Citation: Shuixian Yan, Sanling Yuan. Critical value in a SIR network model with heterogeneous infectiousness and susceptibility[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5802-5811. doi: 10.3934/mbe.2020310
[1] | F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiogy, 2nd edition, Springer, Berlin, 2012. |
[2] | Z. Jin, G. Sun, M. Liu, Dynamic Modeling and Analysis of Network Infectious Diseases, Science Press, Beijing, 2014. |
[3] | I. Kiss, J. C. Miller, P. L. Simon, Mathematics of Epidemics on Networks: From Exact to Approximate Models, Springer, Berlin, 2017. |
[4] | M. E. J. Newman, Spread of epidemic disease on networks, Phys. Rev. E, 66 (2002), 016128. doi: 10.1103/PhysRevE.66.016128 |
[5] | T. House, M. J. Keeling, Insights from unifying modern approximations to infections on networks, J. R. Soc. Interface, 8 (2011), 67-73. doi: 10.1098/rsif.2010.0179 |
[6] | J. Lindquist, J. Ma, P. V. D. Driessche, F. H. Willeboordse, Effective degree network disease models, J. Math. Biol., 62 (2011), 143-164. doi: 10.1007/s00285-010-0331-2 |
[7] | N. Sherborne, J. C. Miller, K. Blyuss, I. Kiss, Mean-field models for non-Markovian epidemics on networks, J. Math. Biol., 76 (2018), 755-778. doi: 10.1007/s00285-017-1155-0 |
[8] | E. Volz, SIR dynamics in random networks with heterogeneous connectivity, J. Math. Biol., 56 (2008), 293-310. doi: 10.1007/s00285-007-0116-4 |
[9] | J. C. Miller, A note on a paper by erik volz: SIR dynamics in random networks, J. Math. Biol., 62 (2011), 349-358. doi: 10.1007/s00285-010-0337-9 |
[10] | J. C. Miller, A. Slim, E. Volz, Edge-based compartmental modelling for infectious disease spread, J. R. Soc. Interface, 9 (2012), 890-906. doi: 10.1098/rsif.2011.0403 |
[11] | J. C. Miller, Epidemics on networks with large intial conditions or changing structure, PLoS One, 7 (2014), e101421. |
[12] | S. Yan, Y. Zhang, S. Yuan, J. Ma, An edge-based SIR model for sexually transmitted diseases on the contact network, J. Theoret. Biol., 439 (2018), 216-225. doi: 10.1016/j.jtbi.2017.12.003 |
[13] | J. M. Jaramillo, J. Ma, P. V. D. Driessche, S. Yuan, Host contact structure is important for the recurrence of influenza A, J. Math. Biol., 77 (2018), 1563-1588. doi: 10.1007/s00285-018-1263-5 |
[14] | Y. Wang, J. Ma, J. Cao, Edge-based epidemic spreading in degree-correlated complex networks, J. Theoret. Biol., 454 (2018), 164-181. doi: 10.1016/j.jtbi.2018.06.006 |
[15] | H. Huo, Q. Yang, H. Xiang, Dynamics of an edge-based SEIR model for sexually transmitted diseases, Math. Biosci. Eng., 17 (2020), 669-699. doi: 10.3934/mbe.2020035 |
[16] | J. Lv, Z. Jin, Multistrain edge-based compartmental model on networks, Math. Method. Appl. Sci., 42 (2019), 1529-1552. doi: 10.1002/mma.5451 |
[17] | F. Ball, D. Clancy, The final outcome of an epidemic model with several different types of infective in a large population, J. Appl. Probab., 32 (1995), 579-590. doi: 10.2307/3215114 |
[18] | J. C. Miller, Epidemic size and probability in populations with heterogeneous infectivity and susceptiblility, Phys. Rev. E, 76 (2007), 01010(R). |
[19] | J. C. Miller, E. M. Volz, Incorporating disease and population structure into models of SIR disease in contact networks, PLoS One, 8 (2013), e69162. doi: 10.1371/journal.pone.0069162 |
[20] | M. Hirsch, The dynamical systems approach to differential equations, B. Am. Math. Soc., 11 (1984), 1-64. doi: 10.1090/S0273-0979-1984-15236-4 |