Research article Special Issues

Dirichlet problems of fractional $ p $-Laplacian equation with impulsive effects


  • Received: 27 October 2022 Revised: 22 December 2022 Accepted: 26 December 2022 Published: 06 January 2023
  • The purpose of the article is to investigate Dirichlet boundary-value problems of the fractional $ p $-Laplacian equation with impulsive effects. By using the Nehari manifold method, mountain pass theorem and three critical points theorem, some new results are achieved under more general growth conditions. In addition, this paper weakens the commonly used $ p $-suplinear and $ p $-sublinear growth conditions.

    Citation: Xiaolin Fan, Tingting Xue, Yongsheng Jiang. Dirichlet problems of fractional $ p $-Laplacian equation with impulsive effects[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5094-5116. doi: 10.3934/mbe.2023236

    Related Papers:

  • The purpose of the article is to investigate Dirichlet boundary-value problems of the fractional $ p $-Laplacian equation with impulsive effects. By using the Nehari manifold method, mountain pass theorem and three critical points theorem, some new results are achieved under more general growth conditions. In addition, this paper weakens the commonly used $ p $-suplinear and $ p $-sublinear growth conditions.



    加载中


    [1] J. L. Zhou, S. Q. Zhang, Y. B. He, Existence and stability of solution for nonlinear differential equations with $\psi$-Hilfer fractional derivative, Appl. Math. Lett., 121 (2021), 107457. https://doi.org/10.1016/j.aml.2021.107457 doi: 10.1016/j.aml.2021.107457
    [2] J. Li, X. N. Su, K. Y. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005
    [3] T. T. Xue, W. B. Liu, T. F. Shen, Extremal solutions for p-Laplacian boundary value problems with the right-handed Riemann-Liouville fractional derivative, Math. Methods Appl. Sci., 42 (2019), 4394–4407. https://doi.org/10.1002/mma.5660 doi: 10.1002/mma.5660
    [4] J. L. Zhou, S. Q. Zhang, Y. B. He, Existence and stability of solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 498 (2021), 124921. https://doi.org/10.1016/j.jmaa.2020.124921 doi: 10.1016/j.jmaa.2020.124921
    [5] C. L. Tian, T. Jin, X. F. Yang, Q. Y. Liu, Reliability analysis of the uncertain heat conduction model, Comput. Math. Appl., 119 (2022), 131–140. https://doi.org/10.1016/J.CAMWA.2022.05.033 doi: 10.1016/J.CAMWA.2022.05.033
    [6] T. T. Xue, X. L. Fan, J. Zhu, A class of deterministic and stochastic fractional epidemic models with vaccination, Comput. Math. Methods Med., 1797258 (2022), 1–22. https://doi.org/10.1155/2022/1797258 doi: 10.1155/2022/1797258
    [7] T. Jin, X. F. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simul., 190 (2021), 203–221. https://doi.org/10.1016/J.MATCOM.2021.05.018 doi: 10.1016/J.MATCOM.2021.05.018
    [8] T. Jin, X. F. Yang, H. X. Xia, D. Hui, Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differential equation with Caputo type, Fractals, 29 (2021). https://doi.org/10.1142/S0218348X21500122
    [9] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36 (2000), 1403–1412. https://doi.org/10.1029/2000WR900031 doi: 10.1029/2000WR900031
    [10] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, The fractional-order governing equation of levy motion, Water Resour. Res., 36 (2000), 1413–1423. https://doi.org/10.1029/2000WR900032 doi: 10.1029/2000WR900032
    [11] V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equations, 22 (2006), 558–576. https://doi.org/10.1002/num.20112 doi: 10.1002/num.20112
    [12] F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 62 (2011), 1181–1199. https://doi.org/10.1016/j.camwa.2011.03.086 doi: 10.1016/j.camwa.2011.03.086
    [13] F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos, 22 (2012), 1–17. https://doi.org/10.1142/S0218127412500861 doi: 10.1142/S0218127412500861
    [14] G. Bonanno, R. Rodríguez-López, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 717–744. https://doi.org/10.2478/s13540-014-0196-y doi: 10.2478/s13540-014-0196-y
    [15] R. Rodríguez-López, S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1016–1038. https://doi.org/10.2478/s13540-014-0212-2 doi: 10.2478/s13540-014-0212-2
    [16] C. E. T. Ledesma, N. Nyamoradi, Impulsive fractional boundary value problem with pLaplace operator, J. Appl. Math. Comput., 55 (2017), 257–278. https://doi.org/10.1007/s12190-016-1035-6 doi: 10.1007/s12190-016-1035-6
    [17] I. Bogun, Existence of weak solutions for impulsive p-Laplacian problem with superlinear impulses, Nonlinear Anal. Real World Appl., 13 (2012), 2701–2707. https://doi.org/10.1016/j.nonrwa.2012.03.014 doi: 10.1016/j.nonrwa.2012.03.014
    [18] J. F. Xu, Z. L. Wei, Y. Z. Ding, Existence of weak solutions for p-Laplacian problem with impulsive effects, Taiwanese J. Math., 17 (2013), 501–515. https://doi.org/10.11650/tjm.17.2013.2081 doi: 10.11650/tjm.17.2013.2081
    [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Chichester: Elsevier, Amsterdam, 2006.
    [20] D. Idczak, S. Walczak, Fractional Sobolev spaces via Riemann-Liouville derivatives, J. Funct. Spaces, 2013 (2013), 1–15. https://doi.org/10.1155/2013/128043 doi: 10.1155/2013/128043
    [21] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65 (1986).
    [22] G. Bonanno G, S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1–10. https://doi.org/10.1080/00036810903397438 doi: 10.1080/00036810903397438
    [23] J. Simon, Régularité de la solution d'un problème aux limites non linéaires, Ann. Fac. Sci. Toulouse, 3 (1981), 247–274. https://doi.org/10.5802/AFST.569 doi: 10.5802/AFST.569
    [24] E. Zeidler, Nonlinear functional analysis and its applications, Springer New York, NY, 1990. https://doi.org/10.1007/978-1-4612-0981-2
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1770) PDF downloads(99) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog