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Abstract: The refuge effect is critical in ecosystems for stabilizing predator-prey interactions. The
purpose of this research was to investigate the complexities of a discrete-time predator-prey system
with a refuge effect. The analysis investigated the presence and stability of fixed points, as well as
period-doubling and Neimark-Sacker (NS) bifurcations. The bifurcating and fluctuating behavior of
the system was controlled via feedback and hybrid control methods. In addition, numerical simulations
were performed as evidence to back up our theoretical findings. According to our findings, maintaining
an optimal level of refuge availability was critical for predator and prey population cohabitation and
stability.
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1. Introduction

The predator-prey system is one of the most important systems for studying the interaction of two
species in ecology. Predator-prey systems have important mathematical consequences because they
describe ecosystem dynamics and the interactions of diverse species. These systems assist in the
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estimation of population dynamics by depicting the interaction between predators and prey using
mathematical equations. Furthermore, they can inform ecologists by providing insights into the
complex interactions between various species within an ecosystem. This knowledge can then be used
to develop strategies aimed at the conservation of biodiversity and the effective management of
resources [1]. Lotka [2] and Volterra [3] established a fundamental predator-prey system consisting of
two species. Over time, several scholars have made modifications to this system to offer a more
realistic explanation and improve understanding, as it fails to account for numerous real-world
scenarios and complexities. To increase the predator-prey dynamic’s authenticity, several ecological
principles have been incorporated. These principles include the Allee effect, functional response,
refuge-seeking behavior, cannibalism, harvesting impact, and interactions between predators and prey
that are mediated by fear [4–12].

Numerous researchers have utilized the logistic map to illustrate the prey’s growth [13–16].
Nonetheless, there is a lack of research on the stability analysis of a discrete predator-prey system that
takes into account the growth of the prey using a Ricker map [17–19]. The logistic map in a
one-dimensional population growth model is given by xn+1 = rxn(1 − xn

k ), while the Ricker map is
defined as xn+1 = rxne1− xn

k . One evident unrealistic feature of the logistic map is that 1 − xn
k is negative

for xn > k, implying that large populations become negative at the next time step. In contrast, the
Ricker map is preferable, as large values of xn result in extremely small (but still positive) values of
xn+1. Thus, if a population exceeds its carrying capacity, it will fall to extremely low levels, while
some of the population survives. Another advantage of the Ricker map is that the exponential
component e1− xn

k provides a nonlinear response to population density changes, mimicking instances
where prey populations might face abrupt declines due to predation pressure.

It is typical to represent dynamical systems in one of two ways when modeling them: i) either as
continuous-time systems [20], which are described using differential equations, ii) or as discrete-time
systems, which are described by difference equations. Throughout the years, scholars have conducted
thorough investigations into the nonlinear dynamic properties exhibited by continuous systems.
Recently, numerous researchers have paid significant attention to discrete-time systems [21–27]. This
is because discrete systems are much more effective at facilitating nonoverlapping generations than
continuous systems. Discrete-time systems have the advantage of making numerical solutions easy to
obtain. The study in [28] describes a precise discrete-time analytical (DTA) signal processing method
for estimating frequency and phasor that works well with real-time computing requirements. The
study in [29] is primarily concerned with determining ways to compute state and output bounding sets
for uncertain discrete-time systems with pointwise-bounded, persistent inputs. The authors in [30]
proposed the k-symbol discrete-time fractional Lozi system (FLS). Several critical dynamics of these
systems are examined. They also investigate the necessary and sufficient requirements for stable and
asymptotically stable k-symbol fractional dynamical systems. Furthermore, substantial research
suggests that discrete-time systems may display more complex dynamics than corresponding
continuous-time systems [31–40].

There are two distinct approaches to obtaining a discrete system. One way is to start with a
continuous system and then use different techniques, such as the Euler technique [41–45] and the
piecewise constant argument method [46–51], to turn it into a discrete system. On the other hand, we
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begin the analysis directly with the discrete system. Hamada et al. [52] studied the following discrete
predator-prey system with the Ricker-type growth function:xn+1 = rxne1− xn

k − bxnyn,

yn+1 = dxnyn,
(1.1)

where xn denotes prey density, yn is predator density, r is the intrinsic growth rate of the prey, k is the
environmental carrying capacity of prey, and bxnyn and dxnyn represent the predator-prey confrontation,
respectively, which are useful for predators and harmful for prey. The parameters r, k, b, and d are
positive constants.

To enhance their chances of survival and minimize predation risks, prey species often engage in
active refuge-seeking behaviors. This phenomenon has a significant impact on the dynamics of
predator-prey interactions because it acts as a crucial mechanism in the preservation and mitigation of
the extinction risk that prey species face. Gonzalez-Olivares and Ramos-Jiliberto [53] presented prey
refuges in a simple predator-prey system. Ma et al. [54] investigated the dynamic behaviors of a
predator-prey system, considering the mutual interference of a predator and a prey refuge. Chen et
al. [55] investigated the prey refuge in a Leslie-Gower predator-prey model. Molla et al. [56]
investigated the stability and Hopf bifurcation of the predator-prey system with refuge on prey.
Numerous researchers have conducted extensive research on the refuge effect and acquired some
fascinating results [57–63]. According to literature studies, the change in prey refuge positively
affects prey density and negatively influences predator density. For instance, increasing prey refuge
leads to a rise in the prey population, while decreasing prey refuge results in a decrease in the prey
population. Negative influence signifies an inverse correlation, with one quantity increasing as the
other decreases. Moreover, it has both stabilizing and destabilizing effects. Our work supports
previous studies [64–66] by demonstrating that both prey and predators benefit from a moderate
refuge level.

Thus, motivated by the above discussion, we naturally want to know: When a refuge effect is
added to the prey population in system (1.1), what will happen to the dynamical properties? Hence,
we extend the system (1.1) by adding the refuge effect to the prey population. Thus, the following
modified system is obtained: xn+1 = rxne1− xn

k − b(1 − m)xnyn,

yn+1 = d(1 − m)xnyn.
(1.2)

Here (1 − m)xn represents the quantity of prey available for predation, where 0 < m < 1 is the
protection rate of the prey refuge for prey.

The remainder of the paper is formatted as follows: Section 2 investigates the presence and
topological classification of fixed points. Section 3 explores the period-doubling (PD) and
Neimark-Sacker (NS) bifurcation analysis at the positive fixed point. Section 4 applies two control
methods to regulate bifurcations and chaos. To verify and describe the theoretical results, Section 5
presents some numerical examples. Section 6 discusses the influence of refuge on system (1.2).
Lastly, our analysis is summarized in Section 7.
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2. Topological classification of fixed points

Understanding the stability of fixed points is critical in a predator-prey system. These fixed points
depict equilibrium states in which predator and prey populations have reached a balance. Analyzing
their stability allows us to forecast the long-term behavior of these ecological systems and provide
insight into how different elements influence the overall dynamics of the ecosystem.

2.1. Existence of fixed points

Proposition 2.1. For system (1.2), we have three types of fixed points:
1) The trivial fixed point E0 = (0, 0) always exists.
2) The predator-free fixed point E1 = (k(ln(r) + 1), 0) exists if r > 1

e .

3) The coexistence fixed point E2 =

(
1

d(1−m) ,
re

1− 1
kd(1−m) −1

b(1−m)

)
exists if

r > e−1+ 1
kd(1−m) .

Proof. To determine the fixed points of system (1.2), we need to solve

x = rxe1− x
k − b(1 − m)xy, (2.1)

y = d(1 − m)xy. (2.2)

From Eq (2.2), it follows that either y = 0 or x = 1
d(1−m) . Substituting y = 0 into Eq (2.1), we obtain

x = rxe1− x
k . (2.3)

From Eq (2.3), it follows that either x = 0 or x = k(ln(r) + 1). Next, substituting x = 1
d(1−m) into

Eq (2.1), we obtain

y =
re1− 1

kd(1−m) − 1
b(1 − m)

.

□

2.2. Stability of fixed points

The eigenvalues of the Jacobian matrix help determine the stability of fixed points. If ξ1, ξ2 are
eigenvalues of the Jacobian matrix, then (x, y) is a sink (locally asymptotically stable (LAS)) when
|ξ1| < 1 along with |ξ2| < 1. The fixed point (x, y) is a source when |ξ1| > 1 along with |ξ2| > 1. The
fixed point (x, y) is a saddle point (SP) when |ξ1| < 1 ∧ |ξ2| > 1 (or |ξ1| > 1 ∧ |ξ2| < 1). Moreover,
the fixed point (x, y) is a non-hyperbolic point (NHP) when the absolute value of either ξ1 and ξ2 is
one. Classifying the positive fixed point directly using eigenvalues is not easy. Thus, we employ the
following result:

Lemma 2.2. [67]
Consider the quadratic function Λ(ξ) = ξ2 + K1ξ + K0. Suppose that Λ(1) > 0. If ξ1 and ξ2 both

satisfy the equation Λ(ξ) = 0, then
1) |ξ1| < 1 along with |ξ2| < 1 if Λ(−1) > 0 ∧ K0 < 1,
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2) |ξ1| < 1 ∧ |ξ2| > 1 (or |ξ1| > 1 ∧ |ξ2| < 1) if Λ(−1) < 0,
3) |ξ1,2| > 1 if Λ(−1) > 0 ∧ K0 > 1,
4) |ξ2| , 1 ∧ ξ1 = −1 if Λ(−1) = 0 ∧ K1 , 0, 2,
5) ξ1, ξ2 ∈ C along with |ξ1,2| = 1 if K2

1 − 4K0 < 0 ∧ K0 = 1.

Through simple computations, one can obtain that:

J(x, y) =

 e1− x
k r(k−x)

k + b(−1 + m)y b(−1 + m)x

−d(−1 + m)y −d(−1 + m)x

 .
Proposition 2.3. The trivial fixed point E0 is a

1) LAS if 0 < r < 1
e ,

2) SP if r > 1
e ,

3) NHP if r = 1
e .

Proof. We obtain

J(E0) =

er 0

0 0

 . (2.4)

The diagonal entries ξ1 = 0 and ξ2 = er > 0 are the eigenvalues J(E0). Clearly |ξ1| < 1 and

er


< 1 if 0 < r < 1

e ,

= 1 if r = 1
e ,

> 1 if r > 1
e .

□

Proposition 2.4. The fixed point E1 is

1) LAS if 1
e < r < min{e, e

1
dk(1−m)−1

},

2) source if r > max{e, e
1

dk(1−m)−1
},

3) SP if mix{e, e
1

dk(1−m)−1
} < r < max{e, e

1
dk(1−m)−1

},
4) NHP if any one of the following satisfies:
(i) r = e,
(ii) r = e

1
dk(1−m)−1.

Proof. We obtain

J(E1) =

−ln(r) bk(−1 + m)(1 + ln(r))

0 dk(1 − m)(1 + ln(r))

 . (2.5)

The eigenvalues of J(E0) are ξ1 = −ln(r) and ξ2 = dk(1 − m)(1 + ln(r)) > 0. One can see that
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∣∣∣∣∣ − ln(r)
∣∣∣∣∣

< 1 if 1

e < r < e,

= 1 if r = e,

> 1 if r > e.

Similarly, we obtain

dk(1 − m)(1 + ln(r))


< 1 if 1

e < r < e
1

dk(1−m)−1,

= 1 if r = e
1

dk(1−m)−1,

> 1 if r > e
1

dk(1−m)−1.

□

Next, we classify the positive fixed point E2 of system (1.2) using the Jacobian matrix J(x, y) and
Lemma 2.2.

Theorem 2.5. The positive fixed point

1) E2 is LAS if any one of the following satisfies:
(i) d < 1

k(1−m) and

e−1− 1
dk(−1+m)

(
dk(1−m)
−1+dk(1−m)

)
< r < −3e−1− 1

dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)
,

(ii) 1
k(1−m) < d < 2

k(1−m) and

r < min
{
e−1− 1

dk(−1+m)

(
dk(1−m)
−1+dk(1−m)

)
,−3e−1− 1

dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)}
,

(iii) d > 2
k(1−m) and

−3e−1− 1
dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)
< r < e−1− 1

dk(−1+m)

(
dk(1−m)
−1+dk(1−m)

)
,

2) E2 is an SP if one of the following satisfies:

(i) d < 2
k(1−m) and r > −3e−1− 1

dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)
,

(ii) d > 2
k(1−m) and r < −3e−1− 1

dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)
,

3) E2 is a source if any one of the following satisfies:
(i) d > 2

k(1−m) and

r > max
{
e−1− 1

dk(−1+m)

(
dk(1−m)
−1+dk(1−m)

)
,−3e−1− 1

dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)}
,

(ii) 1
k(1−m) < d < 2

k(1−m) and

e−1− 1
dk(−1+m)

(
dk(1−m)
−1+dk(1−m)

)
< r < −3e−1− 1

dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)
,

(iii) d < 1
k(1−m) and

r < min
{
e−1− 1

dk(−1+m)

(
dk(1−m)
−1+dk(1−m)

)
,−3e−1− 1

dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)}
,

4) E2 is NHP and experiences PD bifurcation if

r = −3e−1− 1
dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)
and
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d , 2
k(1−m) , r , 2dk(1 − m)e−1− 1

dk(−1+m) , 4dk(1 − m)e−1− 1
dk(−1+m) .

5) E2 is NHP and experiences NS bifurcation if

r = e−1− 1
dk(−1+m)

(
dk(1−m)
−1+dk(1−m)

)
, d , 1

k(1−m) and 0 < r < 4dk(1 − m)e−1− 1
dk(−1+m) .

Proof. We obtain

J(E2) =


1 + e

1+ 1
dk(−1+m) r

dk(−1+m) − b
d

d(−1+e
1+ 1

dk(−1+m) r)
b 1

 . (2.6)

The corresponding characteristic polynomial is

Λ(ξ) = ξ2 + K1ξ + K0,

where

K1 = −2 −
e1+ 1

dk(−1+m) r
dk(−1 + m)

, K0 =
e1+ 1

dk(−1+m) (1 + dk(−1 + m))r
dk(−1 + m)

.

It can be obtained through calculations that

Λ(0) =
e1+ 1

dk(−1+m)

(
1 + dk(−1 + m)

)
r

dk(−1 + m)
,

Λ(−1) = 3 + e1+ 1
dk(−1+m)

(
1 +

2
dk(−1 + m)

)
r,

Λ(1) = −1 + e1+ 1
dk(−1+m) r.

It is easy to see that the positivity of the y-coordinate of E2 implies that Λ(1) > 0. By setting
Λ(−1) = 0, one can obtain that:

e1+ 1
dk(−1+m)

(
1 +

2
dk(−1 + m)

)
r = −3,(

−2 + dk(1 − m)
dk(1 − m)

)
r = −3e−1− 1

dk(−1+m) ,

r = −3e−1− 1
dk(−1+m)

( dk(1 − m)
−2 + dk(1 − m)

)
, d ,

2
k(1 − m)

.

By setting Λ(0) = 1, one can obtain that:

e1+ 1
dk(−1+m)

(
1 + dk(−1 + m)

)
r

dk(−1 + m)
= 1,
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− 1 + dk(1 − m)

)
r

dk(1 − m)
= e−1− 1

dk(−1+m) ,

r = e−1− 1
dk(−1+m)

( dk(1 − m)
−1 + dk(1 − m)

)
, d ,

1
k(1 − m)

.

By setting K1 , 0, 2, we obtain that:

r , 2dk(1 − m)e−1− 1
dk(−1+m) , 4dk(1 − m)e−1− 1

dk(−1+m) .

Next, by setting K2
1 − 4K0 < 0 and K0 = 1, we obtain that:

0 < r < 4dk(1 − m)e−1− 1
dk(−1+m) .

□

The fixed point categorizations in a discrete-time predator-prey model possess distinct ecological
interpretations. A sink represents a state of steady coexistence, a saddle shows a state of intermittent
stability, an unstable source implies unexpected shifts in population, and non-hyperbolic points hint at
complicated and difficult-to-predict interactions. Understanding these categorizations assists ecologists
in comprehending the stability and dynamics of predator-prey interactions, which are vital for efficient
ecosystem management and conservation.

3. Bifurcation analysis

This section is dedicated to conducting a thorough investigation of PD and NS bifurcation in
system (1.2) at E2. To get a comprehensive examination of bifurcation analysis, we suggest the
readers to [68–81]. These bifurcations signify important changes in the dynamics of the system,
providing insights into situations in which minor changes to parameters result in major changes in the
dynamics of predator-prey interactions. Additionally to enhance our understanding of ecosystem
dynamics, knowing the roles of PD and NS bifurcations also makes it easier to develop efficient
conservation and management methods to maintain the long-term coexistence of predator and prey
populations.

3.1. PD bifurcation

In this section, we investigate the PD bifurcation at E2 under condition 4) stated in Theorem 2.5.
By introducing a minimal perturbation δ (|δ|≪ 1) to the bifurcation parameter r in system (1.2), the
resulting system is obtained: xn+1 = (r + δ)xne1− xn

k − b(1 − m)xnyn,

yn+1 = d(1 − m)xnyn.
(3.1)

Assume that un = xn −
1

d(1−m) , vn = yn −
(r+δ)e

1− 1
kd(1−m) −1

b(1−m) . After substituting the value of

r = −3e−1− 1
dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)
, the system (3.1) is simplified to

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4554–4586.



4562

un+1

vn+1

 =

−1+dk(−1+m)
2+dk(−1+m) − b

d

−
2d(1+2dk(−1+m))

b(2+dk(−1+m)) 1


un

vn

 +
F(un, vn, δ)

G(un, vn, δ)

 , (3.2)

where

F(un, vn, δ) = a1u2
n + a2u3

n + a3unvn + a4unδ + a5u2
nδ + O((|un| + |vn| + |δ|)4),

G(un, vn, δ) = b1unvn + b2unδ,

a1 =
(3 + 6dk(−1 + m))
2k(2 + dk(−1 + m))

, a2 = −
(1 + 3dk(−1 + m))

2k2(2 + dk(−1 + m))
, a3 = b(−1 + m), a4 =

e1− 1
dk−dkm

dk(−1 + m)
,

a5 = −
e1− 1

dk−dkm (1 + 2dk(−1 + m))
2dk2(−1 + m)

, b1 = d(1 − m), b2 =
de1+ 1

dk(−1+m)

b
.

Next, the system (3.2) is diagonalized through the consideration of the following transformation:un

vn

 =
−−2b+bdk−bdkm

d(1−2dk+2dkm) −
b

2d

1 1


en

fn

 , (3.3)

Upon applying the mapping (3.3), the system (3.2) undergoes the alteration as follows:en+1

fn+1

 =
−1 0

0 3+3dk(−1+m)
2+dk(−1+m)


en

fn

 +
Γ(en, fn, δ)

Υ(en, fn, δ)

 , (3.4)

where

Γ(en, fn, δ) = c1e2
n + c2en f 2

n + c3e3
n + c4e2

n fn + c5 f 3
n + c6en fn + c7 f 2

n + c8e2
nδ

+ c9enδ + c10en fnδ + c11 fnδ + c12 f 2
n δ + O((|en| + | fn| + |δ|)4),

Υ(en, fn, δ) = d1en f 2
n + d2e3

n + d3e2
n fn + d4 f 3

n + d5en fn + d6e2
n + d7 f 2

n + d8e2
nδ

+ d9en fnδ + d10 f 2
n δ + d11 fnδ + d12enδ + O((|en| + | fn| + |δ|)4),

c1 =
b(2 + dk(−1 + m))(3 + dk(−1 + m))

dk(5 + 4dk(−1 + m))
, c2 = −

3b2(1 + 3dk(−1 + m))
4d2k2(5 + 4dk(−1 + m))

,

c3 = −
b2(2 + dk(−1 + m))2(1 + 3dk(−1 + m))

d2k2(1 + 2dk(−1 + m))2(5 + 4dk(−1 + m))
,
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c4 =
3b2(2 + dk(−1 + m))(1 + 3dk(−1 + m))

2d2k2(1 + 2dk(−1 + m))(5 + 4dk(−1 + m))
,

c5 =
b2 (1 + 2dk(−1 + m))(1 + 3dk(−1 + m))

8d2k2(2 + dk(−1 + m))(5 + 4dk(−1 + m))
, c6 = −

3b(2 + 3dk(−1 + m))
2dk(5 + 4dk(−1 + m))

,

c7 = −
b(1 + 2dk(−1 + m))(−3 − 2dk(−1 + m) + 2d2k2(−1 + m)2)

4dk(2 + dk(−1 + m))(5 + 4dk(−1 + m))
,

c8 = −
b e1− 1

dk−dkm (2 + dk(−1 + m))2

d2k2(5 + 4dk(−1 + m))(−1 + m)
, c9 =

e1+ 1
dk(−1+m) (2 + dk(−1 + m))2

dk(5 + 4dk(−1 + m))(−1 + m)
,

c10 =
be1− 1

dk−dkm (2 + dk(−1 + m))(1 + 2dk(−1 + m))
d2k2(5 + 4dk(−1 + m))(−1 + m)

,

c11 = −
e1+ 1

dk(−1+m) (2 + dk(−1 + m))(1 + 2dk(−1 + m))
2dk(5 + 4dk(−1 + m))(−1 + m)

,

c12 = −
be1− 1

dk−dkm (1 + 2dk(−1 + m))2

4d2k2(5 + 4dk(−1 + m))(−1 + m)
,

d1 =
3b2(1 + 3dk(−1 + m))

4d2k2(5 + 4dk(−1 + m))
, d2 =

b2(2 + dk(−1 + m))2(1 + 3dk(−1 + m))
d2k2(1 + 2dk(−1 + m))2(5 + 4dk(−1 + m))

,

d3 = −
3b2 (2 + dk(−1 + m))(1 + 3dk(−1 + m))

2d2k2(1 + 2dk(−1 + m))(5 + 4dk(−1 + m))
,

d4 = −
b2(1 + 2dk(−1 + m))(1 + 3dk(−1 + m))

8d2k2(2 + dk(−1 + m))(5 + 4dk(−1 + m))
,

d5 =
3b(1 + dk(−1 + m) + d2k2(−1 + m)2)

dk(1 + 2dk(−1 + m))(5 + 4dk(−1 + m))
,
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d6 = −
3b(2 + dk(−1 + m))(1 + 4dk(−1 + m) + 2d2k2(−1 + m)2)

dk(1 + 2dk(−1 + m))(5 + 4dk(−1 + m))
,

d7 =
3b(−1 + 4dk(−1 + m) + 8d2k2(−1 + m)2 + 4d3k3(−1 + m)3)

4dk(2 + dk(−1 + m))(5 + 4dk(−1 + m))
,

d8 =
b e1− 1

dk−dkm (2 + dk(−1 + m))2

d2k2(5 + 4dk(−1 + m))(−1 + m)
,

d9 = −
be1− 1

dk−dkm (2 + dk(−1 + m))(1 + 2dk(−1 + m))
d2k2(5 + 4dk(−1 + m))(−1 + m)

,

d10 =
be1− 1

dk−dkm (1 + 2dk(−1 + m))2

4d2k2(5 + 4dk(−1 + m))(−1 + m)
, d11 =

e1− 1
dk−dkm (1 − d2k2(−1 + m)2)

dk(5 + 4dk(−1 + m))(−1 + m)
,

d12 =
2e1− 1

dk−dkm (2 + dk(−1 + m))(−1 + d2k2(−1 + m)2)
dk(1 + 2dk(−1 + m))(5 + 4dk(−1 + m))(−1 + m)

.

Next, we determine the center manifold denoted by QC for the system (3.4) at the origin, in a close
neighborhood to δ = 0. Using the center manifold theorem, we can derive the following approximate
expression for the center manifold QC:

QC =

{
(en, fn, δ) ∈ R3

+

∣∣∣∣∣ fn = p1e2
n + p2enδ + p3δ

2 + O((|en| + |δ|)3)
}
,

where

p1 =
d6

1 − ξ
, p2 = −

d12

1 + ξ
, p3 = 0,

where ξ = 3+3dk(−1+m)
2+dk(−1+m) . As a result, the system (3.4) is limited to QC in the manner as follows:

F̃ := en+1 = −en + c1e2
n + c9enδ +

(
c3 −

c6d6

−1 + ξ

)
e3

n −

(c11d12

1 + ξ

)
enδ

2

+

(
c8 −

c11d6

−1 + ξ
−

c6d12

1 + ξ

)
e2

nδ + O
(
(|en| + |δ|)4

)
. (3.5)

For the function (3.5) to go through PD bifurcation, the following two quantities must possess
nonzero values:
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l1 = F̃δF̃enen + 2F̃enδ

∣∣∣∣∣
(0,0)
= 2c9, (3.6)

l2 =
1
2

(F̃enen)
2 +

1
3

F̃enenen

∣∣∣∣∣
(0,0)
= 2
(
c3 + c2

1 +
c6d6

1 − ξ

)
. (3.7)

Based on the aforementioned study, the following result is obtained:

Theorem 3.1. Assume that condition 4) of Theorem 2.5 is satisfied. The system (1.2) experiences PD
bifurcation at E2 if l1, l2 given in (3.6) and (3.7) are nonzero and r changes in a close neighborhood

of r = −3e−1− 1
dk(−1+m)

(
dk(1−m)
−2+dk(1−m)

)
. Moreover, if l2 > 0 (respectively l2 < 0), then a period-2 orbit of the

system (1.2) emerges and it is stable (respectively, unstable).

The above result demonstrates how small changes may produce a significant change in the system’s
behavior, resulting in a doubling of population oscillation periods. This result discloses an important
component of the predator-prey relationship, revealing a transition point in the ecosystem from orderly
and predictable cycles to chaotic and unpredictable dynamics.

3.2. NS bifurcation

In this section, we investigate the NS bifurcation at E2 under condition (5) stated in Theorem 2.5.
By introducing a minimal perturbation δ (|δ|≪ 1) to the bifurcation parameter r in system (1.2), the
resulting system is obtained: xn+1 = (r + δ)xne1− xn

k − b(1 − m)xnyn,

yn+1 = d(1 − m)xnyn.
(3.8)

Assume that un = xn −
1

d(1−m) , vn = yn −
(r+δ)e

1− 1
kd(1−m) −1

b(1−m) . After substituting the value of

r = e−1− 1
dk(−1+m)

(
dk(1−m)
−1+dk(1−m)

)
, the system (3.8) is simplified toun+1

vn+1

 =
 b11 − b

d

d(−1+e
1+ 1

dk(−1+m) (1+dk(−1+m))δ)
b+bdk(−1+m) 1


un

vn

 + F(un, vn)

G(un, vn)

 , (3.9)

where

b11 =
e−

1
dk(1−m) (d2e

1
dk(1−m) k2(−1 + m)2 + eδ + dk(−1 + m)(2e

1
dk(1−m) + eδ))

dk(1 + dk(−1 + m))(−1 + m)
,

F(un, vn) = b(−1 + m)unvn −
e−

1
dk(1−m) (1 + 2dk(−1 + m))(eδ + dk(−1 + m)(e

1
dk(1−m) + eδ))

2dk2(1 + dk(−1 + m))(−1 + m)
u2

n

+
e−

1
dk(1−m) (1 + 3dk(−1 + m))(eδ + dk(−1 + m)(e

1
dk(1−m) + eδ))

6dk3(1 + dk(−1 + m))(−1 + m)
u3

n + O((|un| + |vn|)4),
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G(un, vn) = d(1 − m)unvn,

The characteristic equation of the linearized system (3.9) is

ξ2 − α(δ)ξ + β(δ) = 0, (3.10)

where

α(δ) = −
e−

1
dk−dkm (−2d2e

1
dk−dkm k2(−1 + m)2 − eδ − dk(−1 + m)(3e

1
dk−dkm + eδ))

dk(1 + dk(−1 + m))(−1 + m)
,

β(δ) = 1 + e1+ 1
dk(−1+m) (δ +

δ

dk(−1 + m)
).

The solutions of (3.10) are

ξ1,2 =
α(δ)

2
±

i
2

√
4β(δ) − α2(δ). (3.11)

Moreover, we obtain(d|ξ1|
dδ

)
δ=0
=

(d|ξ2|
dδ

)
δ=0
=

1
2

e1+ 1
dk(−1+m)

(dk(1 − m) − 1
dk(1 − m)

)
> 0.

Additionally, it is required that ξi
1,2 , 1 when δ = 0 for i = 1, 2, 3, 4, which corresponds to α(0) ,

−2, 2, 0, 1. We obtain

α(0) =
3 + 2dk(−1 + m)
1 + dk(−1 + m)

= 2 −
1

−1 + dk(1 − m)
< 2.

Moreover, α(0) , −2, 0, 1 is equivalent to

d ,
5

4k(1 − m)
,

3
2k(1 − m)

,
2

k(1 − m)
. (3.12)

Next, to change (3.9) into normal form at δ = 0, we use the following similarity transformation:un

vn

 =
 − b

d 0

− 1
2+2dk(−1+m) −

√
−5+4dk(1−m)

2+2dk(−1+m)


en

fn

 . (3.13)

Upon application of the mapping (3.13), the system (3.9) takes the following form:en+1

fn+1

 =


3+2dk(−1+m)
2+2dk(−1+m) −

√
−5+4dk(1−m)

2+2dk(−1+m)
√
−5+4dk(1−m)

2+2dk(−1+m)
3+2dk(−1+m)
2+2dk(−1+m)


en

fn

 + Γ(en, fn)

Υ(en, fn)

 , (3.14)

where

Γ(en, fn) =
b

2dk
e2

n +
b2(1 + 3dk(−1 + m))

6d2k2(1 + dk(−1 + m))
e3

n
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−
b
√
−5 + 4dk(1 − m)(−1 + m)

2 + 2dk(−1 + m)
en fn + O((|en| + | fn|)4),

Υ(en, fn) =
b(−1 + 2dk(−1 + m))

2dk
√
−5 + 4dk(1 − m)

e2
n −

b2(1 + 3dk(−1 + m))
6d2k2

√
−5 + 4dk(1 − m)(1 + dk(−1 + m))

e3
n

+
b(3 + 2dk(−1 + m))(−1 + m)

2 + 2dk(−1 + m)
en fn + O((|en| + | fn|)4).

Next, we need the following discriminatory value L to be not zero to make sure that system (1.2)
undergoes NS bifurcation.

L =
(
− Re
( (1 − 2ξ1)ξ2

2

1 − ξ1
τ20τ11

)
−

1
2
|τ11|

2 − |τ02|
2 + Re(ξ2τ21)

)
δ=0
, (3.15)

where

τ20 =
1
8

(
Γee − Γ f f + 2Υe f + i(Υee − Υ f f − 2Γe f )

)
, τ11 =

1
4

(
Γee + Γ f f + i(Υee + Υ f f )

)
,

τ02 =
1
8

(
Γee − Γ f f − 2Υe f + i(Υee − Υ f f + 2Γe f )

)
,

τ21 =
1
16

(
Γeee + Γe f f + Υee f + Υ f f f + i(Υeee + Υe f f − Γee f − Γ f f f )

)
.

Therefore, the result derived from the above analysis is as follows:

Theorem 3.2. Suppose that condition 5) of Theorem 2.5 is satisfied. If the condition (3.12) is satisfied
and L given in (3.15) holds a nonzero value, then system (1.2) experiences NS bifurcation at E2 as long

as r varies in a close neighbourhood of r = e−1− 1
dk(−1+m)

(
dk(1−m)
−1+dk(1−m)

)
. Furthermore, in instances where L

is negative (alternatively, positive), the NS bifurcation encountered in system (1.2) at E2 is categorized
as supercritical (subcritical), giving rise to the presence of a unique closed invariant curve originating
from E2 that is attracting (repelling).

The above result illustrates that, under certain conditions, the predator-prey system experiences an
NS bifurcation at point E2. This finding indicates a transition in the ecosystem from simple to more
complex patterns, resulting in the presence of consistent, non-repeating cycles. Understanding the NS
bifurcation enables ecologists to identify the start of enduring, nonlinear fluctuations in the ecosystem,
hence facilitating the assessment of long-term population dynamics and ecological stability.

4. Chaos control

In a predator-prey model, real-world factors serve as control parameters, influencing population
dynamics. Environmental changes, such as changes in vegetation or landscape, have an impact on both
predators and prey by influencing shelter, food availability, and reproductive success. Introducing a
competitor species influences both populations, whether it be new prey for the predator or a competing
predator for the prey. Human activities such as hunting rules, conservation initiatives, and harvesting
have a direct impact on population size and relationships. Climate elements, such as temperature and
precipitation, operate as control variables, influencing birth, mortality, and migration patterns.
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Control theory may be employed to control population dynamics in a predator-prey model. It is
possible to avoid overpopulation and the extinction of species by maintaining a sustainable and
balanced ecosystem by the adjustment of factors such as hunting limits or habitat protection.
White-tailed deer populations in the US are managed by hunting limitations to minimize
overpopulation and habitat destruction [82]. The Great Barrier Reef Marine Park Authority in
Australia prioritizes coral ecosystem maintenance and habitat protection for marine biodiversity [83].
Community-based natural resource management in Namibia promotes sustainable activities like
controlled hunting, benefitting wildlife and livelihoods [84]. These examples demonstrate how
hunting limitations and habitat conservation affect ecological balance and biodiversity globally.

The objective of control theory is to create management plans that guarantee the populations of
prey and predators will coexist in the long run. Bifurcations and unstable oscillations have historically
been thought of negatively in mathematical biology since they harm the biological population’s ability
to reproduce. One can create a controller that may alter the bifurcation characteristics for some non-
linear systems to obtain certain desired dynamical properties and manage chaos under the impact of
PD and NS bifurcations. There are several strategies for chaos control in a discrete-time system.
This section focuses on two different types of control strategies: state feedback control and hybrid
control approaches. Both methods are effective in controlling bifurcation and chaos. The hybrid control
method is easy to implement. The controlled system in the hybrid control method preserves the fixed
points of the original system, while in feedback control, the controlled system may preserve only one
fixed point at which we want to control bifurcation and chaos. There is only one control parameter
ρ ∈ (0, 1) in the hybrid control method, while there are two control parameters (κ1, κ2 ∈ R) in the
feedback control method.

4.1. Feedback control method

The feedback control technique [85, 86] involves transforming the chaotic system into a piecewise
linear system to derive an optimal controller that reduces the upper limit. Subsequently, the
optimization issue is performed subject to specified constraints. The aforementioned technique is
employed to achieve stabilization of chaotic orbits located at an unstable fixed point inside the
system (1.2). The controlled system under consideration for this purpose is as follows:xn+1 = rxne1− xn

k − b(1 − m)xnyn − Un,

yn+1 = d(1 − m)xnyn,
(4.1)

where Un = κ1

(
xn−

1
d(1−m)

)
+κ2

(
yn−

re
1− 1

kd(1−m) −1
b(1−m)

)
is the feedback controlling force, κ1 and κ2 are feedback

gains. Through simple calculations, it is obtained that for system (4.1), we have

J(E2) =


1 − κ1 + e

1− 1
dk(1−m) r

dk(−1+m) −
b+dκ2

d

d(−1+e
1+ 1

dk(−1+m) r)
b 1

 . (4.2)

The matrix J(E2) has the following characteristic equation:

ξ2 + K1ξ + K0 = 0, (4.3)
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where

K1 = −2 + κ1 −
e1+ 1

dk(−1+m) r
dk(−1 + m)

,

K0 = −κ1 +
e1+ 1

dk(−1+m) (1 + dk(−1 + m))r
dk(−1 + m)

+
dκ2(−1 + e1+ 1

dk(−1+m) r)
b

.

Let ξ1 and ξ2 are the roots of (4.3), then we have

ξ1 + ξ2 = 2 − κ1 +
e1+ 1

dk(−1+m) r
dk(−1 + m)

, (4.4)

ξ1ξ2 = −κ1 +
e1+ 1

dk(−1+m) (1 + dk(−1 + m))r
dk(−1 + m)

+
dκ2(−1 + e1+ 1

dk(−1+m) r)
b

. (4.5)

The marginal stability lines may be found by solving the systems of equations ξ1 = ±1 and ξ1ξ2 = 1.
These conditions ensure that |ξ1,2| < 1. Assume that ξ1ξ2 = 1, then Eq (4.5) implies that

L1 : −κ1 +
(d(−1 + e1+ 1

dk(−1+m) r)
b

)
κ2 − 1 +

e1+ 1
dk(−1+m) (1 + dk(−1 + m))r

dk(−1 + m)
= 0. (4.6)

Next, we take ξ1 = 1 and utilizing Eqs (4.4) and (4.5), we obtain

L2 :
(d − de1+ 1

dk(−1+m) r
b

)
κ2 + 1 − e1+ 1

dk(−1+m) r = 0. (4.7)

Next, we take ξ1 = −1 and utilizing Eqs (4.4) and (4.5), we obtain

L3 : −2κ1 +
(d(−1 + e1+ 1

dk(−1+m) r)
b

)
κ2 + 3 + e1+ 1

dk(−1+m) (r −
2r

dk(1 − m)
) = 0. (4.8)

The stable eigenvalues are enclosed within the triangular region bounded by L1, L2, and L3.

4.2. Hybrid control method

The hybrid control technique [87] is a method that combines state feedback and parameter
modification to stabilize unstable periodic orbits contained in the system’s chaotic attractor. As a
result, the regulated system retains its stability over a wide variety of parameters. We take the
following controlled system:xn+1 = ρ

(
rxne1− xn

k − b(1 − m)xnyn

)
+ (1 − ρ)xn,

yn+1 = ρd(1 − m)xnyn + (1 − ρ)yn,
(4.9)

where ρ ∈ (0, 1). The parameter ρ, acting like a control parameter, balances the impact of the original
system (1.2) with the modified system (4.9). If the value of ρ becomes negative, it might indicate the
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reverse impact of the original system (1.2). Conversely, if ρ exceeds 1, it could indicate an amplified
effect of the original system (1.2) beyond its natural influence, perhaps leading to unrealistic or
unworkable consequences in the modified system (4.9). The same fixed points are shared by
systems (4.9) and (1.2). We obtain

J(E2) =


−1+m+ e

1+ 1
dk(−1+m) rρ

dk
−1+m −

bρ
d

d(−1+e
1+ 1

dk(−1+m) r)ρ
b 1

 , (4.10)

with corresponding characteristic polynomial

Λ(ξ) = ξ2 + K1ξ + K0, (4.11)

where

K1 =
2 − 2m − e

1+ 1
dk(−1+m) rρ

dk

−1 + m
,

K0 = 1 +
e1+ 1

dk(−1+m) rρ
dk(−1 + m)

+ (−1 + e1+ 1
dk(−1+m) r)ρ2.

Theorem 4.1. The fixed point E2 of the system (4.9) is LAS if

|K1| < 1 + K0 < 2.

Remark 4.2. These control strategies aim to mitigate bifurcation and chaos in the system (1.2). The
mathematical equations in systems (4.1) and (4.9) define parameters κ1, κ2 and ρ in the context of
control techniques. It is important to note that these specific control methods may not have direct,
established parallels in current ecological models or practices. Our approach introduces theoretical
modifications, and we acknowledge the need for further research and practical applications within the
field of mathematical ecology to fully validate these methods.

5. Numerical examples

In this section, we will corroborate our theoretical findings for system (1.2) by numerical
simulations. These numerical simulations will include bifurcation diagrams, phase portraits, time
series plots, and maximum Lyapunov exponent (MLE) graphs. We have used MATHEMATICA for
computations and MATLAB for graphs.

5.1. Bifurcation analysis varying r

We assume that k = 2.5, b = 1.3,m = 0.5, d = 0.9, x0 = 2.25, y0 = 4.45, r ∈ [3.38, 3.68], then,
system (1.2) goes through PD bifurcation when r ≈ 3.451523. The positive fixed point is obtained as
E2 = (2.222222, 4.395604). The eigenvalues of J(E2) are ξ1 = −1 and ξ2 = −0.428571 with |ξ2| , 1.
For these parametric values, we obtain
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Γ(en, fn, δ) = 23.1742e2
n − 1.39513e3

n − 55.4374en fn + 5.08261e2
n fn + 33.1465 f 2

n

− 6.17217en f 2
n + 2.49844 f 3

n + 6.23407 × 10−15δ + 31.3355enδ

+ 2.72516e2
nδ − 38.053 fnδ − 6.6187en fnδ + 4.01878 f 2

n δ + O((|en| + | fn| + |δ|)4),
Υ(en, fn, δ) = 19.873e2

n − 1.21015e3
n − 47.5458en fn + 4.4087e2

n fn + 28.4316 f 2
n

− 5.35379en f 2
n + 2.16716 f 3

n + 5.13358 × 10−15δ + 26.6219enδ + 2.36382e2
nδ

− 32.3289 fnδ − 5.74111en fnδ + 3.48592 f 2
n δ + O((|en| + | fn| + |δ|)4).

(a) Bifurcation diagram in (r, xn) plane (b) Bifurcation diagram in (r, yn) plane

(c) MLE graph

Figure 1. Bifurcation diagrams and MLE graph of system (1.2) by fixing k = 2.5, b =
1.3,m = 0.5, d = 0.9, x0 = 2.25, y0 = 4.45, and varying r in [3.38, 3.68].
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(a) Bifurcation diagram in (r, xn) plane (b) Bifurcation diagram in (r, yn) plane

(c) MLE graph

Figure 2. Bifurcation diagrams of system (1.2) with respect to r for r ∈ [1.1, 2.1]. Fixed
parameter values are k = 2.5, b = 1.3,m = 0.5, d = 1.5 and initial conditions are x0 =

1.3, y0 = 1.7.

Thus, we obtain

l1 = 2c9 = 2 × 31.3355 = 62.671 > 0,

l2 = 2
(
c3 + c2

1 +
c6d6

1 − ξ

)
= 2
(
− 1.39513 + (23.1742)2 +

−55.4374 × 19.873
1 + 0.428571

)
= −471.0941 < 0.

The bifurcation diagrams of system (1.2) are given in Figure 1(a),(b), while the MLE is plotted in
Figure 1(c).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3. Phase portraits of (1.2) for various values of r and fixing k = 2.5, b = 1.3,m =
0.5, d = 1.5, x0 = 1.3, y0 = 1.7.

Next, consider k = 2.5, b = 1.3,m = 0.5, d = 1.5, x0 = 1.3, y0 = 1.7 and varying r ∈ [1.1, 2.1].
The system (1.2) goes through NS bifurcation at r ≈ 1.343762 and has the positive fixed point E2 =

(1.333333, 1.758242). The eigenvalues of J(E2) are ξ1,2 = 0.428571 ± 0.903508i with |ξ1,2| = 1.
Moreover, some careful calculations give

τ20 = −0.026310 − 0.016640i, τ11 = 0.086667 + 0.260361i,

τ02 = 0.112976 + 0.277i, τ21 = 0.039702 + 0.02511.

Thus, it is obtained that L = −0.078752 < 0, which proves the correctness of Theorem 3.2.
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Bifurcation diagrams are depicted in Figure 2(a),(b), while the MLE is plotted in Figure 2(c). The
presence of negative MLEs indicates the presence of chaotic areas.

Next, Figure 3(a)–(h) shows phase portraits of system (1.2) for various various values of r. One can
observe that E2 is LAS for r < 1.343762 but loses stability at r ≈ 1.343762 when the system (1.2) goes
through NS bifurcation. For r ≥ 1.343762, an invariant curve emerges from E2, the radius of which
grows as r grows. Some 5−, 10− periodic orbits are also plotted in Figure 3(d),(f), Finally, we obtain a
strange chaotic attractor given in Figure 3(h).

(a) Bifurcation diagram in (m, xn) plane (b) Bifurcation diagram in (m, yn) plane

(c) MLE graph

Figure 4. Bifurcation diagrams of system (1.2) with respect to r for r ∈ [0.42, 0.52]. Fixed
parameter values are r = 3.5, k = 2.5, b = 1.3, d = 0.9 and initial conditions are x0 =

1.95, y0 = 4.50.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5. Phase portraits of (1.2) for various values of m and fixing r = 3.5, k = 2.5, b =
1.3, d = 0.9, x0 = 1.95, y0 = 4.50.

5.2. Bifurcation analysis and chaos control varying m

We assume that r = 3.5, k = 2.5, b = 1.3, d = 0.9, x0 = 1.95, y0 = 4.50,m ∈ [0.42, 0.52], then,
system (1.2) experiences both NS bifurcation and PD bifurcation as m varies in small neighborhoods
of m1 ≈ 0.424620 and m2 ≈ 0.495050, respectively. The bifurcation diagrams of system (1.2) are given
in Figure 4(a),(b), while the MLE is plotted in Figure 4(c). The presence of negative MLEs indicates
the existence of stable fixed points or stable periodic windows, whereas positive MLEs indicate the
presence of chaotic areas. Furthermore, the phase portraits of system (1.2) are given in Figure 5(a)–(h)
for various values of the parameter m. One can observe that system (1.2) experiences NS bifurcation
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for small values of refuge. At the NS bifurcation point, an invariant closed curve emerges, representing
a repeating pattern in predator-prey populations. Moreover, the system experiences PD bifurcation for
large values of refuge. At the PD bifurcation point, the system (1.2) transitions from stable behavior to
periodic oscillations, and subsequently, the period of these oscillations doubles.

The existence of two critical values, m1 and m2, suggests a threshold behavior in the system (1.2).
When m is less than m1, the positive fixed point E2 is unstable, implying that predator-prey interaction
is too skewed in favor of the predators, and the prey population cannot sustain itself. Similarly, when
m is greater than m2, then E2 is also unstable, indicating that too much refuge availability disrupts the
predator-prey balance. This suggests that a moderate level of refuge is beneficial for both predator and
prey populations.

The efficacy of the hybrid control approach will next be evaluated. We assume ρ = 0.96, r = 3.5, k =
2.5, b = 1.3, d = 0.9, x0 = 1.95, y0 = 4.50 and vary m for the controlled system (4.9). If 0.405045 <
m < 0.500983, the positive fixed point E2 is LAS. The controlled system’s bifurcation diagrams, and
Figure 6(a),(b) show that the bifurcation has been postponed in the controlled system (4.9).

(a) Bifurcation diagram in (m, xn) plane of system (4.9) (b) Bifurcation diagram in (m, yn) plane of system (4.9)

Figure 6. Bifurcation diagrams of system (4.9) varying m. Fixed parameter values are ρ =
0.96, r = 3.5, k = 2.5, b = 1.3, d = 0.9 and initial conditions are x0 = 1.95, y0 = 4.50.

Next, we aim to evaluate the efficacy of the feedback control technique. Considering r = 3.5, k =
2.5, b = 1.3, d = 0.9, and m = 0.515, as well as the initial conditions x0 = 1.95 and y0 = 4.50 for the
controlled system (4.1), the marginal stability lines are as follows:

L1 : κ2 = 0.351067 + 0.514907κ1,

L2 : κ2 = −1.444444,

and

L1 : κ2 = 0.086950 + 1.02981κ1.
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Figure 7(a) depicts the stability region bounded by lines L1, L2, and L3 for system (4.1). The fixed
point E2 of system (1.2) is shown to be unstable for the given parametric values. The controlled
system (4.1) is examined with feedback gains κ1 = −2.95 and κ2 = −1.20. Figure 7 illustrates the
graph of xn as shown in Figure 7(c), yn as shown in Figure 7(d), and the phase portrait as presented
in Figure 7(b) for the system (4.1). Therefore, it may be deduced that the use of the feedback control
methodology seems to be effective in controlling bifurcation and chaos.

(a) (b)

(c) (d)

Figure 7. Stability region, phase portrait, and time series plots of system (4.1) using r =
3.5, k = 2.5, b = 1.3, d = 0.9,m = 0.515 and initial conditions are x0 = 1.95, y0 = 4.50.
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6. Influence of refuge effect

Trivial fixed point E0 = (0, 0) and boundary fixed point E1 = (k(ln(r) + 1), 0) are independent of

refuge effect m. The positive fixed point E2 =

(
1

d(1−m) ,
re

1− 1
kd(1−m) −1

b(1−m)

)
is dependent on refuge effect m.

We assume that r = 3.5, k = 2.5, b = 1.3, d = 0.9. Then, in Table 1, we observe that the density of
prey population increases as refuges used by prey increases, while that of predators first increases and
then decreases with prey refuges. The same is observed in Figure 8. When the number of prey using
refuges is sufficiently large, our findings indicate that the prey population will exceed its maximum
environmental carrying capacity, leading to the extinction of predators. Furthermore, the examination
of stability and bifurcation demonstrates that an appropriate amount of refuge is advantageous for the
populations of both predators and prey.

Figure 8. Influence of refuge effect on positive fixed point of system (1.2) using r = 3.5, k =
2.5, b = 1.3, d = 0.9.

Table 1. Influence of refuge effect on positive fixed point E2.

value of m prey population in E2 predator population in E2

0.1 1.23457 4.10791
0.3 1.5873 4.44198
0.5 2.22222 4.47895
0.7 3.7037 2.98086
0.9 11.1111 −6.83286
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7. Conclusions

The refuge effect plays a crucial role in determining the stability of predator-prey interactions in an
ecosystem. In a predator-prey system, such a refuge could be a physical space, a habitat, or any
resource that protects the prey. In this paper, we present and study the complex dynamics of a
discrete-time predator-prey system with the refuge effect. The presence and stability of fixed points
are investigated. Moreover, a thorough analysis of local bifurcations at the positive fixed point is
conducted. The study illustrates that the system (1.2) goes through both PD and NS bifurcation.
Moreover, the presence of a positive MLE guarantees the existence of chaos in the system (1.2).
Feedback control and hybrid control approaches are used to control bifurcation and chaos.
Consequently, effective control is achieved for both types of bifurcation across an extensive range of
parameters. Furthermore, numerical simulations are executed to demonstrate the theoretical results
that were previously presented. These simulations use several visual representations, including
bifurcation diagrams, MLE graphs, phase portraits, and time series plots.

It is observed that a positive fixed point is stable if the refuge parameter m lies in an optimal range
m1 < m < m2. When m is less than m1, the positive fixed point E2 is unstable, implying that
predator-prey interaction is too skewed in favor of the predators, and the prey population cannot
sustain itself. Similarly, when m is greater than m2, then E2 is also unstable, indicating that too much
refuge availability disrupts the predator-prey balance. This suggests that a moderate level of refuge is
beneficial for both predator and prey populations.
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