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Abstract: The vegetation pattern generated by aeolian sand movements is a typical type of vegetation
patterns in arid and semi-arid areas. This paper presents a vegetation-sand model with nonlocal inter-
action characterized by an integral term with a kernel function. The instability of the Turing pattern
was analyzed and the conditions of stable pattern occurrence were obtained. At the same time, the
multiple scales method was applied to obtain the amplitude equations at the critical value of Turing
bifurcation. The spatial distributions of vegetation under different delays were obtained by numerical
simulation. The results revealed that the vegetation biomass increased as the interaction intensity de-
creased or as the nonlocal interaction distance increased. We demonstrated that the nonlocal interaction
between vegetation and sand is a crucial mechanism for forming vegetation patterns, which provides a
theoretical basis for preserving and restoring vegetation.
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1. Introduction

Desertification is land degradation in dry semi-humid arid, semi-arid, and arid areas resulting from
various factors, including climatic variation and human activities [1]. This process can bring about
significant negative consequences for society and the economy, which include reduced agricultural
output, destruction of property, and heightened health and safety risks [2, 3]. Numerous ecosystems
in arid and semi-arid regions are experiencing accelerated desertification [4, 5]. In areas with frequent
movement of sand caused by wind, desertification is primarily attributed to the displacement of sand,
which leads to the depletion of vegetation cover [6, 7].

However, regarding the research on vegetation modeling, more scholars focus on vegetation water
modeling and less on vegetation-sand modeling. They believe that rainfall rate can induce transitions
among bare soil state, vegetation pattern state, and homogeneous vegetation state [8–11]. In 1999,
Klausmeier [12] first proposed a model with two variables, vegetation biomass and water density, for
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forming regular vegetation patterns in semi-arid areas. The results showed that the regularity of vege-
tation patterns in semi-arid regions is the traveling wave instability of the reaction-diffusion convection
equation. The proposed model has facilitated the study of vegetation patterns in semi-arid areas. Meron
et al. [13] presented a continuum model for vegetation patterns in water-limited systems. The model
predicted transitions from bare soil at low precipitation to homogeneous vegetation at high rainfall
through intermediate states of spot, stripe, and gap patterns.

In the past century, with significant growth and widespread occurrence of soil desertification and
numerous sand transport and deposition events, the relevance of aeolian sand as a significant environ-
mental concern has only emerged in the last two decades [14]. There is a growing recognition among
people that vegetation patch formation using wind as a driver is important when dealing with environ-
mental issues [15–19]. Zhang et al. [20] presented a model based on the two variables of vegetation
cover and the height of aeolian sand accumulation

∂S
∂T
= K0 + MV(1 −

V
V0

) − NS − A1
∂S
∂X
+ D1(

∂2S
∂X2 +

∂2S
∂Y2 ),

∂V
∂T
= HV(1 −

V
Vm

) − PS
V

C + V
− A2

∂V
∂X
+ D2(

∂2V
∂X2 +

∂2V
∂Y2 ),

where ∂S
∂T and ∂V

∂T are the accumulation rate of sand and the growth rate of vegetation respectively,
K0 + MV(1 − V

V0
) − NS represents deposition by vegetation, A1

∂S
∂X and A2

∂V
∂X represent advection by

prevailing wind and dispersal by prevailing wind respectively, HV(1− V
Vm ) is vegetation growth, PS V

C+V

represents vegetation destroyed by sand, and D1( ∂
2S
∂X2 +

∂2S
∂Y2 ) and D2(∂

2V
∂X2 +

∂2V
∂Y2 ) represent sand diffusion

in all directions and dispersal in all directions respectively.
Zhang et al. [20] studied the effect of wind-sand on the spatial distribution of vegetation in the

windy sand environment. The influence of the prevailing wind on the growth rate of the two variables
is modeled as an advection term in the model, while the effect of other winds is modeled as a diffusion
term. Many areas may not have significant prevailing winds. We can obtain the following model

∂S
∂T
= K0 + MV(1 −

V
V0

) − NS + D1(
∂2S
∂X2 +

∂2S
∂Y2 ),

∂V
∂T
= HV(1 −

V
Vm

) − PS
V

C + V
+ D2(

∂2V
∂X2 +

∂2V
∂Y2 ).

(1.1)

Zhang et al. [20] considered that the aggregation effect of vegetation on sand decreases with the in-
crease of vegetation biomass. Different from Zhang et al. [20], this paper considers the mechanism of
aggregation effect of the linear action term, and the model (1.1) can be rewritten as follows

∂S
∂T
= K0 + MV − NS + D1∆S ,

∂V
∂T
= HV(1 −

V
Vm

) − PS
V

C + V
+ D2∆V.

(1.2)

For ease of analysis, let

s =
N
K0

S , v =
M
K0

V, t = NT, h =
H
N
, vm =

MVm

K0
, p =

PK0

CN2 ,
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c =
K0

CM
, d =

D2

D1
, x =

√
N
D1

X, y =

√
N
D1

Y.

The dimensionless system (1.2) is obtained as follows
∂s
∂t
= 1 + v − s + ∆s,

∂v
∂t
= hv(1 −

v
vm

) − ps
v

1 + cv
+ d∆v,

(1.3)

where s and v are the height of the sand accumulation layer and vegetation coverage respectively, h
describes the intrinsic growth rate of vegetation cover, vm represents the potential maximum value of
vegetation coverage, p is the coefficient of destructive effects by sand burial, c is the half-saturation
constant of sand capacity, d denotes the ratio of the diffusivity of vegetation to that of sand, the term
ps v

1+cv models local destruction of vegetation by sand, and ∆ is a standard Laplace operator. The
vegetation-sand system reflects the influence of sand on vegetation.

Nonlocal interaction is one of the critical mechanisms of vegetation pattern formation. Many schol-
ars have researched the nonlocal effects of vegetation models [21–25]. However, no one has yet studied
the nonlocal interaction of sand and vegetation. Fine aeolian sand particles are deposited on the surface
of leaves and stems, which will affect the life process of vegetation photosynthesis to a certain extent,
and the deposited sand will reduce the water content of the soil and inhibit the growth of vegetation.
In addition to the location of the vegetation itself, the aeolian sand in the vicinity and even the whole
study area will destroy the development of the foliage. During the transportation of the aeolian sand, it
will impact and abrase the stems and leaves of the vegetation, directly damaging the vegetation tissue
and affecting its productivity. The accumulation of a large amount of aeolian sand may even bury the
vegetation. Hence, it is interesting to study the nonlocal interaction between vegetation and sand. This
paper introduces a nonlocal interaction in model (2.1) to better account for the effect of aeolian sand
on vegetation growth throughout the study area.

In reality, time delays are inevitable and substantially impact the dynamics [26–30]. It takes time
for sand to be transported by wind to destroy vegetation, which shows that in the spatial scope of
our study, the whole process of vegetation destroyed by sand will be affected by nonlocal effects and
time delay. In the modelling of complex systems portraying vegetation-sand interactions, the spatially
weighted average of nonlocal delay including the entire study area, first proposed by Britton, can be
used to solve the problem that the study object is not at the current location of the study area at the
current moment at the previous moments [31]. This reaction-diffusion equation with delay includ-
ing a spatially weighted average over the entire study region is called the nonlocal reaction-diffusion
equation. Nonlocal reaction-diffusion equations have been widely used in the fields of infectious dis-
eases and predation by predation among animals, but in the field of eco-vegetation most of them are
focused on the study of local and global existence and asymptotic approximation of the model solu-
tions, as well as wavefront solutions and periodic wavefront solutions [32–37]. The use of nonlocal
delay reaction-diffusion equations to study the vegetation patchwork in arid and semi-arid regions is a
new research direction in ecological vegetation science, which can truly portray the actual situation of
nonlocal action of vegetation [38–43], and its theory about combating desertification still needs to be
improved. Therefore, this paper establishes a vegetation-sand model with nonlocal effects in arid and
semi arid regions, analyzes the model for Turing instability, reveals the influence of vegetation model
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parameters on vegetation patchwork, and provides theoretical basis for specific measures to combat
land desertification.

Studying the effect of aeolian sand diffusion intensity on vegetation is the main objective of this
paper, which compares the effect of two mechanisms on changes in vegetation pattern structure based
on nonlocal delays. The rest of this paper is organized as follows. Section 2 derives a nonlocal delayed
vegetation-sand model with soil-sand diffusion. Section 3 discusses the stability of the equilibria and
the conditions for the emergence of the Turing pattern. We address a weakly nonlinear multiple scales
analysis and obtain the amplitude equation for the Turing pattern in Section 4. In Section 5, numerical
simulations are shown to verify the theoretical results.

2. A mathematical model derivation

In semi-arid environments, vegetation and sand produce nonlocal interaction. In addition to the
vegetation-covered areas, aeolian sand will have corresponding impacts on the vegetation throughout
the study area. It will erode stems and leaves, damage plant tissues, and affect their productivity,
among other things. To better describe the process, we create the following vegetation-sand system
with nonlocal delay



∂s(x, y, t)
∂t

= 1 + v − s + ∇2s, (x, y) ∈ Ω, t > 0,

∂v(x, y, t)
∂t

= hv(1 −
v

vm
) + d∇2v (x, y) ∈ Ω, t > 0,

− p
∫
Ω

∫ t

−∞
Q(x, y, t − U)H(t − U)s(y,U)dUdy

v
1 + cv

,

∂s(x, y, t)
∂ν

=
∂v(x, y, t)

∂ν
= 0, (x, y) ∈ ∂Ω, t > 0,

s(x, y, 0) ≥ 0, v(x, y, 0) ≥ 0, (x, y) ∈ Ω̄.

(2.1)

For a detailed explanation of the kernel function [44, 45]

f (t) = δ(t − τ), f (t) =
1
τ

e−
t
τ , f (t) =

1
τ2 e−

t
τ .

The second and third of the above three kernels are referred to as weak and strong generic delay kernels
respectively. The first kernel is the appropriate choice for giving a model with a discrete time delay,
that is to say, the delay effect only involves the data exactly τ time units ago, H(t) is the weak generic
delay kernel for the Neumann problem and the expression is as follows

H(t) =
1
τ

e−
t
τ .

The kernel function Q(x, y, t)H(t) represents the weight of eolian sand reaching the current position at
any position before time t. The expression of nonlocal delay is as follows

n(x, t) =
∫
Ω

∫ t

−∞

Q(x, y, t − U)H(t − U)s(y,U)dUdy

=

∫
Ω

∫ t

−∞

Q(x, y, t − U)
1
τ

e−
t−U
τ s(y,U)dUdy.
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Q(x, y, t) is the solution of the following system in a bounded domain
∂Q
∂t
= D
(
∂2Q
∂X2 +

∂2Q
∂Y2

)
, X × Y ∈ Ω, t > 0,

∂Q
∂ν

∣∣∣∣∣
∂Ω

= 0, t > 0,

Q(x, y, 0) = σ(x − y) = σ(y − x), x, y ∈ Ω

(2.2)

and
∂n
∂t
=

∫
Ω

1
τ

Q(x, y, 0)s(y, t)dy

+

∫
Ω

∫ t

−∞

1
τ

s(y, h)
[
∂Q(x, y, t − U)

∂t
e−

t−U
τ −

1
τ

Q(x, y, t − U)e−
t−U
τ

]
dUdy

=

∫
Ω

1
τ
σ(x − y)s(y, t)dy

+

∫
Ω

∫ t

−∞

1
τ

s(y,U)e−
t−U
τ

[
∂Q(x, y, t − U)

∂t
−

1
τ

Q(x, y, t − U)
]
dUdy,

where σ is the Dirac delta function and D > 0. According to (2.2) and the properties of σ function, the
above equation can be derived as follows

∂n
∂t
=

1
τ

[
s(x, t) −

∫
Ω

∫ t

−∞

1
τ

e−
t−U
τ s(y,U)Q(x, y, t − U)dUdy

]
+ D
∫
Ω

∫ t

−∞

(
∂2Q(x, y, t − U)

∂X2 +
∂2Q(x, y, t − U)

∂Y2

)1
τ

e−
t−U
τ s(y,U)dUdy

=
1
τ

(s − n) + D∇2n.

Based on the above derivation, (2.1) can be transformed into the following form

∂s
∂t
= 1 + v − s + ∇2s, x ∈ Ω, t > 0,

∂v
∂t
= hv(1 −

v
vm

) − pn
v

1 + cv
+ d∇2v, x ∈ Ω, t > 0,

∂n
∂t
=

1
τ

(s − n) + D∇2n, x ∈ Ω, t > 0,

∂s(x, t)
∂ν

=
∂v(x, t)
∂ν

=
∂n(x, t)
∂ν

= 0, x ∈ ∂Ω, t > 0,

s(x, 0) = s0(x) ≥ 0,. 0, v(x, 0) = v0(x) ≥ 0,. 0,
n(x, 0) = n0(x) ≥ 0,. 0, x ∈ Ω̄.

(2.3)

System (1.3) always has one bare sand state equilibrium point K0 = (1, 0). When v , 0, we have

−
ch
vm

v2 + (ch − p −
h
vm

)v + h − p = 0. (2.4)

Let
A = −

ch
vm

< 0, B = ch − p −
h
vm
, C = h − p.
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The number of equilibrium points in system (1.3) depends on the relationship between above parame-
ters.

(i) When the parameters satisfy the condition B2 − 4AC > 0, B −
√

B2 − 4AC > 0, Eq (2.4) has two
positive roots

v11 =
−B +

√
B2 − 4AC

2A
, v12 =

−B −
√

B2 − 4AC
2A

.

Therefore, there are s11 = 1+ v11, s12 = 1+ v12. It can be obtained that system (1.3) has two uniformly
vegetated equilibrium points K11 = (s11, v11), K12 = (s12, v12).

(ii) When the parameters satisfy the condition B2 − 4AC = 0, B > 0, Eq (2.4) has a unique positive
root, v2 = −

B
2A and s2 = 1 + v2. Therefore, system (1.3) has an equilibrium point K2 = (s2, v2).

(iii) When the parameters satisfy the condition B2 − 4AC < 0, Eq (2.4) does not have any real roots,
indicating that there is no equilibrium for system (1.3).

In order to discuss the stability of the above equilibrium point, system (1.3) is linearized near the
equilibrium point K∗ = (s∗, v∗) to obtain the Jacobin matrix

J =


−1 1

−
pv∗

1 + cv∗
h −

2hv∗
vm
−

ps∗
(1 + cv∗)2

 =
 −1 1

−N H

 .
Let H = h −

2hv∗
vm
−

ps∗
(1 + cv∗)2 ,N =

pv∗
1 + cv∗

. Its corresponding characteristic equation is

µ2 − TrJµ + DetJ = 0,

where
TrJ = H − 1, DetJ = N − H.

We can see that if H < 1 and H < N, then the equilibrium (s∗, v∗) is locally asymptotically stable
for (1.3). The following discussions are all assumed that H < 1 and H < N.

3. Linear analysis and Turing patterns

3.1. Stability and Turing bifurcation analysis of the diffusive system without nonlocal delay

In this subsection, we study (1.3) without considering the nonlocal delay. We start with the local
system in one-dimensional space Ω = (0, π)

st = 1 + v − s + ∇2s, x ∈ (0, π), t > 0,

vt = hv(1 −
v

vm
) − ps

v
1 + cv

+ d∇2v, x ∈ (0, π), t > 0,

sx(x, t) = vx(x, t) = 0, x = 0, π, t > 0,

s(x, 0) = s0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0, π).

(3.1)

Define the real Sobolev space

X = {(s, v) ∈ H2(0, π) × H2(0, π) : (sx, vx) |x=0,π= 0},
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and let the complex extension space of X:XC = X
⊕

iX = {x1 + ix2 | x1, x2 ∈ X}. The linearization
operator for system (3.1) at (s∗, v∗) is

L =

 −1 + ∇2 1

−N H + ∇2

 .
Under the chi-square Neumann condition, the eigenvalue of operator −∇2 is µk = k2 (k = 0, 1, 2, · · · ),
which satisfies

0 = µ0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · ,

and cos(kx) (k ∈ N) corresponds to the characteristic function of µk. Taking the sequence of functions
{cos(kx)}∞k=0, it is a standard Orthonormal basis of space L2(0, π).

Let  ϕ
φ

 = ∞∑
k=0

 ak

bk

 cos(kx)

be the eigenfunction of L corresponding to eigenvalue ψ, where L(ϕ, φ)T = ψ(ϕ, φ)T . By direct calcu-
lation, we have

Lk

 ak

bk

 = ψ  ak

bk

 , k = 0, 1, 2, · · ·

and

Lk =

 −1 − µk 1

−N H − dµk

 .
Let the characteristic equation of Lk be

λ2 − Tkλ + Dk = 0, (3.2)

where
Tk = H − 1 − (1 + d)µk < 0, Dk = dµ2

k + (d − H)µk + N − H.

Obviously, when H ≤ 0, for any k ≥ 0, we have Dk ≥ 0 and Tk < 0. At this point, the positive
equilibrium point (s∗, v∗) of system (3.1) is locally asymptotically stable.

In the following, assume that 0 < H < 1 and H < N. If d ≥ H, then for any k ≥ 0, we obviously
have Dk ≥ 0 and Tk < 0, which implies that (s∗, v∗) is locally asymptotically stable. If d < H, then let

∆ = (d − H)2 − 4(N − H)d = d2 + (2H − 4N)d + H2.

Note that the discriminant of the quadratic function f (z) = z2 + (2H − 4N)z + H2 is

∆̃ = (2H − 4N)2 − 4H2 = 16N(N − H) > 0.

Thus, f (z) = 0 exists two positive real roots

z1 = 2N − H − 2
√

N(N − H), z2 = 2N − H + 2
√

N(N − H).

If z1 < z < z2, then f (z) < 0 and ∆ < 0, which implies Dk > 0 for any k > 0 when z1 < d < z2. Let
z1−H = 2N−2H−2

√
N(N − H). Since H < N, N−H <

√
N
√

N − H. We can get z1 < H. Obviously,
Z2 > H. Note that z1 < H < z2 and (s∗, v∗) is locally asymptotically stable when d ≥ H. Hence, (s∗, v∗)
is locally asymptotically stable when d > z1.
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Theorem 3.1. Assume that H < 1 and H < N hold. Then, the equilibrium point (s∗, v∗) is locally
asymptotically stable for system (1.3) if H ≤ 0. When H > 0, the equilibrium point (s∗, v∗) is locally
asymptotically stable for system (1.3) if d > z1, where z1 = 2N − H − 2

√
N(N − H) > 0.

If 0 < d < z1, then ∆ > 0. The equation

dµ2
k + (d − H)µk + N − H = 0

has two positive real roots

µ−(d) =
H − d −

√
(d − H)2 − 4(N − H)d

2d
, µ+(d) =

H − d +
√

(d − H)2 − 4(N − H)d
2d

.

Let F(d) = H − d +
√

(d − H)2 − 4(N − H)d. Then,

F
′

(d) = −1 +
d + H − 2N√

(d − H)2 − 4(N − H)d
.

Recall that H > z1 and d < z1. It follows from d < H < N that d < 2N − H. Hence, we can get
F
′

(d) < 0 and µ+(d) is monotonically decreasing on d.
Define

Φ1 = {µ | µ ≥ 0, µ−(d) < µ < µ+(d)}, Φ2 = {µ0, µ1, µ2, µ3, · · · }.

Let d → 0+. Then, we have

lim
d→0+

µ−(d) =
N − H

N
> 0, lim

d→0+
µ+(d) = +∞.

Clearly, we see that Φ1 ∩Φ2 , ∅, which implies that the positive equilibrium (s∗, v∗) of system (3.1) is
unstable. So, we obtain the Turing instability of (s∗, v∗) for d is small.

Theorem 3.2. Assume that 0 < H < 1 and H < N hold. Then, there exists sufficiently small d̃ such
that for 0 < d < d̃, the positive equilibrium (s∗, v∗) is Turing unstable for system (3.1).

3.2. Stability analysis for the local system with nonlocal delay

In this section, we will study the conditions under which the equilibrium point (s∗, v∗, n∗) is stable
when the system (2.3) has no diffusion.

Begin with the local system 

ds
dt
= 1 + v − s,

dv
dt
= hv(1 −

v
vm

) − pn
v

1 + cv
,

dn
dt
=

1
τ

(s − n),

(3.3)

where t > 0. The linearized system of (3.3) at equilibrium (s∗, v∗, n∗) is

ds
dt
= a11s + a12v + a13n,

dv
dt
= a21s + a22v + a23n,

dn
dt
= a31s + a32v + a33n,
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where
a11 = −1, a12 = 1, a13 = 0,

a21 = 0, a22 = h −
2hv∗
vm
−

pn∗
(1 + cv∗)2 , a23 = −

pv∗
1 + cv∗

,

a31 =
1
τ
, a32 = 0, a33 = −

1
τ
.

We analyzed the stability of the equilibrium point (s∗, v∗, n∗) in Table 3-1 [46].

Table 3-1. Stability analysis of equilibrium point according to Hurwitz criterion.

Characteristic polynomial of system (3.2) Stability condition
P1(0) > 0

σ3 + P1(0)σ2 + P2(0)σ + P3(0) = 0 P3(0) > 0
P1(0)P2(0) − P3(0) > 0

The coefficients in Table 3-1 are shown below

P1(0) = −(a11 + a22 + a33) = 1 +
1
τ
− h +

2hv∗
vm
+

pn∗
(1 + cv∗)2 ,

P2(0) = a11a22 + a33a22 + a11a33 − a12a21 − a13a31 − a23a32

=
1
τ
+ (1 +

1
τ

)(−h +
2hv∗
vm
+

pn∗
(1 + cv∗)2 ),

P3(0) = a11a23a32 + a12a21a33 + a13a22a31 − a11a22a33 − a12a23a31 − a13a21a32

=
1
τ

[−h +
2hv∗
vm
+

pv∗
1 + cv∗

+
pn∗

(1 + cv∗)2 ].

Condition 1. When H < 1 and H < N, P1(0) > 0 and P3(0) > 0.

Condition 2. When H < 1 and H < N, P1(0)P2(0) − P3(0) > 0.

P1(0)P2(0) − P3(0) = (1 +
1
τ

)X2
1 + (1 +

1
τ

)[1 +
1
τ
+

2p(1 + β)
(1 + cβ)2 ]X1 −

pcβ2 + 2pβ + p
τ(1 + cβ)2

+ [1 +
1
τ
+

p(1 + β)
(1 + cβ)2 ][

1
τ
+ (

1
τ
+ 1)

p(1 + β)
(1 + cβ)2 ] > 0.

Let (s∗, v∗, n∗) = (1 + β, β, 1 + β) and X1 =
2hβ
vm
− h. Then, we have

A1X2
1 + B1X1 +C1 > 0,

A1 = 1 +
1
τ
> 0, B1 = (1 +

1
τ

)[1 +
1
τ
+

2p(1 + β)
(1 + cβ)2 ] > 0,

C1 = −
pcβ2 + 2pβ + p
τ(1 + cβ)2 + [1 +

1
τ
+

p(1 + β)
(1 + cβ)2 ][

1
τ
+ (

1
τ
+ 1)

p(1 + β)
(1 + cβ)2 ],

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4521–4553.



4530

X1,± =
−B1 ±

√
B2

1 − 4A1C1

2A1
.

When X1 ∈ (−∞, X1,−) ∪ (X1,+,+∞), we can calculate P1(0)P2(0) − P3(0) > 0.
Hence, the two conditions in Table 3-1 are satisfied simultaneously, so (s∗, v∗, n∗) is asymptotically

stable to (3.3).

3.3. Stability and Turing bifurcation analysis of the diffusive system with nonlocal delay

In this subsection, we study (2.3) as spatial diffusion increases. We analyze the characteristic equa-
tion and obtain the conditions of Turing bifurcation generation using the Routh-Hurwitz criterion.

It can be seen from the above analysis that the equilibrium (s∗, v∗, n∗) is locally asymptotically
stable when the vegetation-sand system does not consider spatial diffusion. When the vegetation-sand
system is coupled with spatial diffusion, it can be concluded from the Routh-Hurwitz criterion that the
equilibrium (s∗, v∗, n∗) is stable under the following conditions

P1(k) > 0,

P3(k) > 0,

P1(k)P2(k) − P3(k) > 0.
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Figure 1. Impact of D and τ on dispersion of Re(λ) of system (2.3). (a) we plot Re(λ) with
respect to different values of D where τ = 1. (b) we plot Re(λ) against different values of τ
where D = 100. Other parameters are d = 0.01, h = 1.56, vm = 400, p = 3.15, c = 3.95.

Different nonlocal effects correspond with different real part curves of eigenvalues. It is easy to see
that in the appropriate parameter range, as the intensity of nonlocal effect gradually increases, the real
part of eigenvalue gradually increases and Turing patterns also appear. Obviously, near the equilibrium
point (s∗, v∗, n∗), the real part of the eigenvalue of the linearized system (2.3) can be regarded as a
function of wave number k. We show the dispersion relation under different nonlocal intensities in
Figure 1. The necessary condition for Turing pattern in system (2.3) is that the non-diffusion system is
stable, while the diffusion system is unstable. Then, we will analyze the conditions of Turing pattern
in equilibrium (s∗, v∗, n∗) from the following three conditions.
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Let 
s

v

n

 =

ε1

ε2

ε3

 exp(λt + ik · r), (3.4)

where k is the wavenumber, λ is the perturbation growth rate in time t, and i2 = −1. The exponential
solution (3.4) is substituted into the (2.3) and the following characteristic equation is obtained through
calculation

λ


s

v

n

 =


a11 − k2 a12 a13

a21 a22 − dk2 a23

a31 a32 a33 − Dk2




s

v

n

 . (3.5)

The solution of the characteristic (3.5) is found and then the dispersion relation is as follows

λ3 + P1(k)λ2 + P2(k)λ + P3(k) = 0,

where
P1(k) = 1 +

1
τ
− h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 + k2 + dk2 + Dk2,

P2(k) = [dk2 − h +
2hβ
vm
+

p(1 + β)
(1 + cβ)2 ][Dk2 +

1
τ
+ 1 + k2] + (1 + k2)(Dk2 +

1
τ

),

P3(k) = (k2 + 1)(dk2 − h +
2hβ
vm
+

p(1 + β)
(1 + cβ)2 )(

1
τ
+ Dk2) +

pβ
τ(1 + cβ)

.

We show the dispersion relation for different nonlocal effects in Figure 1. A necessary condition
for the Turing pattern in (2.3) is that the system is stable in the absence of diffusion and unstable in the
presence of diffusion. Therefore, we will analyze the Turing pattern’s equilibrium conditions (s∗, v∗, n∗)
in the following three conditions.

Condition 1. P1(k) > 0.

Since k2 + dk2 + Dk2 > 0 and the equilibrium (s∗, v∗, n∗) is stable without diffusion, Condition 1
always holds.

Condition 2. P3(k) > 0.

Theorem 3.3. In Condition 2, the equilibrium point of the system is stable in the absence of diffusion
and unstable in the presence of diffusion, which is a necessary and sufficient Condition for the Turing
pattern. If the inequalities f 2

2 − 3 f1 f3 > 0, umin = u1 > 0, and Fmin = F(u1) < 0 hold, then the Turing
bifurcation could occur.

Proof. Let P3(k) = F(k2) and u = k2. Then, J(k) is equivalent to the following expression

F(u) = f3u3 + f2u2 + f1u + f0, (3.6)
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where
f3 = dD > 0, f2 =

d
τ
+ D(−h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 ) + dD,

f1 = (
1
τ
+ D)(−h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 ) +

d
τ
,

f0 =
1
τ

(−h +
2hβ
vm
+

p(1 + β)
(1 + cβ)2 +

pβ
1 + cβ

).

Analyze the properties of the polynomial F(u) as follows.
(i) lim

u→+∞
F(u) = +∞.

(ii) We can obtain two extremum points by calculating the first partial derivative of (3.2). The forms
of the two extreme points are as follows

u1 =
− f2 +

√
f 2
2 − 3 f1 f3

3 f3
and u2 =

− f2 −

√
f 2
2 − 3 f1 f3

3 f3
.

(iii) We can obtain F(u) second-order deflection by calculating

d2F(u)
du2 = 6 f3u + 2 f2.

Using the properties of a unary cubic polynomial, we have

u2 = umax < umin = u1.

Thanks to f0 > 0, we obtain that if
Fmin = F(u1) < 0

is satisfied, Turing bifurcation could occur. Because umin = u1 =
− f2 +

√
f 2
2 − 3 f1 f3

3 f3
represents the

number of the wave, umin = u1 > 0, to ensure that u1, u2 is meaningful, thus f 2
2 − 3 f1 f3 > 0.

In Condition 2, if the inequalities f 2
2 − 3 f1 f3 > 0, umin = u1 > 0, and Fmin = F(u1) < 0 hold, then

the Turing bifurcation could occur. The proof is completed. Λ

Table 3-2. Analysis methods and necessary and sufficient
conditionsfor the formation of Turing pattern.

Methods Necessary and sufficient condition
( f2)2 − 3 f1 f3 > 0

1. Judge the monotonicity of function umin = u1 > 0
2. Judge function concavity and convexity F(umin) = F(u1) < 0
3. Analyze the necessary and sufficient F(0) = P3(0) > 0
conditions for Turing pattern P1(0)P2(0) − P3(0) > 0

P1(0) > 0
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Condition 3. P1(k)P2(k) − P3(k) > 0.

Theorem 3.4. If the inequalities g2
2 − 3g1g3 > 0, umin = u3 > 0, and Gmin = G(u3) < 0 hold, then the

Turing bifurcation could occur.

Proof. Let G(k2) = P1(k)P2(k) − P3(k) and u = k2. Then, G(u) = g3u3 + g2u2 + g1u + g0, where
g3 = 2dD + d + D + d2D + d2 + dD2 + D2 > 0,

g2 =[1 +
1
τ
− h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 ][d(D + 1) + D]

+ (1 + d + D)[(−h +
2hβ
vm
+

p(1 + β)
(1 + cβ)2 )(D + 1) + d(

1
τ
+ 1) + D +

1
τ

] − f2,

g1 =[1 +
1
τ
− h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 ][(D + 1)(−h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 ) + d(

1
τ
+ 1) + D +

1
τ

]

+ (1 + d + D)[(
1
τ

)(−h +
2hβ
vm
+

p(1 + β)
(1 + cβ)2 ) +

1
τ

] − f1,

g0 = [1 +
1
τ
− h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 ][(−h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 )(

1
τ
+ 1) +

1
τ

] − f0.

Next, analyze the properties of the polynomial G(u)
(i) lim

u→+∞
G(u) = +∞.

(ii) We can obtain two extremum points by calculating the first partial derivative of G(u). The forms
of the two extreme points are as follows

u3 =
−g2 +

√
g2

2 − 3g1g3

3g3
and u4 =

−g2 −

√
g2

2 − 3g1g3

3g3
.

(iii) We can obtain G(u) second-order deflection by calculating

d2G(u)
du2 = 6g3u + 2g2.

Using the properties of a unary cubic polynomial, we get

u4 = umax < umin = u3.

Thanks to g0 > 0, we obtain that if the following conditions are satisfied, Turing bifurcation could
occur

Gmin = G(u3) < 0.

Because umin = u3 =
−g2+
√

g2
2−3g1g3

3g3
represents the number of the wave, umin = u3 > 0, to ensure that

u3, u4 is meaningful, thus g2
2 − 3g1g3 > 0.

Similar to the Condition 2, if the inequalities g2
2 − 3g1g3 > 0, umin = u3 > 0, and Gmin = G(u3) < 0

hold, then the Turing bifurcation could occur. The proof is completed.
Λ
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4. Amplitude equation analysis of Turing patterns

In this section, D is the control parameter, and DT is the bifurcation threshold for the Turing pattern.
D is close to the initial DT , and the eigenvalues are about zero, corresponding to the slow-changing
critical mode. In contrast, the off-critical methods relax quickly, so only the perturbation of k around
kT should be considered. We first calculate the critical wave number kT and bring the necessary kT into
P3(k) = 0 to obtain the bifurcation threshold DT of the Turing pattern.

According to Theorem 3.3, we get

k2
T = u1 =

− f2 +

√
f 2
2 − 3 f1 f3

3 f3
.

Therefore, DT satisfies the following equality

f̂3k6
T + f̂2k4

T + f̂1k2
T + f̂0 = 0,

where

f̂3 = dDT > 0, f̂2 =
d
τ
+ DT (−h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 ) + dDT ,

f̂1 = (
1
τ
+ DT )(−h +

2hβ
vm
+

p(1 + β)
(1 + cβ)2 ) +

d
τ
,

f̂0 =
1
τ

(−h +
2hβ
vm
+

p(1 + β)
(1 + cβ)2 +

pβ
1 + cβ

).

To obtain the amplitude equation, the perturbation solution (s − s∗, v − v∗, n − n∗) of (2.3) can be
represented by X = (s, v, n)T . Then the linearized form of (2.3) near the uniform steady state (s∗, v∗, n∗)
is written as follows 

∂s
∂t
= a11s + a12v + a13n +W1(s, v, n) + ∇2s,

∂v
∂t
= a21s + a22v + a23n +W2(s, v, n) + d∇2v,

∂n
∂t
= a31s + a32v + a33n +W3(s, v, n) + D∇2n,

(4.1)

where
W1(s, v, n) = 0, W3(s, v, n) = 0,

W2(s, v, n) = (−
h
vm
+

pcs∗
(1 + cv∗)3 )v2 −

1
(1 + cv∗)2 sv −

pc2s∗
(1 + cv∗)4 v3 +

c
(1 + cv∗)3 sv2.

According to [47], for D sufficiently close to DT , the solutions of (2.3) can be expanded in a hexag-
onal planform as

X =


s

v

n

 =
3∑

j=1

A jexp(ik j · r) +
3∑

j=1

A jexp(−ik j · r),
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in which A j and A j are the amplitudes corresponding to the modes of k j and −k j. Here k j is the wave
vector with |k j| = kT . Let W = (W1,W2,W3)T . System (4.1) can be expressed as follows

∂X
∂t
= LX +W, (4.2)

where

L =


a11 + ∇

2 a12 a13

a21 a22 + d∇2 a23

a31 a32 a33 + D∇2

 , (4.3)

W =


0

[−
h
vm
+

pcs∗
(1 + cv∗)3 ]v2 −

1
(1 + cv∗)2 sv −

pc2s∗
(1 + cv∗)4 v3 +

c
(1 + cv∗)3 sv2

0

 . (4.4)

Since we calculate a sufficiently small neighborhood of the critical value of D, we extend the bifurca-
tion parameter D at DT

D − DT = ϵD1 + ϵ
2D2 + ϵ

3D3 + O(ϵ4), ϵ ≪ 1. (4.5)

By expanding X and the non-linear terms W by the small parameter ϵ, we can obtain

X =


s

v

n

 = ϵ


s1

v1

n1

 + ϵ2


s2

v2

n2

 + ϵ3


s3

v3

n3

 + O(ϵ4) (4.6)

and
W = ϵ2Q2 + ϵ

3Q3 + O(ϵ4), (4.7)

with

Q2 =


0

[−
h
vm
+

pcs∗
(1 + cv∗)3 ]v2

1 −
1

(1 + cv∗)2 s1v1]

0

 ,

Q3 =


0

2[−
h
vm
+

pcs∗
(1 + cv∗)3 ]v1v2 −

1
(1 + cv∗)2 [s1v2 + s2v1] −

pc2s∗
(1 + cv∗)4 v3

1 +
c

(1 + cv∗)3 s1v2
1

0

 .
The linear operator L can be decomposed as

L = LT + (D − DT )N, (4.8)

where

LT =


a11 + ∇

2 a12 a13

a21 a22 + d∇2 a23

a31 a32 a33 + DT∇
2

 ,
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N =


0 0 0

0 0 0

0 0 ∇2

 ≜


n11 n12 n13

n21 n22 n23

n31 n32 n33

 .
Separating the time scale into T1 and T2 by the small ϵ through the chain rule of differentiation, we
have

∂

∂t
=

∂

∂T0
+ ϵ

∂

∂T1
+ ϵ2 ∂

∂T2
+ O(ϵ3), (4.9)

with
T0 = t, T1 = ϵt, T2 = ϵ

2t. (4.10)

Since the amplitude A j changes slowly, derivative T0 does not affect on amplitude A j.We consider each
time scale Ti as an independent variable, and then the reciprocal of time can be obtained as follows

∂A
∂t
= ϵ

∂A
∂T1
+ ϵ2 ∂A

∂T2
+ O(ϵ3). (4.11)

Substituting (4.3)–(4.11) into (4.2), we have
ϵ :

LT


s1

v1

n1

 = 0, (4.12)

ϵ2 :

LT


s2

v2

n2

 = ∂

∂T1


s1

v1

n1

 − D1N


s1

v1

n1

 − Q2, (4.13)

ϵ3 :

LT


s3

v3

n3

 = ∂

∂T1


s2

v2

n2

 + ∂

∂T2


s1

v1

n1

 − D1N


s2

v2

n2

 − D2N


s1

v1

n1

 − Q3. (4.14)

As the linear operator of a vegetation-sand system at a critical point, (s1, v1, n1)T corresponds to the
linear combination of the eigenvectors in which the eigenvalue is 0. By calculating (4.12), we can write
the corresponding modes of the three wave vectors separately. We have

s1

v1

n1

 =


l1

l2

1

 (V1exp(ik1 · r) + V2exp(ik2 · r) + V3exp(ik3 · r)) + c.c., (4.15)

where

l1 =
a12(DT k2

T − a33)
a32(k2

T − a11)
, l2 =

DT k2
T − a33

a32
, (4.16)
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and c.c. represents the complex conjugate. V j( j = 1, 2, 3) is the amplitude of exp(ik j ·r) which is under
first-order perturbation. The perturbation higher-order term determines it.

For (4.13), we get that

LT


s2

v2

n2

 = ∂

∂T1


s1

v1

n1

 − D1N


s1

v1

n1

 −


0

[−
h
vm
+

pcs∗
(1 + cv∗)3 ]v2

1 −
1

(1 + cv∗)2 s1v1]

0


=


Gs

Gv

Gn

 .
(4.17)

According to the Fredholm solvability condition, the vector function of the right-hand side of (4.17)
must be orthogonal with the zero eigenvectors of the operator L+T to ensure the existence of the non-
trivial solution of the (4.17), where L+T is the adjoint operator of LT . The zero eigenvector of operator
L+T is determined by 

1

l+2
l+3

 exp(−ik j · r), j = 1, 2, 3,

where

l+2 =
k2

T − a11

a21 + dk2
T

, l+3 =
a23(k2

T − a11)
(DT k2

T − a33)(a21 + dk2
T )
. (4.18)

Customarily, G j
s,G

j
v,G

j
n( j = 1, 2, 3) are the coefficients corresponding to exp(ik j · r) in Gs,Gv and

Gn respectively. Therefore, substituting (4.15) into (4.17) and sorting out the coefficients of exp(ik1 ·r),
exp(ik2 · r), and exp(ik3 · r). Using the Fredholm solvability condition, we obtain the following system


G1

s

G1
v

G1
n

 =


l1

l2

1

 ∂V1

∂T1
− D1N


l1

l2

1

V1 −


G1

F1

E1

V2V3,


G2

s

G2
v

G2
n

 =


l1

l2

1

 ∂V2

∂T1
− D1N


l1

l2

1

V2 −


G1

F1

E1

V1V3,


G3

s

G3
v

G3
n

 =


l1

l2

1

 ∂V3

∂T1
− D1N


l1

l2

1

V3 −


G1

F1

E1

V1V2,
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where 
G1

F1

E1

 = 2


0

[−
h
vm
+

pcs∗
(1 + cv∗)3 ]l2

2 −
1

1 + cv∗
l1l2

0

 . (4.19)

Applying orthogonal condition

(1, l+2 , l
+
3 )


G j

s

G j
v

G j
n

 = 0, j = 1, 2, 3,

we can obtain that 
(l1 + l2l+2 + l+3 )

∂V1

∂T1
= D1HV1 + (G1 + l+2 F1)V2V3,

(l1 + l2l+2 + l+3 )
∂V2

∂T1
= D1HV2 + (G1 + l+2 F1)V1V3,

(l1 + l2l+2 + l+3 )
∂V3

∂T1
= D1HV3 + (G1 + l+2 F1)V1V2,

(4.20)

where

H = (1, l+2 , l
+
3 )N


l1

l2

1

 = −k2
T l+3 . (4.21)

The system of (4.20) is an amplitude equation with first-order perturbation. We can find that the
second-order coefficient of the equation is more significant than zero. Then, we can get amplitude
V j( j = 1, 2, 3) diverges. So, introducing higher-order perturbation terms into the solution of (4.13) is
necessary, such as exp(2ik j · r), exp(i(k1 − k2) · r), and so on.


s2

v2

n2

 =


S 0

V0

N0

 +
3∑

j=1


S j

V j

N j

 exp(ik j · r) +
3∑

j=1


S j j

V j j

N j j

 exp(2ik j · r)

+


S 12

V12

N12

 exp(i(k1 − k2) · r) +


S 23

V23

N23

 exp(i(k2 − k3) · r)

+


S 31

V31

N31

 exp(i(k3 − k1) · r) + c.c.,

(4.22)
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with 
S 0

V0

N0

 =


YS 0

YV0

YN0

 (|V1|
2 + |V2|

2 + |V3|
2), V j = l2N j, S j = l1N j,


S j j

V j j

N j j

 =


YS 1

YV1

YN1

V2
j ,


S 12

V12

N12

 =


YS 2

YV2

YN2

V1V2,


S 23

V23

N23

 =


YS 2

YV2

YN2

V2V3,


S 31

V31

N31

 =


YS 2

YV2

YN2

V3V1,

where 
YS 0

YV0

YN0

 = −


a11 a12 a13

a21 a22 a23

a31 a32 a33


−1 

G1

F1

E1

 ,
YS 1

YV1

YN1

 = −1
2


a11 − 4k2

T a12 a13

a21 a22 − 4dk2
T a23

a31 a32 a33 − 4DT k2
T


−1 

G1

F1

E1

 ,
YS 2

YV2

YN2

 = −


a11 − 3k2
T a12 a13

a21 a22 − 3dk2
T a23

a31 a32 a33 − 3DT k2
T


−1 

G1

F1

E1

 .
For (4.14), we get that

LT


s3

v3

n3

 = ∂

∂T1


s2

v2

n2

 + ∂

∂T2


s1

v1

n1

 − D1N


s2

v2

n2

 − D2N


s1

v1

n1

 − Q3

=
∂

∂T1


s2

v2

n2

 + ∂

∂T2


s1

v1

n1

 − D1N


s2

v2

n2

 − D2N


s1

v1

n1


−


0

2[−
h
vm
+

pcs∗
(1 + cv∗)3 ]v1v2 −

1
(1 + cv∗)2 [s1v2 + s2v1] −

pc2s∗
(1 + cv∗)4 v3

1 +
c

(1 + cv∗)3 s1v2
1

0


=


Fs

Fv

Fn

 .
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Substituting the solutions (4.15) and (4.22) of the upper two order perturbation equation into (4.14)
and sorting out the coefficients of exp(ik1 · r), and exp(ik2 · r), and exp(ik3 · r) by using the Fredholm
solvability condition, we obtain the following system

F1
s

F1
v

F1
n

 =


l1

l2

1

 (
∂V1

∂T2
+
∂N1

∂T1
) − D1N


l1

l2

1

N1 − D2N


l1

l2

1

V1

−


G1

F1

E1

 (V2N3 + V3N2) −


G2

F2

E2

 |V1|
2V1 −


G3

F3

E3

 (|V2|
2 + |V3|

2)V1,

where 

G2 = 0,

F2 = −
p

(1 + cv∗)2 (l1YV0 + l2YS 0) +
2pcs∗

(1 + cv∗)3 l2YV0 −
p

(1 + cv∗)2 (l1YV1 + l2YS 1)

+
2pcs∗

(1 + cv∗)3 l2YV1 +
3pc

(1 + cv∗)3 l1l2
2 −

3pc2s∗
(1 + cv∗)4 ,

E2 = 0,

(4.23)

and 

G3 = 0,

F3 = −
p

(1 + cv∗)2 (l1YV0 + l2YS 0) +
2pcs∗

(1 + cv∗)3 l2YV0 −
p

(1 + cv∗)2 (l1YV2 + l2YS 2)

+
2pcs∗

(1 + cv∗)3 l2YV2 +
6pc

(1 + cv∗)3 l1l2
2 −

6pc2s∗
(1 + cv∗)4 ,

E3 = 0.

(4.24)

Applying orthogonal condition

(1, l+2 , l
+
3 )


F j

s

F j
v

F j
n

 = 0, j = 1, 2, 3,

we can obtain that

(l1 + l2l+2 + l+3 )(
∂V1

∂T2
+
∂N1

∂T1
) = H(D1N1 + D2V1) + (G1 + F1l+2 )(V2N3 + V3N2)

+ (G2 + F2l+2 )|V1|
2V1 + (G3 + F3l+2 )(|V2|

2 + |V3|
2)V1.

(4.25)

The amplitude A j is the coefficient of exp(ik j · r)( j = 1, 2, 3) at each level. We have

A j = ϵV j + ϵ
2N j + O(ϵ3).
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Together with (4.9), (4.10), (4.20), and (4.25), the amplitude equations about A j are as follows
τ0
∂A1

∂t
= ϕA1 + ηA2A3 − [Z1|A1|

2 + Z2(|A2|
2 + |A3|

2)]A1,

τ0
∂A2

∂t
= ϕA2 + ηA1A3 − [Z1|A2|

2 + Z2(|A3|
2 + |A1|

2)]A1,

τ0
∂A3

∂t
= ϕA3 + ηA1A2 − [Z1|A3|

2 + Z2(|A1|
2 + |A2|

2)]A1,

(4.26)

with

τ0 =
l1 + l2l+2 + l+3

DT H
, ϕ =

D − DT

DT
, η =

G1 + F1l+2
DT H

,

Z1 = −
G2 + F2l+2

DT H
, Z2 = −

G3 + F3l+2
DT H

,

where l1, l2, l+2 , l
+
3 ,G1, F1,H,G2, F2,G3, and F3 are defined as (4.16), (4.18), (4.19), (4.21), (4.23), and

(4.24).
Next, we study the stability of the amplitude equation of the vegetation-sand model. We can con-

struct different types of pattern structures in Turing space, and a stable Turing pattern structure is a
steady-state solution for the corresponding (4.26). Each amplitude of (4.26) can be decomposed into
a corresponding mode γi = |Ai| and phase angle θi. By substituting Ai = γiexp(iθi) into (4.26) and
separating the real part from the imaginary part, we can get

τ0
∂θ

∂t
= −η

γ2
1γ

2
2 + γ

2
2γ

2
3 + γ

2
3γ

2
1

γ1γ2γ3
sinθ,

τ0
∂γ1

∂t
= ϕγ1 + ηγ2γ3cosθ − [Z1|γ

2
1 + Z2(γ2

2 + γ
2
3)]γ1,

τ0
∂γ2

∂t
= ϕγ2 + ηγ1γ3cosθ − [Z1|γ

2
2 + Z2(γ2

1 + γ
2
3)]γ2,

τ0
∂γ3

∂t
= ϕγ3 + ηγ1γ2cosθ − [Z1|γ

2
3 + Z2(γ2

1 + γ
2
2)]γ3,

(4.27)

where θ = θ1 + θ2 + θ3. The following conclusions can be drawn for (4.27).

Theorem 4.1. For homogeneous reaction-diffusion systems, assume that Z1 > 0 and Z2 > 0.
(i) A uniform steady state solution (O): γ1 = γ2 = γ3 = 0. If ϕ < ϕ2 = 0, then (O) is stable. If

ϕ > ϕ2 = 0, then (O) is unstable.

(ii) A stripe pattern diagram (S): γ1 =

√
ϕ

Z1
, 0, γ2 = γ3 = 0 with ϕ > ϕ2 = 0. If ϕ > ϕ3 =

η2Z1

(Z2−Z1)2 ,

then (S) is stable. If ϕ < ϕ3, then (S) is unstable.

(iii) Two hexagonal layouts (H0,Hπ): γ1 = γ2 = γ3 =
|η|±
√
η2+4(Z1+2Z2)ϕ

2(Z1+2Z2) with ϕ > ϕ1 = −
η2

4(Z1+2Z2)2 .

If ϕ < ϕ4 =
(2Z1+Z2)η2

(Z2−Z1) , then the solution γ+ = |η|+
√
η2+4(Z1+2Z2)ϕ

2(Z1+2Z2) is stable and the other solution γ− =
|η|−
√
η2+4(Z1+2Z2)ϕ

2(Z1+2Z2) is unstable.

(iv) A mixed structure solution (MS): γ1 =
|η|

Z2−Z1
, γ2 = γ3 =

√
ϕ−Z1γ

2
1

Z1+Z2
, which exists under the

condition ϕ > ϕ3 and Z2 > Z1, and the solution is always unstable.
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Table 1. The values of each parameter in Figure 2.

τ η ϕ ϕ1 ϕ2 ϕ3 ϕ4 range of ϕ
0.35 101.3345 0.6 -0.6580 0 13.6740 13.6471 ϕ1 < ϕ2 < ϕ < ϕ3 < ϕ4

0.33 89.4032 0.5 -0.0441 0 0.0027 0.6607 ϕ1 < ϕ2 < ϕ3 < ϕ < ϕ4

0.31 77.3125 0.5120 -0.0101 0 0.1019 0.2039 ϕ1 < ϕ2 < ϕ3 < ϕ4 < ϕ

It should be pointed out that when τ0 > 0, this means that if η > 0, then the stable hexagon pattern
is H0(θ = 0) and Hπ(θ = π) is unstable; if η < 0, then the stable hexagon pattern is Hπ(θ = π) and
H0(θ = 0) is unstable.

Theorem 4.2. In the interval where Turing pattern is generated, other parameters are fixed and D and
τ are set as variable parameters.

(i) When ϕ2 < ϕ < ϕ3, the system (2.3) appears spot pattern.
(ii) When ϕ3 < ϕ < ϕ4, according to different initial conditions, the system (2.3) appears spot

pattern or stripe pattern.
(iii) When ϕ > ϕ4, the spot pattern in the system (2.3) is transformed to the stripe pattern.

5. Numerical simulations

In this section, we give some numerical simulations to support the theoretical results obtained in
the above section. Choose a region of size 30 × 30 whose boundary satisfies Neumann boundary
conditions. We set the time region as [0, 96] and the time step as ∆t = 0.002. The initial value is the
random perturbation at the equilibrium point (s∗, v∗, n∗). The simulation program runs until the main
features of the pattern do not seem to change.

(1) We use numerical simulation to verify the above theoretical analysis. Selecting the values of
different parameters h, p, vm, c, d, and D, we can calculate the values of η, Z1, Z2, ϕ1, ϕ2, ϕ3, ϕ4, and
ϕ according to the expression of the amplitude equation coefficients in Section 4. In order to observe
the pattern structure of vegetation, we fix the other parameters and select three sets of parameters that
differ only in the value of τ. We continue to keep d = 0.01, h = 2.8, vm = 4, p = 3.9, c = 3, and D = 3.
When τ = 0.35, the spot pattern appears in Figure 2(a); As τ decreases, the vegetation pattern structure
shows mixed pattern of stripe and spot pattern (see Figure 2(b)); Figure 2(c) transforms into stripe
pattern when τ = 0.31. Choose a region of size 90 × 90 whose boundary satisfies Neumann boundary
conditions. The corresponding results are shown in Fig 2. Specifically, when the first set of parameter
values is taken, ϕ is between ϕ2 and ϕ3, and system (1.3) presents a spot pattern (see Figure 2(a)); when
the second set of parameter values is taken, ϕ is between ϕ3 and ϕ4, the spot pattern loses its stability
and the stripe pattern begins to appear, showing a mixed pattern (see Figure 2(b)); when the third set
of parameter values is taken, ϕ is greater than ϕ4, and the spot pattern disappears to a striped pattern
(see Figure 2(c)). All our simulations are carried out on the basis of Table 1 at τ.

(2) Let h = 24.56, p = 17, vm = 10, c = 0.2, τ = 10. The equilibrium (s∗, v∗, n∗) is locally asymp-
totically stable for (3.3). See Figure 3. Let h = 26, p = 17, vm = 10, c = 0.2, τ = 10. The equilibrium
(s∗, v∗, n∗) is unstable for (3.3). See Figure 4. Choose the initial conditions (s0, v0, n0) = (2.1, 2.6, 2.1).

(3) Let h = 3.3333, p = 2.8245, vm = 10, c = 3.1111, d = 100, and (s0, v0) = (8.0248 +
1.337cos3x, 7.0248 + 1.337cos3x). The conditions 0 < H < 1,H < N, and d > z1 hold true. By
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Theory 3.1, the equilibrium (s∗, v∗) is stable for system (3.1). See Figure 5. Take h = 3.3333, p =
2.1234, vm = 10, c = 1.1111, d = 0.00061, and (s0, v0) = (5.1533 + 1.337cos1.7x, 4.1533 +
1.337cos1.7x). Then, d → 0+ hold. Hence, by Theory 3.2, the equilibrium (s∗, v∗) is Turing unsta-
ble for system (3.1). See Figure 6. Let h = 3.3333, p = 2.8245, vm = 10, c = 1.1111, d = 1, and
(s0, v0) = (3.1213 + 1.337cos1.7x, 2.1213 + 1.337cos1.7x). System (3.1) can induce spatially inhomo-
geneous Hopf bifuracation. See Figure 7.

(4) Let d = 0.01, h = 2.8, vm = 4, p = 3.9, c = 3,D = 1. Figure 8 shows the succession of vegetation
pattern when τ = 0.01. It can be seen from the figure, as time goes on, the vegetation patterns evolves
from an initially uniform distribution to gradually uneven clustering, forming gapped patterns, and
eventually reaching stability where it no longer changes with time.

(5) Let d = 0.01, h = 2.8, vm = 4, p = 3.9, c = 3,D = 1. Figure 9 shows the vegetation pattern in
the final stable state with different delays. As τ gradually increases, we observed that the vegetation
patterns formed gapped, clustered, and ring-like patterns, with vegetation transitioning from dense to
gradually sparse. This reflects the nonlocal delayed impact of aeolian sand on vegetation. The greater
the delay, the higher the degree of vegetation destruction, resulting in a sparser distribution.

(6) In Figure 10, we consider the effect of the destruction by sand burial p on vegetation pattern
structure. Let d = 0.01, h = 2.8, vm = 4, c = 3,D = 1, τ = 0.01. When the parameter p is small, the
gap pattern appears (Figure 10(a)); as the parameter p continues to increase, the spot pattern appears,
showing the spot stripe mixed pattern (Figure 10(c)); when the parameter p further increases, the
vegetation patches form a ring-like pattern.

(a) (b) (c)
Figure 2. The pattern structure corresponding to different values of parameter τ. Parameter
values: d = 0.01, h = 2.8, vm = 4, p = 3.9, c = 3,D = 3.
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Figure 3. The equilibrium (s∗, v∗, n∗) of system (3.3) is locally asymptotically stable for
h = 24.56, p = 17, vm = 10, c = 0.2, τ = 10.
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Figure 4. The equilibrium (s∗, v∗, n∗) of system (3.3) is unstable for h = 26, p = 17,
vm = 10, c = 0.2, τ = 10.

Figure 5. The equilibrium (s∗, v∗) of system (3.1) is stable for h = 3.3333, p = 2.8245,
vm = 10, c = 3.1111, d = 100.
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Figure 6. The equilibrium (s∗, v∗) of system (3.1) is Turing unstable for h = 3.3333,
p = 2.1234, vm = 10, c = 1.1111, d = 0.00061.

Figure 7. Positive periodic solution of (3.1) for h = 3.3333, p = 2.8245, vm = 10,
c = 1.1111, d = 1.
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(a) t = 0.002 (b) t = 21

(c) t = 36 (d) t = 96

Figure 8. Patterned plant distribution in system (2.3) with d = 0.01, h = 2.8, vm = 4,
p = 3.9, c = 3,D = 1. Here, τ = 0.01. (a) t = 0.002; (b) t = 21; (c) t = 36; (d) t = 96.
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(a) τ = 0.01 (b) τ = 0.31

(c) τ = 0.34 (d) τ = 0.35

Figure 9. When d = 0.01, h = 2.8, vm = 4, p = 3.9, c = 3,D = 1, different τ corresponds to
the vegetation patterns. (a) τ = 0.01; (b) τ = 0.31; (c) τ = 0.34; (d) τ = 0.35.
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(a) p = 3.75 (b) p = 4.01

(c) p = 4.15 (d) p = 4.17

Figure 10. Effects of the destruction by sand burial p on vegetation pattern structure.
(a) p = 3.75; (b) p = 4.01; (c) p = 4.15; (d) p = 4.17. The other parameter values are
d = 0.01, h = 2.8, vm = 4, c = 3,D = 1, τ = 0.01.
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6. Conclusions

Aeolian sand vegetation patterns have been observed and described for a long time, but there are few
explorations on their formation mechanisms. To explore the ecological mechanism of its formation,
to enrich the scenarios of vegetation competition for resources in different ecosystems, and to deepen
the understanding of desertification and vegetation restoration process, this paper mainly investigates
the spatial and temporal complexity of vegetation in arid and semi-arid regions from the aspects of
vegetation system modelling and theoretical analysis. First, a vegetation model with nonlocal effects is
constructed, the equilibrium state of the model is calculated, linear analysis is carried out at the equi-
librium state, and the spatio-temporal dynamics of the model are investigated. Second, the theoretical
basis of vegetation for combating desertification is proposed. Finally, the effect of the nonlocal delay
on the vegetation sand model is shown through numerical simulation.

The effect of nonlocal delay on vegetation patterns is as follows: a certain range as τ increases, the
density of vegetation decreases, which reflects that the ability of sand to destroy vegetation increases
as τ increases, so the nonlocal delay can change the structure of vegetation pattern. In terms of the-
oretical analysis, Turing space was obtained using linearized analysis for the model, but the pattern
structure and its stability could not be determined. Amplitude equations that can describe the dynam-
ical behaviour of the system near the destabilisation point of the vegetation model were derived using
nonlinear analysis, both to describe the different parameter spaces corresponding to different patterns
and to determine whether the corresponding patterns are stable or not, which makes up for the short-
comings of the linear analysis method.

The improved vegetation-sand dynamics model in this paper is theoretical. The theoretical model is
widely accepted in the field of vegetation pattern, which explains the main mechanism of the vegetation
pattern formation process and promotes the research process of nonlocal delay of the vegetation-sand
model, but it is still difficult to explore the more complex vegetation-sand model, such as the addition
of the advection term and so on, to a certain extent. For studying the landing of sand particles and the
discontinuity of vegetation, a discrete model may be more suitable. Discrete models can use discrete
event systems to describe the state changes of sand particles and vegetation, including the movement of
sand, landing, and the frequency of sand impact on vegetation. We will also focus on studying discrete
models of vegetative-sand on networks [48, 49].
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