Research article Special Issues

Existence of traveling wave solutions for a delayed nonlocal dispersal SIR epidemic model with the critical wave speed

  • Received: 11 August 2021 Accepted: 17 October 2021 Published: 27 October 2021
  • This paper is about the existence of traveling wave solutions for a delayed nonlocal dispersal SIR epidemic model with the critical wave speed. Because of the introduction of nonlocal dispersal and the generality of incidence function, it is difficult to investigate the existence of critical traveling waves. To this end, we construct an auxiliary system and show the existence of traveling waves for the auxiliary system. Employing the results for the auxiliary system, we obtain the existence of traveling waves for the delayed nonlocal dispersal SIR epidemic model with the critical wave speed under mild conditions.

    Citation: Shiqiang Feng, Dapeng Gao. Existence of traveling wave solutions for a delayed nonlocal dispersal SIR epidemic model with the critical wave speed[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 9357-9380. doi: 10.3934/mbe.2021460

    Related Papers:

  • This paper is about the existence of traveling wave solutions for a delayed nonlocal dispersal SIR epidemic model with the critical wave speed. Because of the introduction of nonlocal dispersal and the generality of incidence function, it is difficult to investigate the existence of critical traveling waves. To this end, we construct an auxiliary system and show the existence of traveling waves for the auxiliary system. Employing the results for the auxiliary system, we obtain the existence of traveling waves for the delayed nonlocal dispersal SIR epidemic model with the critical wave speed under mild conditions.



    加载中


    [1] J. H. Wu, X. F. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differ. Equations, 13 (2001), 651–687. doi: 10.1023/A:1016690424892
    [2] J. B. Wang, W. T. Li, F. Y. Yang, Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Nonlinear Sci. Numer. Simul., 27 (2015), 136–152. doi: 10.1016/j.cnsns.2015.03.005
    [3] G. B. Zhang, Global stability of wavefronts with minimal speeds for nonlocal dispersal equations with degenerate nonlinearity, Nonlinear Anal. TMA., 74 (2011), 6518–6529. doi: 10.1016/j.na.2011.06.035
    [4] G. B. Zhang, W. T. Li, Z. C. Wang, Speading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differ. Equations, 252 (2012), 5096–5124. doi: 10.1016/j.jde.2012.01.014
    [5] R. Zhang, L. L. Liu, X. M. Feng, Z. Jin, Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression, Appl. Math. Lett., 112 (2021), 106848. doi: 10.1016/j.aml.2020.106848
    [6] W. Pei, Q. S. Yang, Z. T. Xu, Traveling waves of a delayed epidemic model with spatial diffusion, Electron. J. Qual. Theory Differ. Equations, 82 (2017), 1–19.
    [7] O. Diekmann, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol., 6 (1978), 109–130. doi: 10.1007/BF02450783
    [8] W. T. Li, F. Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equ. Appl., 26 (2014), 243–273.
    [9] J. F. He, J. C. Tsai, Traveling waves in the Kermark-Mckendrick epidemic model with latent period, Z. Angew. Math. Phys., 70 (2019), 2722. doi:10.1007/s00033-018-1072-0. doi: 10.1007/s00033-018-1072-0
    [10] Y. Hosono, B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Model Meth. Appl. Sci., 5 (1995), 935–966. doi: 10.1142/S0218202595000504
    [11] Z. C. Wang, J. H. Wu, Traveling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. Roy. Soc. Lond. Ser. A, 466 (2010), 237–261.
    [12] Z. C. Wang, J. H. Wu, Traveling waves in a bio-reactor model with stage-structure, J. Math. Anal. Appl., 385 (2012), 683–692. doi: 10.1016/j.jmaa.2011.06.084
    [13] J. V. Noble, Geographic and temporal development of plagues, Nature, 250 (1974), 726–729. doi: 10.1038/250726a0
    [14] G. Saccomandi, The spatial diffusion of diseases, Math. Comput. Model., 25 (1997), 83–95.
    [15] Z. G. Bai, S. L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Appl. Math. Comput., 263 (2015), 221–232.
    [16] F. Y. Yang, Y. Li, W. T. Li, Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969–1993.
    [17] H. M. Cheng, R. Yuan, Traveling waves of a nonlocal dispersal Kermack-McKendrick epidemic model with delayed transmission, J. Evol. Equations, 17 (2017), 979–1002. doi: 10.1007/s00028-016-0362-2
    [18] S. P. Zhang, Y. R. Yang, Y. H. Zhou, Traveling waves in a delayed SIR model with nonlocal dispersal and nonlinear incidence, J. Math. Phys., 59 (2018), 011513. DOI:10.1063/1.5021761. doi: 10.1063/1.5021761
    [19] J. B. Zhou, J. Xu, J. D. Wei, H. M. Xu, Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate, Nolinear Anal. RWA, 41 (2018), 204–231. doi: 10.1016/j.nonrwa.2017.10.016
    [20] Z. G. Bai, S. L. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370–1381. doi: 10.1016/j.cnsns.2014.07.005
    [21] Y. L. Cheng, D. C. Lu, Wave propagation in a infectious disease model with non-local diffusion, Adv. Differ. Equ., 1 (2019). doi:10.1186/s13662-019-2057-9. doi: 10.1186/s13662-019-2057-9
    [22] F. Y. Yang, W. T. Li, Z. C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. RWA, 23 (2015), 129–147. doi: 10.1016/j.nonrwa.2014.12.001
    [23] Y. Li, W. T. Li, F. Y. Yang, Traveling waves for a nonlocal dispesal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723–740.
    [24] F. Y. Yang, W. T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 485 (2017), 1131–1146.
    [25] Y. Y. Chen, J. S. Guo, F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2016), doi:10.1088/1361-6544/aa6b0a. doi: 10.1088/1361-6544/aa6b0a
    [26] C. C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic model, J. Differ. Equations, 262 (2017), 272–282. doi: 10.1016/j.jde.2016.09.022
    [27] R. Zhang, J. L. Wang, S. Q. Liu, Traveling wave solutions for a class of discrete diffusive SIR epidemic model, J. Nonlinear Sci., 31 (2021), 10. doi:10.1007/s00332-020-09656-3. doi: 10.1007/s00332-020-09656-3
    [28] Y. Li, W. T. Li, G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pure Appl. Anal., 14 (2015), 1001–1022. doi: 10.3934/cpaa.2015.14.1001
    [29] Q. Zhang, G. S. Chen, Existence of critical traveling waves for nonlocal diepersal SIR models with delay and nonlinear incidence, Appl. Math. Mech., 40(2019), 713–727.
    [30] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. doi: 10.1137/S0036144500371907
    [31] R. Temam, Infinite Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1998.
    [32] X. Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2317) PDF downloads(101) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog