Stochastic input-to-state stability (SISS) of the stochastic nonlinear system has received extensive research. This paper aimed to investigate SISS of the stochastic nonlinear system with delayed impulses. First, when all subsystems were stable, using the average impulsive interval method and Lyapunov approach, some theoretical conditions ensuring SISS of the considered system were established. The SISS characteristic of the argumented system with both stable and unstable subsystems was also discussed, then the stochastic nonlinear system with multiple delayed impulse jumps was considered and SISS property was explored. Additionally, it should be noted that the Lyapunov rate coefficient considered in this paper is positively time-varying. Finally, several numerical examples confirmed validity of theoretical results.
Citation: Linni Li, Jin-E Zhang. Input-to-state stability of stochastic nonlinear system with delayed impulses[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2233-2253. doi: 10.3934/mbe.2024098
Stochastic input-to-state stability (SISS) of the stochastic nonlinear system has received extensive research. This paper aimed to investigate SISS of the stochastic nonlinear system with delayed impulses. First, when all subsystems were stable, using the average impulsive interval method and Lyapunov approach, some theoretical conditions ensuring SISS of the considered system were established. The SISS characteristic of the argumented system with both stable and unstable subsystems was also discussed, then the stochastic nonlinear system with multiple delayed impulse jumps was considered and SISS property was explored. Additionally, it should be noted that the Lyapunov rate coefficient considered in this paper is positively time-varying. Finally, several numerical examples confirmed validity of theoretical results.
[1] | K. It$\hat{o}$, On stochastic differential equations, American Mathematical Society, 1951. |
[2] | S. Fujita, T. Fukao, Optimal stochastic control for discrete-time linear system with interrupted observations, Automatica, 8 (1972), 425–432. https://doi.org/10.1016/0005-1098(72)90101-X doi: 10.1016/0005-1098(72)90101-X |
[3] | B. Satchidanandan, P. R. Kumar, Control systems under attack: The securable and unsecurable subspaces of a linear stochastic system, Emerging Appl. Control Syst. Theory, (2018), 217–228. https://doi.org/10.1007/978-3-319-67068-3_16 |
[4] | W. Li, M. Krstic, Prescribed-time output-feedback control of stochastic nonlinear systems, IEEE Trans. Autom. Control, 68 (2022), 1431–1446. https://doi.org/10.1109/TAC.2022.3151587 doi: 10.1109/TAC.2022.3151587 |
[5] | G. H. Zhao, X. Zhang, Finite‐time stabilization of Markovian switched stochastic high‐order nonlinear systems with inverse dynamics, Int. J. Robust Nonlinear Control, 33 (2023), 10782–10797. https://doi.org/10.1002/rnc.6914 doi: 10.1002/rnc.6914 |
[6] | X. M. Zhang, Q. L. Han, Event-triggered dynamic output feedback control for networked control systems, IET Control Theory Appl., 8 (2014), 226–234. https://doi.org/10.1049/iet-cta.2013.0253 doi: 10.1049/iet-cta.2013.0253 |
[7] | X. T. Yang, H. Wang, Q. X. Zhu, Event-triggered predictive control of nonlinear stochastic systems with output delay, Automatica, 140 (2022), 110230. https://doi.org/10.1016/j.automatica.2022.110230 doi: 10.1016/j.automatica.2022.110230 |
[8] | G. Guo, L. Ding, Q. L. Han, A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems, Automatica, 50 (2014), 1489–1496. https://doi.org/10.1016/j.automatica.2014.03.017 doi: 10.1016/j.automatica.2014.03.017 |
[9] | M. Luo, J. R. Wang, Q. X. Zhu, Resilient control of double-integrator stochastic multi-agent systems under denial-of-service attacks, Automatica, 359 (2022), 8431–8453. https://doi.org/10.1016/j.jfranklin.2022.09.009 doi: 10.1016/j.jfranklin.2022.09.009 |
[10] | E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Autom. Control, 34 (1989), 435–443. https://doi.org/10.1109/9.28018 doi: 10.1109/9.28018 |
[11] | P. Zhao, W. Feng, Y. Kang, Stochastic input-to-state stability of switched stochastic nonlinear systems, Automatica, 48 (2012), 2569–2576. https://doi.org/10.1016/j.automatica.2012.06.058 doi: 10.1016/j.automatica.2012.06.058 |
[12] | L. R. Huang, X. R. Mao, On input-to-state stability of stochastic retarded systems with Markovian switching, IEEE Trans. Autom. Control, 54 (2009), 1898–1902. https://doi.org/10.1109/TAC.2009.2022112 doi: 10.1109/TAC.2009.2022112 |
[13] | L. Vu, D. Chatterjee, D. Liberzon, Input-to-state stability of switched systems and switching adaptive control, Automatica, 43 (2007), 639–646. https://doi.org/10.1016/j.automatica.2006.10.007 doi: 10.1016/j.automatica.2006.10.007 |
[14] | H. B. Chen, P. Shi, C. C. Lim, Stability of neutral stochastic switched time delay systems: An average dwell time approach, Int. J. Robust Nonlinear Control, 27 (2017), 512–532. https://doi.org/10.1002/rnc.3588 doi: 10.1002/rnc.3588 |
[15] | S. Liang, J. Liang, Finite-time input-to-state stability of nonlinear systems: the discrete-time case, Int. J. Syst. Sci., 54 (2023), 583–593. https://doi.org/10.1080/00207721.2022.2135418 doi: 10.1080/00207721.2022.2135418 |
[16] | B. Liu, D. J. Hill, Uniform stability and ISS of discrete-time impulsive hybrid systems, Nonlinear Anal. Hybrid Syst., 4 (2010), 319–333. https://doi.org/10.1016/j.nahs.2009.05.002 doi: 10.1016/j.nahs.2009.05.002 |
[17] | F. Q. Yao, J. D. Cao, P. Cheng, L. Qiu, Generalized average dwell time approach to stability and input-to-state stability of hybrid impulsive stochastic differential systems, Nonlinear Anal. Hybrid Syst., 22 (2016), 147–160. https://doi.org/10.1016/j.nahs.2016.04.002 doi: 10.1016/j.nahs.2016.04.002 |
[18] | C. H. Cai, A. R. Teel, Characterizations of input-to-state stability for hybrid systems, Syst. Control. Lett., 58 (2009), 47–53. https://doi.org/10.1016/j.sysconle.2008.07.009 doi: 10.1016/j.sysconle.2008.07.009 |
[19] | W. H. Chen, W. X. Zheng, Input-to-state stability for networked control systems via an improved impulsive system approach, Automatica, 47 (2011), 789–796. https://doi.org/10.1016/j.automatica.2011.01.050 doi: 10.1016/j.automatica.2011.01.050 |
[20] | D. Nešić, A. R. Teel, Input-to-state stability of networked control systems, Automatica, 40 (2004), 2121–2128. https://doi.org/10.1016/j.automatica.2004.07.003 doi: 10.1016/j.automatica.2004.07.003 |
[21] | J. P. Hespanha, D. Liberzon, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735–2744. https://doi.org/10.1016/j.automatica.2008.03.021 doi: 10.1016/j.automatica.2008.03.021 |
[22] | Q. K. Song, H. Yan, Z. J. Zhao, Y. R. Liu, Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects, Neural Netw., 79 (2016), 108–116. https://doi.org/10.1016/j.neunet.2016.03.007 doi: 10.1016/j.neunet.2016.03.007 |
[23] | P. F. Wang, W. Y. Guo, H. Su, Improved input-to-state stability analysis of impulsive stochastic systems, IEEE Trans. Autom. Control, 67 (2021), 2161–2174. https://doi.org/10.1109/TAC.2021.3075763 doi: 10.1109/TAC.2021.3075763 |
[24] | X. Z. Fu, Q. X. Zhu, Y. X. Guo, Stabilization of stochastic functional differential systems with delayed impulses, Appl. Math. Comput., 346 (2019), 776–789. https://doi.org/10.1016/j.amc.2018.10.063 doi: 10.1016/j.amc.2018.10.063 |
[25] | B. Wang, Q. X. Zhu, Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems, Syst. Control Lett., 105 (2017), 55–61. https://doi.org/10.1016/j.sysconle.2017.05.002 doi: 10.1016/j.sysconle.2017.05.002 |
[26] | M. A. Müller, D. Liberzon, Input/output-to-state stability and state-norm estimators for switched nonlinear systems, Automatica, 48 (2012), 2029–2039. https://doi.org/10.1016/j.automatica.2012.06.026 doi: 10.1016/j.automatica.2012.06.026 |
[27] | X. D. Li, X. L. Zhang, S. J. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378–382. https://doi.org/10.1016/j.automatica.2016.08.009 doi: 10.1016/j.automatica.2016.08.009 |
[28] | X. Z. Liu, K. X. Zhang, Input-to-state stability of time-delay systems with delay-dependent impulses, IEEE Trans. Autom. Control, 65 (2019), 1676–1682. https://doi.org/10.1109/TAC.2019.2930239 doi: 10.1109/TAC.2019.2930239 |
[29] | X. L. Zhang, X. D. Li, Input-to-state stability of non-linear systems with distributed-delayed impulses, IET Control Theory Appl., 11 (2017), 81–89. https://doi.org/10.1049/iet-cta.2016.0469 doi: 10.1049/iet-cta.2016.0469 |
[30] | W. P. Cao, Q. X. Zhu, Stability of stochastic nonlinear delay systems with delayed impulses, Appl. Math. Comput., 421 (2022), 126950. https://doi.org/10.1016/j.amc.2022.126950 doi: 10.1016/j.amc.2022.126950 |
[31] | S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal. Hybrid Syst., 26 (2017), 190–200. https://doi.org/10.1016/j.nahs.2017.06.004 doi: 10.1016/j.nahs.2017.06.004 |
[32] | S. Dashkovskiy, M. Kosmykov, A. Mironchenko, L. Naujok, Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods, Nonlinear Anal. Hybrid Syst., 6 (2012), 899–915. https://doi.org/10.1016/j.nahs.2012.02.001 doi: 10.1016/j.nahs.2012.02.001 |
[33] | L. J. Gao, M. Zhang, X. M. Yao, Stochastic input-to-state stability for impulsive switched stochastic nonlinear systems with multiple jumps, Int. J. Syst. Sci., 50 (2019), 1860–1871. https://doi.org/10.1080/00207721.2019.1645233 doi: 10.1080/00207721.2019.1645233 |
[34] | C. Y. Ning, Y. He, M. Wu, Q. P. Liu, J. H. She, Input-to-state stability of nonlinear systems based on an indefinite Lyapunov function, Syst. Control Lett., 61 (2012), 1254–1259. https://doi.org/https://doi.org/10.1016/j.sysconle.2012.08.009 doi: 10.1016/j.sysconle.2012.08.009 |
[35] | M. Zhang, Q. X. Zhu, Input-to-state stability for impulsive stochastic nonlinear systems with delayed impulses, Int. J. Control, 94 (2021), 923–932. https://doi.org/10.1016/j.automatica.2019.108766 doi: 10.1016/j.automatica.2019.108766 |
[36] | X. T. Wu, P. Shi, Y. Tang, W. B. Zhang, Input-to-state stability of nonlinear stochastic time-varying systems with impulsive effects, Int. J. Robust Nonlinear Control, 27 (2017), 1792–1809. https://doi.org/10.1002/rnc.3637 doi: 10.1002/rnc.3637 |
[37] | B. Liu, Stability of solutions for stochastic impulsive systems via comparison approach, IEEE Trans. Autom. Control, 53 (2008), 2128–2133. https://doi.org/10.1109/TAC.2008.930185 doi: 10.1109/TAC.2008.930185 |
[38] | D. P. Kuang, J. L. Li, D. D. Gao, Input-to-state stability of stochastic differential systems with hybrid delay-dependent impulses, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107661. https://doi.org/10.1016/j.cnsns.2023.107661 doi: 10.1016/j.cnsns.2023.107661 |
[39] | R. Khasminskii, Stochastic stability of differential equations, Springer science business media, Berlin, 2011. |
[40] | X. Z. Fu, Q. X. Zhu, Stability of nonlinear impulsive stochastic systems with Markovian switching under generalized average dwell time condition, Sci. China Inf. Sci., 61 (2018), 1–15. https://doi.org/10.1007/s11432-018-9496-6 doi: 10.1007/s11432-018-9496-6 |
[41] | W. Ren, J. L. Xiong, Stability analysis of impulsive stochastic nonlinear systems, IEEE Trans. Autom. Control, 62 (2017), 4791–4797. https://doi.org/10.1109/TAC.2017.2688350 doi: 10.1109/TAC.2017.2688350 |