can be derived that

V(t) ≤V0exp

− N(t,t0)∑
j=0

σ j

 exp {γ(t − t0)}

≤V0 exp
{
−(σ∗N(t, t0) − σ̂0)

}
exp {γ(t − t0)}

≤V0 exp
{
−

(
σ∗

( t − t0

t̄
− N0

)
− σ̂0

)}
exp {γ(t − t0)}

≤V0 exp
{(
γ −

σ∗

t̄

)
(t − t0)

}
exp

{
σ∗N0 + σ̂

0
}
.

(3.19)

Based on condition γt̄ − σ∗ < 0, inequality (3.19) and Assumption l1 ∥z∥α ≤ V(t, z) ≤ l2 ∥z∥α, one has

∥z(t)∥ ≤ χ ∥φ − ψ∥v exp(−λ(t − t0)), t ≥ t0,

where χ =
(

l2
l1

exp
{
σ∗N0 + σ̂

0
}) 1

α , λ = σ∗−γt̄
αt̄ , which implies the system (2.2) can be exponentially

synchronized with system (2.1) over the class H
[
{tm, ρm}

]
.

Remark 6: Theorem 2 presents some criteria for exponential synchronization between systems (2.1)
and (2.2) from the point of view of impulsive control. Compared to previous studies [16–18,20], which
have a common threshold for σ > 0 at each impulsive point, the results in this paper are less conservative
and the rate coefficient σu is flexible here through the proposed concept of AIE.

4. Numerical examples

In this section, we give illustrative examples to show the effectiveness of the obtained results.

Example 1: We consider the error system (2.3) with parameters as

C =
[
−0.9 0.01
0.02 −0.9

]
, A =

[
0.11 −0.15
−0.2 0.1

]
, B =

[
0.1 0
0 0.1

]
, B̂ =

[
0.29 −0.31
−0.32 0.28

]
,

k(s) = 1
µ
, 0 ≤ ρu ≤ ρ̄, v := max {ρ̄, ρ, µ}, f (·) = f̄ (·) = 0.3tanh(·), ρ = 0.1, µ = 0.4, tu = 0.7u and

ρu =


0, u = 3m − 2,
0.1, u = 3m − 1,
1.1, u = 3m,
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where m ∈ Z+, the matrices Du, Eu can be chosen by

Du =

[
0.1 0
0 0.1

]
, Eu =

[
0.85 0

0 0.85

]
, when ρu = 0;

Du =

[
0.28 0

0 0.28

]
, Eu =

[
0.85 0

0 0.85

]
, when ρu = 0.1;

Du =

[
0.35 0

0 0.35

]
, Eu =

[
0.45 0

0 0.45

]
, when ρu = 1.1.

Let V(t) = ∥z(t)∥ in system (2.3), c = 0.2, ϵ = 0.7519, it can be derived that p = 0.2641, and

σu =


−0.0512, u = 3m − 2,
0.1222, u = 3m − 1,
−0.2231, u = 3m.

Therefore, we can get t̄ = 0.7, ρ∗ = 0.4, σ∗+ = 0.0407. Furthermore it can be obtained that −ct̄ +
pρ∗ + σ∗+ = −0.08166 < 0. By Theorem 1, drive system (2.1) can achieve exponential synchronization
with response system (2.2) over the class H

[
{tu, ρu}

]
, see Figure 1.

If the delays ρ, µ and the rate coefficient ρ are chosen as ρ = 0.8, µ = 1.4 and ρ = 0.3122. We can
find that all conditions in Theorem 1 are satisfied so that drive system (2.1) can achieve exponential
synchronization with response system (2.2), see Figure 2. According to Remark 3, synchronization rate
drops as the delay ρ or µ grows, which agrees well with the simulation result in Figure 2.

If Du, Eu are selected as

Du =

[
0.36 0

0 0.35

]
, Eu =

[
1.31 0

0 1.46

]
, when ρu = 0;

Du =

[
0.51 0

0 0.51

]
, Eu =

[
0.86 0

0 0.86

]
, when ρu = 0.1;

Du =

[
0.31 0

0 0.31

]
, Eu =

[
0.82 0

0 0.82

]
, when ρu = 1.1,

where u ∈ Z+, then by calculation we have

σu =


0.5988, u = 3m − 2,
0.3148, u = 3m − 1,
0.1222, u = 3m,

and σu = 0.3452. Under this circumstance, −ct̄ + pρ∗ + σ∗+ = 0.2228 > 0, this is contrary to
condition Eq (3.4). Therefore, system (2.2) may not be able to achieve exponential synchronization
with system (2.1), see Figure 3.
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Figure 1. State trajectories of error system (2.3).

0 2 4 6 8 10 12 14 16

Time t

-4

-3

-2

-1

0

1

2

3

4

S
ta

te
s
 o

f 
z
(t

)

z
1
(t)

z
2
(t)

=0.1, =0.4

=0.8, =1.4

Figure 2. State trajectories of error system (2.3).
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Figure 3. State trajectories of error system (2.3).
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Example 2: We consider the following error system:


ż(t) = 0.3z(t) + 0.03g(z(t)) + 0.08

∫ µ

0
k(s)z(t − ρ)ds, t , tu,

z(tu) = duz(t−u ) + euz((tu − ρu)−), t = tu,

δ(t0 + s) = φ(s) − ψ(s), s ∈ [−v, 0] ,

(4.1)

where k(s) = 1
1−e−µ e−s, ρ = 0.8, µ = 0.4, tu = u and τu, cu, du can be selected by

ρu =


0, u = 3m − 2,
0.1, u = 3m − 1,
0.9, u = 3m,

du =


0.15, ρu = 0,
0.1, ρu = 0.1,
0.15, ρu = 0.9,

eu =


0.5, ρu = 0,
0.3, ρu = 0.1,
0.9, ρu = 0.9.

Let V(t) = ∥z(t)∥ in system (4.1), there are

σu =


0.4307, u = 3m − 2,
0.916, u = 3m − 1,
−0.0487, u = 3m,

and σ∗ = 0.4326, t̄ = 1. Then we can choose γ = 0.42 > 0.3 + 0.03 + 0.08 makes condition
γt̄ − σ∗ = −0.0126 < 0 is established. From Theorem 1, drive system (2.1) can achieve exponential
synchronization with response system (2.2) over the class H

[
{tu, ρu}

]
, see Figure 4 (solid red line). It is

clear that, owing to the idea of AIE, it is not necessary that σu is positive for every u ∈ Z+.

If du, eu are

du =


0.44, ρu = 0,
0.5, ρu = 0.1,
0.4, ρu = 0.9,

eu =


0.4, ρu = 0,
0.4, ρu = 0.1,
0.5, ρu = 0.9,

then it can be figured out that

σu =


0.1743, u = 3m − 2,
0.1053, u = 3m − 1,
0.0943, u = 3m,

therefore, σ∗ = 0.1246. Under this circumstance, γt̄ − σ∗ = 0.2954 > 0, which contradicts one of the
conditions of Theorem 2, i.e., γt̄ − σ∗ < 0 . Consequently, system (2.2) may not be able to achieve
exponential synchronization with system (2.1), see Figure 4 (dotted blue line).
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Figure 4. State trajectories of error system (4.1).

5. Conclusions

In this paper, we have explored the issue of synchronization for a class of impulsive systems with
discrete and distributed delay. Sufficient Lyapunov conditions for the synchronization of the considered
system under impulse perturbation and impulse control are established, respectively. It is worth noting
that the concepts of AIE and APIE, which are presented in this paper, make impulsive estimation more
flexible and relax the constraint of a common threshold. Theoretical results show that time delay size
of continuous dynamics is variable and does not have a strict magnitude relationship with impulsive
delay. In addition, the obtained display inequalities indicate that time delay of a continuous system may
have a potential effect on synchronization. However, from the perspective of impulsive control, there
exists a limitation between system time delay size and impulsive interval length, which is an issue to be
discussed in subsequent work.
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