
http://www.aimspress.com/journal/MBE

MBE, 18(6): 9357–9380.
DOI: 10.3934/mbe.2021460
Received: 11 August 2021
Accepted: 17 October 2021
Published: 27 October 2021

Research article

Existence of traveling wave solutions for a delayed nonlocal dispersal SIR
epidemic model with the critical wave speed

Shiqiang Feng1,2 and Dapeng Gao1,2,∗

1 School of Mathematics and Information, China West Normal University, Nanchong, Sichuan
637009, China

2 Internet of Things Perception and Big Data Analysis Key Laboratory of Nanchong, Nanchong,
Sichuan 637009, China

* Correspondence: Email: gaodapeng126@126.com.

Abstract: This paper is about the existence of traveling wave solutions for a delayed nonlocal dispersal
SIR epidemic model with the critical wave speed. Because of the introduction of nonlocal dispersal
and the generality of incidence function, it is difficult to investigate the existence of critical traveling
waves. To this end, we construct an auxiliary system and show the existence of traveling waves for the
auxiliary system. Employing the results for the auxiliary system, we obtain the existence of traveling
waves for the delayed nonlocal dispersal SIR epidemic model with the critical wave speed under mild
conditions.
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1. Introduction

In the biological context, to better understand the spatial spread of infectious diseases, epidemic
waves in all kinds of epidemic models are attracting more and more attention, for instance, in Wu et
al. [1], Wang et al. [2] and Zhang et al. [3–5]. Biologically speaking, the existence of an epidemic
wave suggests that the disease can spread in the population. The traveling wave describes the epidemic
wave moving out from an initial disease-free equilibrium to the endemic equilibrium with a constant
speed. Various theoretical results, numerical algorithms and applications have been studied extensively
for traveling waves about epidemic models in the literature; for instance, we refer the reader to [6–9].
More precisely, Hosono and Ilyas [10] studied the existence of traveling wave solutions for a reaction-
diffusion model. In view of the fact that individuals can move freely and randomly and can be exposed
to the infection from contact with infected individuals in different spatial location, Wang and Wu [11]
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investigated the existence and nonexistence of non-trivial traveling wave solutions of a general class of
diffusive Kermack-Mckendrick SIR models with nonlocal and delayed transmission, see also [12]. In-
corporating random diffusion into epidemic model, then the dynamics of disease transmission between
species in a heterogeneous habitat can be described by a variety of reaction-diffusion models (see, for
example, [13–15] and the references therein). Random diffusion is essentially a local behavior, which
depicts the individuals at the location x can only be influenced by the individuals in the neighborhood
of the location x. In real life, individuals can move freely. One way to solve such problems is to
introduce nonlocal dispersal, which is the standard convolution with space variable. Recently, Yang
et al. [16] studied a nonlocal dispersal Kermack-McKendrick epidemic model. Cheng and Yuan [17]
investigated the traveling waves of a nonlocal dispersal Kermack-McKendrick epidemic model with
delayed transmission, Zhang et al. [18] discussed the traveling waves for a delayed SIR model with
nonlocal dispersal and nonlinear incidence, and Zhou et al. [19] proved the existence and non-existence
of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate.
As we know, there are many existence of traveling wave solutions for reaction-diffusion models when
the wave speed is greater than the minimum wave speed (see, e.g. [20–22]). However, there are few
discussions on the existence of traveling wave solutions when the wave speed is equal to the minimum
wave speed (the critical wave speed), see [23–26].

In this paper, we focus on the delayed SIR model with the nonlocal dispersal and nonlinear inci-
dence which proposed by Zhang et al. [18] as follows:

∂S (x, t)
∂t

= d1(J ∗ S (x, t) − S (x, t)) − f (S (x, t))g(I(x, t − τ)),

∂I(x, t)
∂t

= d2(J ∗ I(x, t) − I(x, t)) + f (S (x, t))g(I(x, t − τ)) − γI(x, t),

∂R(x, t)
∂t

= d3(J ∗ R(x, t) − R(x, t)) + γI(x, t),

(1.1)

where S (x, t), I(x, t) and R(x, t) denote the densities of susceptible, infective and removal individuals at
time t and location x, respectively. The parameters di > 0(i = 1, 2, 3) are diffusion rates for susceptible,
infected and removal individuals, respectively. The removal rate γ is positive number and τ > 0 is a
given constant. Moreover, J ∗ S (x, t), J ∗ I(x, t) and J ∗ R(x, t) represent the standard convolution with
space variable x, namely,

J ∗ u(x, t) =

∫
R

J(x − y)u(y, t)dy =

∫
R

J(y)u(x − y, t)dy,

where u can be either S , I or R. Throughout this paper, assume that the nonlinear functions f and g,
and the dispersal kernel J satisfy the following assumptions:

(A1) f (S ) is positive and continuous for all S > 0 with f (0) = 0 and f ′(S ) is positive and bounded for
all S ≥ 0 with L := maxS∈[0,∞) f ′(S ) ;

(A2) g(I) is positive and continuous for all I > 0 with g(0) = 0, g′(I) > 0 and g′′(I) ≤ 0 for all I ≥ 0;
(A3) J ∈ C1(R), J(y) = J(−y) ≥ 0,

∫
R

J(y)dy = 1 and J is compactly supported.

Since the third equation in (1.1) is decoupled with the first two equations, it is enough to consider

Mathematical Biosciences and Engineering Volume 18, Issue 6, 9357–9380.



9359

the following subsystem of (1.1):
∂S (x, t)
∂t

= d1(J ∗ S (x, t) − S (x, t)) − f (S (x, t))g(I(x, t − τ)),

∂I(x, t)
∂t

= d2(J ∗ I(x, t) − I(x, t)) + f (S (x, t))g(I(x, t − τ)) − γI(x, t).
(1.2)

We recall that, a traveling wave solution of system (1.2) is a solution of form (S (ξ), I(ξ)) for system
(1.2), where ξ = x + ct. Substituting (S (ξ), I(ξ)) with ξ = x + ct into system (1.2) yields the following
system: cS ′(ξ) = d1(J ∗ S (ξ) − S (ξ)) − f (S (ξ))g(I(ξ − cτ)),

cI′(ξ) = d2(J ∗ I(ξ) − I(ξ)) + f (S (ξ))g(I(ξ − cτ)) − γI(ξ).
(1.3)

Clearly, if τ = 0, then system (1.2) becomes
∂S (x, t)
∂t

= d1(J ∗ S (x, t) − S (x, t)) − f (S (x, t))g(I(x, t)),

∂I(x, t)
∂t

= d2(J ∗ I(x, t) − I(x, t)) + f (S (x, t))g(I(x, t)) − γI(x, t),
(1.4)

which was considered by Zhou et al. [19]. Combining the method of auxiliary system, Schauder’s
fixed point theorem and three limiting arguments, they proved the following result.

Theorem 1.1. ( [19, Theorem 2.3]) Assume that (A1)-(A3) hold. If R0 > 1 and c ≥ c∗, where c∗ > 0
is the minimal wave speed and R0 =

f (S 0)g′(0)
γ

is the reproduction number of (1.4), then system (1.4)
admits a nontrivial and nonnegative traveling wave solution (S (x+ct), I(x+ct)) satisfying the following
asymptotic boundary conditions:

S (−∞) = S 0, S (+∞) = S∞ < S 0, I(±∞) = 0, (1.5)

where S 0 > 0 is a constant representing the size of the susceptible individuals before being infected.

For (1.3) satisfying (1.5), Zhang et al. [18] obtained the following result.

Theorem 1.2. ( [18, Theorem 2.7]) Assume that (A1)-(A3) hold. In addition, suppose that

(H) there exists I0 > 0 such that f (S 0)g(I0) − γI0 ≤ 0.

If R0 > 1 and c > c∗, where c∗ > 0 is the minimal wave speed and R0 =
f (S 0)g′(0)

γ
is the reproduction

number of (1.3), then system (1.3) admits a traveling wave solution (S (ξ), I(ξ)) satisfying (1.5).

We note that the assumption (H) plays a key role in the proof of Theorem 1.2 ( [18, Theorem 2.7]).
However, we should pointed out here that (H) cannot be applied for some incidence, such as bilinear
incidence, see [27]. Therefore, one natural question is: can we obtain the existence of traveling wave
solutions for system (1.2) without assumption (H)? This constitutes our first motivation of the present
paper. In addition, as was pointed out in [28] that, epidemic waves with the minimal/critical speed
play a significant role in the study of epidemic spread. However, it is very challenging to investigate
traveling waves with the critical wave speed. Herein, we should point out that Zhang et al. [29] defined

a minimal wave speed c∗ := infλ>0
d2

∫
R

J(y)e−λydy−d2+ f (S 0)g′(0)e−λcτ−γ

λ
and then studied the existence of critical
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traveling waves for system (1.1). They took a bit lengthy analysis to derive the boundedness of the
density of infective individual I. Unlike [29], we will apply the auxiliary system to obtain the existence
of critical traveling waves, since the method is first applied in nonlocal dispersal epidemic model in
2018, see [19] for more details. Our second motivation is to make an attempt in this direction.

The rest of this paper is organized as follows. In Section 2, we propose an auxiliary system and
establish the existence of traveling wave solutions for the auxiliary system. In Section 3, we prove the
existence of traveling waves under the critical wave speed. The paper ends with an application for our
general results and a brief conclusion in Section 4.

2. Existence of traveling wave solutions for an auxiliary system

In this section, we will derive the existence of traveling wave solutions for the following auxiliary
system on R: cS ′(ξ) = d1(J ∗ S (ξ) − S (ξ)) − f (S (ξ))g(I(ξ − cτ)),

cI′(ξ) = d2(J ∗ I(ξ) − I(ξ)) + f (S (ξ))g(I(ξ − cτ)) − γI(ξ) − εI2(ξ),
(2.1)

where ε > 0 is a constant.
Clearly, (A1) and (A2) imply that f (0) = g(0) = 0. Thus, linearizing the second equation in (2.1) at

the initial disease free point (S 0, 0) yields

d2

∫
R

J(y)(I(ξ − y) − I(ξ))dy − cI′(ξ) + f (S 0)g′(0)I(ξ − cτ) − γI(ξ) = 0. (2.2)

Substituting I(ξ) = eλξ into (2.2) leads to the corresponding characteristic equation:

∆(λ, c) := d2

∫
R

J(y)(e−λy − 1)dy − cλ + f (S 0)g′(0)e−λcτ − γ = 0. (2.3)

Lemma 2.1. ( [18]) Suppose that R0 := f (S 0)g′(0)
γ

> 1. Then there exist c∗ > 0 and λ∗ > 0 such that

∆(λ∗, c∗) = 0 and
∂∆(λ, c)
∂λ

|(λ∗,c∗) = 0.

Obviously, ∆(λ, c) = 0 also has the following properties:

(i) If c > c∗, then ∆(λ, c) = 0 has two different positive roots λ1 := λ1(c) < λ2 := λ2(c) with

∆(·, c)

 > 0, λ ∈ [0, λ1(c)) ∪ (λ2(c),+∞),
< 0, λ ∈ (λ1(c), λ2(c)).

(ii) If 0 < c < c∗, then ∆(λ, c) > 0 for all λ ≥ 0.

We now present some lemmas for our main results. Throughout this section, we always assume that
R0 > 1 and c > c∗.

For our purpose, we define the following functions on R:

S (ξ) := S 0, S (ξ) := max{S 0 − ρeαξ, 0}, I(ξ) := min{eλ1ξ,Kε}, I(ξ) := max{eλ1ξ(1 − Meηξ), 0},

where Kε =
f (S 0)g′(0)−γ

ε
, λ1 is the smallest positive real root of Eq.(2.3), and α, ρ, η, M are four positive

constants to be determined in the following lemmas.
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Lemma 2.2. The function I(ξ) satisfies the following inequality:

cI
′
(ξ) ≥ d2J ∗ I(ξ) − d2I(ξ) + f (S (ξ))g(I(ξ − cτ)) − γI(ξ) − εI

2
(ξ). (2.4)

Proof. The concavity of g(I) with respect to I implies that g(I) ≤ g′(0)I and so

g(I(ξ − cτ)) ≤ g′(0)I(ξ − cτ). (2.5)

When I(ξ) = eλ1ξ, it follows from (2.5) that

d2J ∗ I(ξ) − d2I(ξ) − cI
′
(ξ) + f (S (ξ))g(I(ξ − cτ)) − γI(ξ) − εI

2
(ξ)

≤ d2J ∗ I(ξ) − d2I(ξ) − cI
′
(ξ) + f (S 0)g′(0)I(ξ − cτ) − γI(ξ) − εI

2
(ξ)

=

(
d2

∫
R

J(y)(e−λ1y − 1)dy − cλ1 + f (S 0)g′(0)e−λ1cτ − γ

)
eλ1ξ − εe2λ1ξ

= eλ1ξ∆(λ1, c) − εe2λ1ξ

= −εe2λ1ξ

≤ 0.

When I(ξ) = Kε =
f (S 0)g′(0)−γ

ε
, we derive from (A3) and (2.5) that

d2J ∗ I(ξ) − d2I(ξ) − cI
′
(ξ) + f (S (ξ))g(I(ξ − cτ)) − γI(ξ) − εI

2
(ξ)

≤ f (S 0)g′(0)I(ξ − cτ) − γKε − εK2
ε

= f (S 0)g′(0)Kε − γKε − εK2
ε

= 0,

and the lemma follows. �

Lemma 2.3. Suppose that α ∈ (0, λ1) is sufficiently small. Then the function S (ξ) satisfies

cS ′(ξ) ≤ d1J ∗ S (ξ) − d1S (ξ) − f (S (ξ))g(I(ξ − cτ)) (2.6)

for any ξ , ξ1 := 1
α

ln( S 0
ρ

) and ρ > S 0 large enough.

Proof. If ξ > ξ1, then S (ξ) = 0 and (2.6) holds. If ξ < ξ1, then S (ξ) = S 0 − ρeαξ and I(ξ) = eλ1ξ.
According to the assumptions (A1), (A2) and (2.5), one has

d1J ∗ S (ξ) − d1S (ξ) − cS ′(ξ) − f (S (ξ))g(I(ξ − cτ))
≥ d1J ∗ S (ξ) − d1S (ξ) − cS ′(ξ) − f (S 0)g′(0)I(ξ − cτ)

= eαξ
(
−d1ρ

∫
R

J(y)(e−αy − 1)dy + cρα − f (S 0)g′(0)e−λ1cτe(λ1−α)ξ
)
. (2.7)

Since 0 < α < λ1 and e(λ1−α)ξ < (S 0
ρ

)
λ1−α
α for ξ < ξ1, it follows from (2.7) that

d1J ∗ S (ξ) − d1S (ξ) − cS ′(ξ) − f (S (ξ))g(I(ξ − cτ))
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≥ eαξ
−d1ρ

∫
R

J(y)(e−αy − 1)dy + cρα − f (S 0)g′(0)e−λ1cτ

(
S 0

ρ

) λ1−α
α

 . (2.8)

Taking ρ = 1
α

in (2.8) and noting that

lim
α→0+

(αS 0)
λ1−α
α = 0, lim

α→0+

1
α

∫
R

J(y)(e−αy − 1)dy = 0,

for sufficiently small α > 0, we have

−
d1

α

∫
R

J(y)(e−αy − 1)dy + c − f (S 0)g′(0)e−λ1cτ(αS 0)
λ1−α
α > 0. (2.9)

Owing to (2.8) and (2.9), we find

d1J ∗ S (ξ) − d1S (ξ) − cS ′(ξ) − f (S (ξ))g(I(ξ − cτ))

≥ eαξ
(
−

d1

α

∫
R

J(y)(e−αy − 1)dy + c − f (S 0)g′(0)e−λ1cτ(αS 0)
λ1−α
α

)
> 0.

This completes the proof. �

Lemma 2.4. Assume that 0 < η < min{λ2 −λ1, λ1}. Then for sufficiently large M > 1, the function I(ξ)
satisfies

cI′(ξ) ≤ d2(J ∗ I(ξ) − I(ξ)) + f (S (ξ))g(I(ξ − cτ)) − γI(ξ) − εI2(ξ) (2.10)

for any ξ , ξ2 := 1
η

ln 1
M .

Proof. If ξ > ξ2, then I(ξ) = 0, J ∗ I(ξ) ≥ 0 and g(I(ξ − cτ)) ≥ 0 (by (A2)), Thus (2.10) holds. If
ξ < ξ2, then we can take M1 > 1 such that 1

η
ln 1

M1
+ 1 = ξ1 and choose large enough M ≥ M1 with

I(ξ) = eλ1ξ(1 − Meηξ) and S (ξ) = S 0 − ρeαξ. Thus, (2.10) is equivalent to

f (S 0)g′(0)I(ξ − cτ) − f (S (ξ))g(I(ξ − cτ)) + εI2(ξ)
≤ d2(J ∗ I(ξ) − I(ξ)) − cI′(ξ) + f (S 0)g′(0)I(ξ − cτ) − γI(ξ)

and so

f (S 0)g′(0)I(ξ − cτ) − f (S (ξ))g(I(ξ − cτ)) + εI2(ξ)

≤ d2

∫
R

J(y)eλ1(ξ−y)(1 − Meη(ξ−y))dy − d2eλ1ξ(1 − Meηξ) − c
(
λ1eλ1ξ − M(λ1 + η)e(λ1+η)ξ

)
+ f (S 0)g′(0)

(
eλ1(ξ−cτ) − Me(λ1+η)(ξ−cτ)

)
− γ

(
eλ1ξ − Me(λ1+η)ξ

)
= d2

(∫
R

J(y)e−λ1ydy − d2 − cλ1 + f (S 0)g′(0)e−λ1cτ − γ

)
eλ1ξ

− Me(λ1+η)ξ
(
d2

∫
R

J(y)e−(λ1+η)ydy − d2 − c(λ1 + η) + f (S 0)g′(0)e−(λ1+η)cτ − γ

)
= −M∆(λ1 + η, c)e(λ1+η)ξ. (2.11)
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For any ε̂ ∈ (0, g′(0)), noting that lim
I→0+

g(I)
I = g′(0), there exists a small positive number δ0 such that

g(I)
I
≥ g′(0) − ε̂, 0 < I < δ0. (2.12)

Choose M large enough such that 0 < I(ξ) < δ0. Then, it follows from (2.12) that

f (S 0)g′(0)I(ξ − cτ) − f (S (ξ))g(I(ξ − cτ))

=

(
f (S 0)g′(0) − f (S (ξ))

g(I(ξ − cτ))
I(ξ − cτ)

)
I(ξ − cτ)

≤

 f (S 0)g′(0) − f (S (ξ)) g(I(ξ−cτ))
I(ξ−cτ) + I(ξ − cτ)

2


2

≤

(
f (S 0)g′(0) − f (S (ξ))(g′(0) − ε̂) + I(ξ − cτ)

2

)2

. (2.13)

Since (2.13) holds for arbitrary sufficiently small ε̂ ∈ (0, g′(0)) and S (ξ)→ S 0 for sufficiently large M,
one can conclude from (2.13) that

f (S 0)g′(0)I(ξ − cτ) − f (S (ξ))g(I(ξ − cτ)) ≤ I2(ξ − cτ).

Then, to prove (2.11), we only need to show that

I2(ξ − cτ) + εI2(ξ) ≤ −M∆(λ1 + η, c)e(λ1+η)ξ.

Noting I2(ξ − cτ) ≤ e2λ1ξ and I2(ξ) ≤ e2λ1ξ, it suffices to show that

(1 + ε)e(λ1−η)ξ ≤ −M∆(λ1 + η, c). (2.14)

Due to 0 < η < λ2 − λ1, we have ∆(λ1 + η, c) < 0 (by Lemma 2.1). Then (2.14) leads to

M ≥
(1 + ε)e(λ1−η)ξ

−∆(λ1 + η, c)
.

The facts that ξ < ξ2 < 0 and 0 < η < λ1 imply that e(λ1−η)ξ < 1. To end the proof, we only need to take

M ≥ max
{

1 + ε

−∆(λ1 + η, c)
+ 1,M1

}
.

This completes the proof. �
Next we define a bounded set as follows:

ΓX,τ =


(φ(·), ϕ(·)) ∈ C([−X − cτ, X],R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(ξ) = S (−X),
ϕ(ξ) = I(−X),
for any ξ ∈ [−X − cτ,−X],
S (ξ) ≤ φ(ξ) ≤ S 0,

I(ξ) ≤ ϕ(ξ) ≤ I(ξ),
for any ξ ∈ [−X, X],
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where

X > max
{

1
η

ln M,
1
α

ln
ρ

S 0

}
.

For any (φ(·), ϕ(·)) ∈ C([−X − cτ, X],R2), we define

φ̂(ξ) =


φ(X), ξ > X,

φ(ξ), −X − cτ ≤ ξ ≤ X,

S (ξ + cτ), ξ < −X − cτ

(2.15)

and

ϕ̂(ξ) =


ϕ(X), ξ > X,

ϕ(ξ), −X − cτ ≤ ξ ≤ X,

I(ξ + cτ), ξ < −X − cτ.

(2.16)

We consider the following initial value problems:

cS ′(ξ) = d1

∫
R

J(y)φ̂(ξ − y)dy − d1S (ξ) − f (S (ξ))g(ϕ(ξ − cτ)) (2.17)

and

cI′(ξ) = d2

∫
R

J(y)ϕ̂(ξ − y)dy + f (φ(ξ))g(ϕ(ξ − cτ)) − (d2 + γ)I(ξ) − εI2(ξ) (2.18)

with
S (−X) = S (−X), I(−X) = I(−X). (2.19)

By the existence theorem of ordinary differential equations, problems (2.17)-(2.19) admit a unique
solution (S X(·), IX(·)) satisfying S X(·) ∈ C1([−X, X]) and IX(·) ∈ C1([−X, X]). Thus, we can define an
operator F = (F1,F2) : ΓX,τ → C([−X − cτ, X]) by

F1[φ, ϕ](ξ) = S X(ξ), F2[φ, ϕ](ξ) = IX(ξ) for ξ ∈ [−X, X]

and
F1[φ, ϕ](ξ) = S X(−X), F2[φ, ϕ](ξ) = IX(−X) for ξ ∈ [−X − cτ,−X].

Proposition 2.1. The operator F = (F1,F2) maps ΓX,τ into ΓX,τ.

Proof. For any (φ(·), ϕ(·)) ∈ ΓX,τ, we should show that

S (ξ) ≤ F1[φ, ϕ](ξ) ≤ S 0, I(ξ) ≤ F2[φ, ϕ](ξ) ≤ I(ξ), ∀ξ ∈ [−X, X]

and
F1[φ, ϕ](ξ) = S (−X), F2[φ, ϕ](ξ) = I(−X), ∀ξ ∈ [−X − cτ,−X].

By the definition of the operator F , it is easy to see that the last two equalities hold.
For ξ ∈ [−X, X], we first consider F1[φ, ϕ](ξ). By the definition of the operator F , it is sufficient to

prove S (ξ) ≤ S X(ξ) ≤ S 0. Note that f (0) = 0 (see (A1)). Then it is obvious that 0 is a sub-solution of
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(2.17). It follows from the maximum principle that S X(ξ) ≥ 0 for ξ ∈ [−X, X]. From the definition of
φ̂(ξ), (A1) and (A2), we obtain

d1

∫
R

J(y)φ̂(ξ − y)dy − d1S (ξ) − f (S (ξ))g(ϕ(ξ − cτ)) − cS
′
(ξ)

≤ d1J ∗ S (ξ) − d1S (ξ) − f (S (ξ))g(ϕ(ξ − cτ)) − cS
′
(ξ)

≤ 0,

which implies that S (ξ) = S 0 is a super-solution of (2.17). Thus, we have S X(ξ) ≤ S 0 for ξ ∈ [−X, X].
Clearly, S (ξ) = S 0 − ρeαξ for ξ ∈ [−X, ξ1). Thus, utilizing Lemma 2.3 and (A2),

cS ′(ξ) − d1

∫
R

J(y)φ̂(ξ − y)dy + d1S (ξ) + f (S (ξ))g(ϕ(ξ − cτ))

≤ cS ′(ξ) − d1[J ∗ S (ξ) − S (ξ)] + f (S (ξ))g(I(ξ − cτ))
≤ 0,

for any ξ ∈ (−X, ξ1). Since S X(−X) = S (−X), applying the comparison principle, we have S (ξ) ≤ S X(ξ)
for ξ ∈ [−X, ξ1) and so S (ξ) ≤ S X(ξ) ≤ S 0 for all ξ ∈ [−X, X].

Next, we consider F2[φ, ϕ](ξ). Similarly, we only need to show that I(ξ) ≤ IX(ξ) ≤ I(ξ). First,
from the maximum principle, we have IX(ξ) ≥ 0 for ξ ∈ [−X, X]. Thus, it follows from Lemma 2.4,
S (ξ) ≤ φ(ξ), I(ξ) ≤ ϕ̂(ξ), (A1), (A2) and I(ξ) = eλ1ξ(1 − Meηξ) for ξ ∈ [−X, ξ2) that

cI′(ξ) − d2

∫
R

J(y)ϕ̂(ξ − y)dy − f (φ(ξ))g(ϕ(ξ − cτ)) + (d2 + γ)I(ξ) + εI2(ξ)

≤ cI′(ξ) − d2[J ∗ I(ξ) − I(ξ)] − f (S (ξ))g(I(ξ − cτ)) + γI(ξ) + εI2(ξ)
≤ 0

for all ξ ∈ [−X, ξ2). Since IX(−X) = I(−X), the comparison principle implies that I(ξ) is a sub-solution
of (2.18) on [−X, ξ2). Recalling the fact that I(ξ) = 0 for ξ ∈ [ξ2, X], it is easy to see that

I(ξ) ≤ IX(ξ), ∀ξ ∈ [−X, X]. (2.20)

Since φ(ξ) ≤ S 0 and ϕ̂(ξ) ≤ I(ξ) for all ξ ∈ [−X, X], from (A1), (A2) and Lemma 2.2, we deduce that

cI
′
(ξ) − d2

∫
R

J(y)ϕ̂(ξ − y)dy − f (φ(ξ))g(ϕ(ξ − cτ)) + (d2 + γ)I(ξ) + εI
2
(ξ)

≥ cI
′
(ξ) − d2[J ∗ I(ξ) − I(ξ)] − f (S 0)g(I(ξ − cτ)) + γI(ξ) + εI

2
(ξ)

≥ 0,

which ensures that I(ξ) is a super-solution of (2.18) on [−X, X] by the comparison principle. Combining
with (2.20), we know that I(ξ) ≤ IX(ξ) ≤ I(ξ) for ξ ∈ [−X, X]. The proof is finished. �

Proposition 2.2. The operator F : ΓX,τ → ΓX,τ is completely continuous.
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Proof. We first show the compactness of F = (F1,F2). We need to prove that, for any bounded
subset B ⊂ ΓX,τ, the set F (B) is precompact. In view of the definition of the operator F , for any
(S X, IX) ∈ F (B), there exists (φ, ϕ) ∈ B such that F [φ, ϕ](ξ) = (S X, IX)(ξ) for ξ ∈ [−X, X] and
F [φ, ϕ](ξ) = (S X, IX)(−X) for ξ ∈ [−X − cτ,−X].

Since (φ, ϕ) ∈ B, there exists a constant M1 > 0 such that

|S X(ξ)| ≤ M1, |IX(ξ)| ≤ M1, ∀ξ ∈ [−X − cτ, X].

Moreover, since (φ, ϕ) ∈ B, from (2.17), (2.18) and the above inequalities, we know that there exists
some constant M2 > 0 such that

|S ′X(ξ)| ≤ M2, |I′X(ξ)| ≤ M2, ∀ξ ∈ [−X − cτ, X].

It follows that F (B) is a family of the uniformly bounded and equicontinuous functions. The compact-
ness of F (B) then follows from the Arzelà-Ascoli theorem and the definition of ΓX,τ.

Next we prove the continuity of F = (F1,F2). By the definition of the operator F , we assume that
(φi(ξ), ϕi(ξ)) ∈ ΓX,τ(i = 1, 2) and S X,i(ξ) = F1[φi, ϕi](ξ), IX,i(ξ) = F2[φi, ϕi](ξ) for ξ ∈ [−X, X]. We will
prove the continuity of F by the following two steps.

Step 1. The continuity of F1.
It follows from (2.17) that

c(S ′X,1(ξ) − S ′X,2(ξ)) + d1(S X,1(ξ) − S X,2(ξ))

= d1

∫
R

J(ξ − y)(φ̂1(y) − φ̂2(y))dy +
[
f (S X,2(ξ))g(ϕ2(ξ − cτ)) − f (S X,1(ξ))g(ϕ1(ξ − cτ))

]
,(2.21)

where φ̂i(ξ)(i = 1, 2) is defined analogously as the φ̂(ξ) in (2.15).
In view of ∣∣∣∣∣d1

∫
R

J(ξ − y)(φ̂1(y) − φ̂2(y))dy
∣∣∣∣∣

= d1

∣∣∣∣∣ ∫ −X−cτ

−∞

J(ξ − y)(S (y + cτ) − S (y + cτ))dy +

∫ X

−X−cτ
J(ξ − y)(φ1(y) − φ2(y))dy

+

∫ +∞

X
J(ξ − y)(φ1(X) − φ2(X))dy

∣∣∣∣∣
≤ d1

∫ X

−X−cτ
J(ξ − y)|φ1(y) − φ2(y)|dy + d1

∫ +∞

X
J(ξ − y)|φ1(X) − φ2(X)|dy

= d1

∫ −X

−X−cτ
J(ξ − y)|S (−X) − S (−X)|dy + d1

∫ X

−X
J(ξ − y)|φ1(y) − φ2(y)|dy

+d1

∫ +∞

X
J(ξ − y)|φ1(X) − φ2(X)|dy

≤ 2d1 max
y∈[−X,X]

|φ1(y) − φ2(y)|, (2.22)

it follows from (2.5), the mean-value theorem, (A1), (A2) and the definition of ΓX,τ that

| f (S X,2(ξ))g(ϕ2(ξ − cτ)) − f (S X,1(ξ))g(ϕ1(ξ − cτ))|
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= | f (S X,2(ξ))g(ϕ2(ξ − cτ)) − f (S X,2(ξ))g(ϕ1(ξ − cτ)) + f (S X,2(ξ))g(ϕ1(ξ − cτ))
− f (S X,1(ξ))g(ϕ1(ξ − cτ))|

≤ f (S 0)|g(ϕ2(ξ − cτ)) − g(ϕ1(ξ − cτ))| + |g(ϕ1(ξ − cτ))|| f (S X,2(ξ)) − f (S X,1(ξ))|
≤ f (S 0)g′(0)|ϕ2(ξ − cτ) − ϕ1(ξ − cτ)| + g′(0)ϕ1(ξ − cτ)L|S X,2(ξ) − S X,1(ξ)|
≤ f (S 0)g′(0) max

ξ∈[−X,X]
|ϕ1(ξ) − ϕ2(ξ)| + Lg′(0)Kε|S X,2(ξ) − S X,1(ξ)|. (2.23)

If S X,1(ξ) − S X,2(ξ) > 0, then we deduce from (2.21)-(2.23) that

c(S ′X,1(ξ) − S ′X,2(ξ)) + (d1 − Lg′(0)Kε)(S X,1(ξ) − S X,2(ξ))
≤ f (S 0)g′(0) max

ξ∈[−X,X]
|ϕ1(ξ) − ϕ2(ξ)| + 2d1 max

y∈[−X,X]
|φ1(y) − φ2(y)|. (2.24)

Applying the Gronwall inequality (see p. 90 of [31]) to (2.24), we obtain that F1 is continuous on ΓX,τ.
If S X,1(ξ) − S X,2(ξ) < 0, then one can prove the same result. Thus, we show that F1 is continuous on
ΓX,τ.

Step 2. The continuity of F2.
From (2.18), we have

c(I′X,1(ξ) − I′X,2(ξ)) + (d2 + γ)(IX,1(ξ) − IX,2(ξ)) + ε(IX,1(ξ) + IX,2(ξ))(IX,1(ξ) − IX,2(ξ))

= d2

∫
R

J(ξ − y)(ϕ̂1(y) − ϕ̂2(y))dy + [ f (φ1(ξ))g(ϕ1(ξ − cτ)) − f (φ2(ξ))g(ϕ2(ξ − cτ))], (2.25)

where ϕ̂i(ξ)(i = 1, 2) is defined analogously as the ϕ̂(ξ) in (2.16).
In view of 0 ≤ IX,1(ξ) + IX,2(ξ) ≤ 2Kε, we then deduce from (2.25) that there exists a nonnegative

constant c̃ such that

c(I′X,1(ξ) − I′X,2(ξ)) + (d2 + γ + c̃ε)(IX,1(ξ) − IX,2(ξ))

≤ d2

∫
R

J(ξ − y)(ϕ̂1(y) − ϕ̂2(y))dy + [ f (φ1(ξ))g(ϕ1(ξ − cτ)) − f (φ2(ξ))g(ϕ2(ξ − cτ))]. (2.26)

Arguing as in the proof of (2.22) and (2.23), we obtain∣∣∣∣∣d2

∫
R

J(ξ − y)(ϕ̂1(y) − ϕ̂2(y))dy
∣∣∣∣∣ ≤ 2d2 max

ξ∈[−X,X]
|ϕ1(ξ) − ϕ2(ξ)| (2.27)

and

| f (φ1(ξ))g(ϕ1(ξ − cτ)) − f (φ2(ξ))g(ϕ2(ξ − cτ))|
≤ f (S 0)g′(0) max

ξ∈[−X,X]
|ϕ1(ξ) − ϕ2(ξ)| + Lg′(0)Kε max

ξ∈[−X,X]
|φ1(ξ) − φ2(ξ)|. (2.28)

Thus, it follows from (2.26)-(2.28) that

c(I′X,1(ξ) − I′X,2(ξ)) + (d2 + γ + c̃ε)(IX,1(ξ) − IX,2(ξ))
≤ ( f (S 0)g′(0) + 2d2) max

ξ∈[−X,X]
|ϕ1(ξ) − ϕ2(ξ)| + Lg′(0)Kε max

ξ∈[−X,X]
|φ1(ξ) − φ2(ξ)|,

which together with the Gronwall inequality implies that F2 is continuous on ΓX,τ. This completes the
proof. �

From the definition of ΓX,τ, it is easy to see that ΓX,τ is closed and convex. Thus, employing Propo-
sitions 2.1, 2.2 and Schauder’s fixed point theorem, we can obtain the following result.
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Proposition 2.3. There exists (S X(ξ), IX(ξ)) ∈ ΓX,τ such that

(S X(ξ), IX(ξ)) = F (S X, IX)(ξ)

and

S (ξ) ≤ S X(ξ) ≤ S 0, I(ξ) ≤ IX(ξ) ≤ I(ξ), ξ ∈ (−X, X).

Next, we wish to obtain the existence of traveling wave solutions of (2.1) on R. Before doing this,
we need to give some estimates for S X(ξ) and IX(ξ) in the following space:

C1,1([−X, X]) =
{
u ∈ C1[−X, X]|u and u′ are Lipschitz continuous

}
with the norm

‖u(x)‖C1,1([−X,X]) := max
x∈[−X,X]

|u(x)| + max
x∈[−X,X]

|u′(x)| + sup
x,y∈[−X,X],x,y

|u′(x) − u′(y)|
|x − y|

.

Proposition 2.4. Let (S X(ξ), IX(ξ)) be the fixed point of the operator F which is guaranteed by Propo-
sition 2.3. Then there exists a positive constant C1 independent of X such that

‖S X(ξ)‖C1,1([−X,X]) < C1, ‖IX(ξ)‖C1,1([−X,X]) < C1

for all

X > max
{

1
η

ln M,
1
α

ln
ρ

S 0

}
.

Proof. First, we know that (S X(ξ), IX(ξ)) satisfies{
cS ′X(ξ) = d1

∫
R

J(y)Ŝ X(ξ − y)dy − d1S X(ξ) − f (S X(ξ))g(IX(ξ − cτ)), ξ ∈ [−X, X],
S X(ξ) = S (−X), ξ ∈ [−X − cτ,−X]

(2.29)

and{
cI′X(ξ) = d2

∫
R

J(y)ÎX(ξ − y)dy + f (S X(ξ))g(IX(ξ − cτ)) − (d2 + γ)IX(ξ) − εI2
X(ξ), ξ ∈ [−X, X],

IX(ξ) = I(−X), ξ ∈ [−X − cτ,−X],
(2.30)

where

Ŝ X(ξ) =


S X(X), ξ > X,

S X(ξ), −X − cτ ≤ ξ ≤ X,

S (ξ + cτ), ξ < −X − cτ

and

ÎX(ξ) =


IX(X), ξ > X,

IX(ξ), −X − cτ ≤ ξ ≤ X,

I(ξ + cτ), ξ < −X − cτ.

By the facts that S X(ξ) ≤ S 0, 0 ≤ Ŝ X(ξ) ≤ S 0, 0 ≤ ÎX(ξ) ≤ Kε and IX(ξ − cτ) ≤ Kε for ξ ∈ [−X, X], it
follows from (A1), (A3), (2.5) and (2.29) that

|S ′X(ξ)| ≤
d1

c

∣∣∣∣∣∫
R

J(y)Ŝ X(ξ − y)dy
∣∣∣∣∣ +

d1

c
|S X(ξ)| +

1
c
| f (S X(ξ))g(IX(ξ − cτ))|
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≤
1
c

(2d1S 0 + f (S 0)g′(0)Kε).

Thus, there exists a positive constant C2 independent of X such that

‖S X(ξ)‖C1([−X,X]) < C2. (2.31)

Similar arguments apply to the case I′X(ξ), we have

‖IX(ξ)‖C1([−X,X]) < C2. (2.32)

Next, we intend to show that S X(ξ), IX(ξ), S ′X(ξ) and I′X(ξ) are Lipschitz continuous. For any
ξ, η ∈ [−X, X], it follows from (2.31) and (2.32) that

|S X(ξ) − S X(η)| < C2|ξ − η|, |IX(ξ) − IX(η)| < C2|ξ − η|, (2.33)

and so S X(ξ) and IX(ξ) are Lipschitz continuous.
In view of (2.29), we have

c|S ′X(ξ) − S ′X(η)|

≤ d1

∣∣∣∣∣∫
R

J(y)(Ŝ X(ξ − y) − Ŝ X(η − y))dy
∣∣∣∣∣ + d1|S X(ξ) − S X(η)|

+ | f (S X(ξ))g(IX(ξ − cτ)) − f (S X(η))g(IX(η − cτ))|
:= B1 + B2 + B3. (2.34)

From (A3), we know that the kernel function J is Lipschitz continuous and compactly supported. Let
LJ be the Lipschitz constant of J and R be the radius of supp J. Then,

B1 = d1

∣∣∣∣∣∫
R

J(y)Ŝ X(ξ − y)dy −
∫
R

J(y)Ŝ X(η − y)dy
∣∣∣∣∣

= d1

∣∣∣∣∣∣
∫ R

−R
J(y)Ŝ X(ξ − y)dy −

∫ R

−R
J(y)Ŝ X(η − y)dy

∣∣∣∣∣∣
= d1

∣∣∣∣∣∣
∫ ξ+R

ξ−R
J(ξ − y)Ŝ X(y)dy −

∫ η+R

η−R
J(η − y)Ŝ X(y)dy

∣∣∣∣∣∣
= d1

∣∣∣∣∣∣
(∫ ξ+R

η+R
+

∫ η+R

η−R
+

∫ η−R

ξ−R

)
J(ξ − y)Ŝ X(y)dy −

∫ η+R

η−R
J(η − y)Ŝ X(y)dy

∣∣∣∣∣∣
= d1

( ∣∣∣∣∣∣
∫ ξ+R

η+R
J(ξ − y)Ŝ X(y)dy

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ η−R

ξ−R
J(ξ − y)Ŝ X(y)dy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ η+R

η−R
[J(ξ − y) − J(η − y)]Ŝ X(y)dy

∣∣∣∣∣∣
)

≤ d1(2S 0‖J‖L∞ + 2RLJS 0)|ξ − η|

and

B3 = | f (S X(ξ))g(IX(ξ − cτ)) − f (S X(η))g(IX(η − cτ))|
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≤ | f (S X(ξ))||g(IX(ξ − cτ)) − g(IX(η − cτ))| + |g(IX(η − cτ))|| f (S X(ξ)) − f (S X(η))|
≤ f (S 0)g′(0)|IX(ξ) − IX(η)| + Lg′(0)Kε|S X(ξ) − S X(η)|, (2.35)

in which we have used the mean-value theorem, the assumptions (A1), (A2) and inequality (2.5).
Combining (2.33), (2.34) and (2.35), there exists some positive constant L1 independent of X such that

|S ′X(ξ) − S ′X(η)| ≤ L1|ξ − η|

and so S ′X is Lipschitz continuous. It follows from (2.30) that

c|I′X(ξ) − I′X(η)|

≤ d2

∣∣∣∣∣∫
R

J(y)[ÎX(ξ − y) − ÎX(η − y)]dy
∣∣∣∣∣ + (d2 + γ)|IX(ξ) − IX(η)|

+ ε|I2
X(ξ) − I2

X(η)| + | f (S X(ξ))g(IX(ξ − cτ)) − f (S X(η))g(IX(η − cτ))|.

Analogously, we have
|I′X(ξ) − I′X(η)| ≤ L1|ξ − η|

and so I′X is Lipschitz continuous. Thus, there is a constant C1 independent of X such that

‖S X(ξ)‖C1,1([−X,X]) < C1, ‖IX(ξ)‖C1,1([−X,X]) < C1.

This ends the proof. �

Now, we are in a position to derive the existence of solutions for (2.1) on R by a limiting argument.

Theorem 2.1. Let R0 =
f (S 0)g′(0)

γ
> 1. Then, for any c > c∗, (2.1) admits a solution (S (ξ), I(ξ)) such

that

S (ξ) ≤ S (ξ) ≤ S 0, I(ξ) ≤ I(ξ) ≤ I(ξ). (2.36)

Proof. Choose a sequence {Xn}
∞
n=1 satisfying

Xn > max
{

1
η

ln M,
1
α

ln
ρ

S 0

}
and limn→+∞ Xn = +∞. Then, for each n ∈ N, the solution (S Xn(ξ), IXn(ξ)) ∈ ΓXn,τ satisfies Propositions
2.3 and 2.4, Eqs.(2.29) and (2.30) in ξ ∈ [−Xn − cτ, Xn] for every c > c∗.

According to the estimates in Proposition 2.4, for the sequence {(S Xn(ξ), IXn(ξ))}, we can extract a
subsequence by a standard diagonal argument, denoted by {(S Xnk

(ξ), IXnk
(ξ))}k∈N, such that

S Xnk
(ξ)→ S (ξ), IXnk

(ξ)→ I(ξ) in C1
loc(R) as k → ∞ (2.37)

and cS ′Xnk
(ξ) = d1

∫
R

J(y)Ŝ Xnk
(ξ − y)dy − d1S Xnk

(ξ) − f (S Xnk
(ξ))g(IXnk

(ξ − cτ)), ξ ∈ [−Xnk , Xnk],
S Xnk

(ξ) = S (−Xnk), ξ ∈ [−Xnk − cτ,−Xnk]
(2.38)
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with 
cI′Xnk

(ξ) = d2

∫
R

J(y)ÎXnk
(ξ − y)dy + f (S Xnk

(ξ))g(IXnk
(ξ − cτ))

− (d2 + γ)IXnk
(ξ) − εI2

Xnk
(ξ), ξ ∈ [−Xnk , Xnk],

IXnk
(ξ) = I(−Xnk), ξ ∈ [−Xnk − cτ,−Xnk]

(2.39)

and

S (ξ) ≤ S Xnk
(ξ) ≤ S 0, I(ξ) ≤ IXnk

(ξ) ≤ I(ξ), ξ ∈ (−Xnk , Xnk), (2.40)

where Ŝ Xnk
(ξ) and ÎXnk

(ξ) are defined analogously as the φ̂(ξ) and ϕ̂(ξ) in (2.15) and (2.16), respectively.
Sine J is compactly supported (see(A3)), by the Lebesgue dominated convergence theorem, one has

lim
k→+∞

∫
R

J(y)Ŝ Xnk
(ξ − y)dy = lim

k→+∞

∫ R

−R
J(y)Ŝ Xnk

(ξ − y)dy

= lim
k→+∞

∫ ξ+R

ξ−R
J(ξ − y)Ŝ Xnk

(y)dy

=

∫ ξ+R

ξ−R
J(ξ − y)S (y)dy

=

∫
R

J(y)S (ξ − y)dy

= J ∗ S (ξ), ∀ξ ∈ R. (2.41)

Similarly, we can show that

lim
k→+∞

∫
R

J(y)ÎXnk
(ξ − y)dy =

∫
R

J(y)I(ξ − y)dy = J ∗ I(ξ), ∀ξ ∈ R. (2.42)

Furthermore, in light of the continuity of f and g, we obtain

lim
k→+∞

f (S Xnk
(ξ))g(IXnk

(ξ − cτ)) = f (S (ξ))g(I(ξ − cτ)), ∀ξ ∈ R. (2.43)

Thus, passing to limits in (2.38), (2.39) and (2.40) as k → +∞, we derive from (2.37), (2.41)-(2.43)
that (S (ξ), I(ξ)) satisfies (2.1) and (2.36). The proof of this theorem is finished. �

3. Existence of traveling wave solutions with critical speed

In this section, we will prove the existence of traveling wave solutions of (1.3) satisfying (1.5).

Theorem 3.1. Let R0 =
f (S 0)g′(0)

γ
> 1. Then for any c ≥ c∗, (1.3) admits a pair of functions (S (ξ), I(ξ))

such that

S (ξ) ≤ S (ξ) ≤ S 0, I(ξ) ≤ I(ξ) ≤ I(ξ). (3.1)
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Proof. For c > c∗, let {εn} be a sequence such that 0 < εn+1 < εn < 1(n = 1, 2, 3, · · · ) and
limn→+∞ εn = 0. By Theorem 2.1 and Proposition 2.4, for each n ∈ N, there exists a solution Φn(ξ) =

(S n(ξ), In(ξ)) for ε = εn, such thatcS ′n(ξ) = d1(J ∗ S n(ξ) − S n(ξ)) − f (S n(ξ))g(In(ξ − cτ)),
cI′n(ξ) = d2(J ∗ In(ξ) − In(ξ)) + f (S n(ξ))g(In(ξ − cτ)) − γIn(ξ) − εnI2

n(ξ)
(3.2)

and

S (ξ) ≤ S n(ξ) ≤ S 0, I(ξ) ≤ In(ξ) ≤ I(ξ) (3.3)

for all ξ ∈ R.
Furthermore, we know that

‖S n(ξ)‖C1,1(R) + ‖In(ξ)‖C1,1(R) < C3, (3.4)

where C3 is a positive constant independent of ξ. Then we can assert that {Φn(ξ)} and {Φ′n(ξ)} are equi-
continuous and uniformly bounded on R. By the Arzelà-Ascoli theorem, there exists a subsequence of
{εn}, still denoted by {εn}, such that limn→∞ εn = 0 and

Φn(ξ)→ Φ(ξ), Φ′n(ξ)→ Φ′(ξ)

uniformly on every closed bounded interval as n → ∞, and hence pointwise on R, where Φ(ξ) =

(S (ξ), I(ξ)) and Φ′(ξ) = (S ′(ξ), I′(ξ)) are bounded. Passing to the limits in (3.2) and (3.3) as n → ∞
and employing the dominated convergence theorem and the continuity of f and g (see (A1) and (A2)),
we obtain that (S (ξ), I(ξ)) satisfies (1.3) and (3.1).

For c = c∗, one can choose a decreasing sequence {cn} ∈ (c∗, c∗ + 1) such that limn→∞ cn = c∗ and
the same reasoning applies to the above case c > c∗ and εn → 0. For simplicity, we omit the details.
This ends the proof.

Next we aim at the asymptotic behavior of solution (S (ξ), I(ξ)) of (1.3), whose existence is guar-
anteed by Theorem 3.1. For ξ ∈ R, invoking the Squeeze theorem to (3.1), we deduce the asymptotic
behavior of solution (S (ξ), I(ξ)) at −∞.

Proposition 3.1. Suppose that R0 =
f (S 0)g′(0)

γ
> 1 and c ≥ c∗. Then the solution (S (ξ), I(ξ)) of (1.3)

satisfies

S (−∞) = S 0, I(−∞) = 0 (3.5)

and

lim
ξ→−∞

e−λ1ξI(ξ) = 1.

The following proposition shows the asymptotic behavior of I(ξ) at∞.

Proposition 3.2. Assume that R0 =
f (S 0)g′(0)

γ
> 1 and c ≥ c∗. Then the solution (S (ξ), I(ξ)) of (1.3)

satisfies

0 <
∫
R

f (S (ξ))g(I(ξ − cτ))dξ < ∞ (3.6)

with
∫
R

I(ξ)dξ < ∞ and I(∞) = 0.
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Proof. Using (3.1), (A1), (A2) and the definitions of S (ξ) and I(ξ), one has∫
R

f (S (ξ))g(I(ξ − cτ))dξ ≥
∫
R

f (S (ξ))g(I(ξ − cτ))dξ > 0.

Note that ∫ x

z
(J ∗ S (ξ) − S (ξ))dξ

=

∫ x

z

∫
R

J(y)(S (ξ − y) − S (ξ))dydξ

= −

∫ x

z

∫
R

J(y)y
∫ 1

0
S ′(ξ − ty)dtdydξ

=

∫
R

J(y)y
∫ 1

0
(S (z − ty) − S (x − ty))dtdy.

Then, by(3.5) and (A3), we get

lim
z→−∞

∫ x

z
(J ∗ S (ξ) − S (ξ))dξ

=

∫
R

J(y)y
∫ 1

0
(S 0 − S (x − ty))dtdy

= −

∫
R

J(y)y
∫ 1

0
S (x − ty)dtdy,

which implies that, for x ∈ R,∣∣∣∣∣∫ x

−∞

(J ∗ S (ξ) − S (ξ))dξ
∣∣∣∣∣ ≤ S 0

∫
R

J(y)|y|dy := σ0, (3.7)

where we used the fact that J is compactly supported (see(A3)). Taking an integration of the first
equation in (1.3) over (−∞, x) and using (3.5) and (3.7), we get∫ x

−∞

f (S (ξ))g(I(ξ − cτ))dξ

= d1

∫ x

−∞

(J ∗ S (ξ) − S (ξ))dξ + cS 0 − cS (x)

≤ d1σ0 + cS 0,

which implies ∫
R

f (S (ξ))g(I(ξ − cτ))dξ < ∞. (3.8)

Similar to the proof of (3.7), we have∣∣∣∣∣∫
R

(J ∗ I(ξ) − I(ξ))dξ
∣∣∣∣∣ ≤ Kε

∫
R

J(y)|y|dy := σ1. (3.9)
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Taking an integration of the second equation in (1.3) over R gives

cI(+∞) + γ

∫
R

I(ξ)dξ

= d2

∫
R

(J ∗ I(ξ) − I(ξ))dξ +

∫
R

f (S (ξ))g(I(ξ − cτ))dξ

< ∞, (3.10)

where we have used (3.8) and (3.9).
Consequently, it follows from (3.10) that∫

R

I(ξ)dξ < ∞.

Upon combining with the fact that I′(ξ) is bounded on R (see (3.4)), we have

I(+∞) = 0. (3.11)

This completes the proof. �
The following proposition deals with the asymptotic behavior of S (ξ) at∞.

Proposition 3.3. Assume that R0 =
f (S 0)g′(0)

γ
> 1 and c ≥ c∗. Then (1.3) has a solution (S (ξ), I(ξ)) such

that limξ→+∞ S (ξ) exists and

lim
ξ→+∞

S (ξ) := S∞ < S 0.

Moreover, there holds∫
R

f (S (ξ))g(I(ξ − cτ))dξ = γ

∫
R

I(ξ)dξ = c(S 0 − S∞).

Proof. We prove the existence of limξ→+∞ S (ξ) by a contradiction argument. Suppose

lim
ξ→+∞

sup S (ξ) > lim
ξ→+∞

inf S (ξ)

for a contrary. Then from Fluctuation Lemma (see Lemma 2.2 in [1]), we infer that there exists a
sequence {ξn} satisfying ξn → ∞ as n→ ∞ such that

lim
n→∞

S (ξn) = lim
ξ→+∞

sup S (ξ) := σ2 and S ′(ξn) = 0. (3.12)

Meanwhile, there exists another sequence {ηn} satisfying ηn → ∞ as n→ ∞ such that

lim
n→∞

S (ηn) = lim
ξ→+∞

inf S (ξ) := σ3 < σ2 and S ′(ηn) = 0. (3.13)

Following from the first equation in (1.3), we have

cS ′(ξn) = d1(J ∗ S (ξn) − S (ξn)) − f (S (ξn))g(I(ξn − cτ)). (3.14)
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Passing to the limits in (3.14) as n→ ∞, and using (3.11), (3.12) and (A2), we obtain

lim
n→∞

J ∗ S (ξn) = lim
n→∞

S (ξn) = σ2. (3.15)

Set

S n(y) = S (ξn − y). (3.16)

We will show that limn→∞ S n(y)→ σ2 for y ∈ suppJ := Ω. Take sufficiently small ε1 > 0 and let

Ωε1 = Ω
⋂{

y ∈ Ω| lim
n→∞

S n(y) < σ2 − ε1

}
. (3.17)

Then from (3.12), (3.15)-(3.17) and (A3) we get

σ2 = lim
n→∞

J ∗ S (ξn)

= lim
n→∞

∫
Ω

J(y)S (ξn − y)dy

= lim
n→∞

∫
Ω

J(y)S n(y)dy

≤ lim
n→∞

sup
∫

Ω\Ωε1

J(y)S n(y)dy + lim
n→∞

sup
∫

Ωε1

J(y)S n(y)dy

≤ σ2

∫
Ω\Ωε1

J(y)dy + (σ2 − ε1)
∫

Ωε1

J(y)dy

= σ2 − ε1

∫
Ωε1

J(y)dy,

which shows that m(Ωε1) = 0, where m(·) denotes the measure. Therefore, we have limn→∞ S n(y) = σ2

almost everywhere in Ω.
However, since {S n} is an equi-continuous family, the convergence is everywhere in Ω, that is,

lim
n→∞

S n(y) = lim
n→∞

S (ξn − y) = σ2, y ∈ Ω. (3.18)

Using the similar arguments, we can prove that

lim
n→∞

S (ηn − y) = σ3 < σ2, y ∈ Ω. (3.19)

Integrating two sides of the first equation in (1.3) from ηn to ξn, using (3.12), (3.13), (3.18), (3.19) and
the fact that

lim
n→∞

∫ ξn

ηn

f (S (ξ))g(I(ξ − cτ))dξ = 0,

we get

0 < c(σ2 − σ3) = c lim
n→∞

(S (ξn) − S (ηn))

= d1 lim
n→∞

∫ ξn

ηn

(J ∗ S (ξ) − S (ξ))dξ − lim
n→∞

∫ ξn

ηn

f (S (ξ))g(I(ξ − cτ))dξ
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= d1 lim
n→∞

∫ ξn

ηn

∫
R

J(y)(S (ξ − y) − S (ξ))dydξ

= d1 lim
n→∞

∫ ξn

ηn

∫
R

J(y)(−y)
∫ 1

0
S ′(ξ − ty)dtdydξ

= d1 lim
n→∞

∫
R

J(y)y
∫ 1

0
(S (ηn − ty) − S (ξn − ty))dtdy

= 0,

which leads to a contradiction. Thus, limξ→∞ sup S (ξ) = limξ→∞ inf S (ξ) and so limξ→∞ S (ξ) := S∞
exists.

Next, we will prove that S∞ < S 0. Since S (ξ) ≤ S 0, we have S∞ ≤ S 0. Assume that S∞ = S 0. Then
it follows from (3.5) that

S (−∞) = S∞ = S 0. (3.20)

Taking an integration of the first equation in (1.3) over R yields

c(S∞ − S (−∞))

= d1

∫
R

(J ∗ S (ξ) − S (ξ))dξ −
∫
R

f (S (ξ))g(I(ξ − cτ))dξ

= d1

(∫
R

∫
R

J(y)S (ξ − y)dydξ −
∫
R

S (ξ)dξ
)
−

∫
R

f (S (ξ))g(I(ξ − cτ))dξ. (3.21)

By Fubini’s theorem and (A3), one has∫
R

∫
R

J(y)S (ξ − y)dydξ −
∫
R

S (ξ)dξ

=

∫
R

J(y)
(∫
R

S (ξ − y)dξ
)

dy −
∫
R

S (ξ)dξ

=

∫
R

J(y)
(∫
R

S (ξ)dξ
)

dy −
∫
R

S (ξ)dξ

=

∫
R

S (ξ)dξ −
∫
R

S (ξ)dξ

= 0. (3.22)

From (3.20)-(3.22), we obtain
∫
R

f (S (ξ))g(I(ξ − cτ))dξ = 0, which contradicts (3.6). Thus, we have

S∞ < S 0

and ∫
R

f (S (ξ))g(I(ξ − cτ))dξ = c(S 0 − S∞). (3.23)

Moreover, integrating two sides of the second equation in (1.3) on R and recalling that I(±∞) = 0,
one has

0 = d2

∫
R

[J ∗ I(ξ) − I(ξ)]dξ +

∫
R

f (S (ξ))g(I(ξ − cτ))dξ −
∫
R

γI(ξ)dξ. (3.24)
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Using the Fubini theorem again and repeating the above procedures, we can obtain
∫
R
[J∗I(ξ)−I(ξ)]dξ =

0. It follows from (3.23) and (3.24) that

γ

∫
R

I(ξ)dξ =

∫
R

f (S (ξ))g(I(ξ − cτ))dξ = c(S 0 − S∞).

The proof of this proposition is completed. �
Finally, combining Theorem 3.1 and Propositions 3.1-3.3, we obtain the existence of traveling wave

solutions for system (1.2) satisfying (1.5).

Theorem 3.2. Assume that R0 =
f (S 0)g′(0)

γ
> 1 and c ≥ c∗. Then system (1.2) admits a nontrivial and

nonnegative traveling wave solution (S (x + ct), I(x + ct)) satisfying (1.5).

Remark 3.1. (i) It is worth to point out that, in this paper, we have derived the existence of traveling
wave solutions in the absence of assumption (H) and further obtained Theorem 3.2 to confirm
that c∗ is the minimal wave speed of the existence of traveling wave solutions for (1.2), which
improves Theorem 1.1 ( [18, Theorem 2.7]).

(ii) Theorem 3.2 states that Theorem 1.2 ( [19, Theorem 2.3]) still holds if we take the influences of
delays into consideration.

(iii) In (1.1), the choice of f (S ) = βS and g(I) = I leads to the model investigated by Cheng and
Yuan [17]. Thus, Theorem 3.2 includes Theorem 3.2 of [17] as a special case.

4. Application and conclusion

In this section, we will give a typical example to demonstrate the abstract results presented in
Section 3. The choice of f (S ) = S and g(I) =

βI
1+αI (α, β > 0 are two coefficients) in (1.2) leads to

∂S (x, t)
∂t

= d1(J ∗ S (x, t) − S (x, t)) − βS (x, t)
I(x, t − τ)

1 + αI(x, t − τ)
,

∂I(x, t)
∂t

= d2(J ∗ I(x, t) − I(x, t)) + βS (x, t)
I(x, t − τ)

1 + αI(x, t − τ)
− γI(x, t).

(4.1)

Obviously, it is easy to verify that f (S ) and g(I) satisfy assumptions (A1)-(A2). Applying Theorem
3.2, we obtain the following result.

Theorem 4.1. There exists a positive constant c∗ such that if R0 =
βS 0
γ
> 1 and c ≥ c∗. Then system

(4.1) admits a nontrivial and nonnegative traveling wave solution (S (x + ct), I(x + ct)) satisfying

S (−∞) = S 0, S (+∞) = S∞ < S 0, I(±∞) = 0. (4.2)

We further show that the minimal wave speed c∗ is determined by the following system:

∆(λ, c) = 0 and
∂∆(λ, c)
∂λ

= 0, forλ > 0, c > 0,

where
∆(λ, c) := d2

∫
R

J(y)(e−λy − 1)dy − cλ + βS 0e−λcτ − γ.
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It is noticed that the minimal wave speed c∗ is relevant to the dispersal rate d2 and the delay τ. Due to
∆(λ∗, c∗) = 0, by the implicit function theorem, a direct calculation gives

dc∗

dd2
=

∫
R

J(y)e−λ
∗ydy − 1

λ∗ + λ∗τβS 0e−λ∗c∗τ
> 0,

which implies that the geographical movement of infected individuals can increase the speed of the
spread of disease. Similarly, we have

dc∗

dτ
=
−c∗βS 0e−λ

∗c∗τ

1 + βτS 0e−λ∗c∗τ
< 0.

That is, the longer the delay τ, the slower the spreading speed.
It is known that the existence and non-existence of the traveling wave solution to nonlinear partial

equations have been investigated extensively since they can predict whether or not the disease spread
in the individuals and how fast a disease invades geographically. In the present paper, we have stud-
ied the traveling wave solutions for a delayed nonlocal dispersal SIR epidemic model with the critical
wave speed. It has been found that the existence of traveling wave solutions are totally determined by
the basic reproduction number and the minimal wave speed c∗. More precisely, if R0 > 1 and c ≥ c∗,
then system (1.2) admits a nontrivial and nonnegative traveling wave solution (S (x + ct), I(x + ct))
satisfying (1.5). Results on this topic may help one predict how fast a disease invades geographically,
and accordingly, take measures in advance to prevent the disease, or at least decrease possible negative
consequences. The approaches applied in this paper have prospects for the study of the existence and
non-existence of traveling wave solutions for nonlocal dispersal epidemic models with more general
nonlinear incidences. Finally, we remark that there are quite a few spaces to deserve further investi-
gations. For example, we can study the asymptotic speed of propagation, the uniqueness and stability
of traveling wave solutions. Moreover, the exact boundary behavior of susceptible S (ξ) at +∞ is not
obtained although the existence of S (+∞) is established. We leave these problems for future work.
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