Citation: Rajanish Kumar Rai, Pankaj Kumar Tiwari, Yun Kang, Arvind Kumar Misra. Modeling the effect of literacy and social media advertisements on the dynamics of infectious diseases[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5812-5848. doi: 10.3934/mbe.2020311
[1] | WHO, World Health Organization, coronavirus disease (COVID-19) pandemic, 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. |
[2] | K. Harris, Tracking the global impact of the coronavirus outbreak, Bain Macro Trends group analysis, 2020. Available from: https://www.bain.com/insights/tracking-the-global-impact-of-thecoronavirus-outbreak-snap-chart/. |
[3] | X. Chang, M. Liu, Z. Jin, J. Wang, Studying on the impact of media coverage on the spread of COVID-19 in Hubei Province, China, Math. Biosci. Eng., 17 (2020), 3147-3159. |
[4] | A. K. Misra, R. K. Rai, Y. Takeuchi, Modeling the control of infectious diseases: Effects of TV and social media devertisements, Math. Biosci. Eng., 15 (2018), 1315-1343. |
[5] | A. K. Misra, R. K. Rai, A mathematical model for the control of infectious diseases: Effects of TV and radio advertisements, Inter. J. Bifur. Chaos, 28 (2018), 1850037. |
[6] | A. K. Misra, R. K. Rai, Impacts of TV and radio advertisements on the dynamics of an infectious disease: A modeling study, Math. Meth. Appl. Sci., 42 (2019), 1262-1282. |
[7] | J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equ., 20 (2008), 31-53. |
[8] | R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153-164. |
[9] | B. Dubey, P. Dubey, U. S. Dubey, Role of media and treatment on an SIR model, Nonlinear Anal. Model. Control, 21 (2016), 185-200. |
[10] | I. Ghosh, P. K. Tiwari, S. Samanta, I. M. Elmojtaba, N. Al-Salti, J. Chattopadhyay, A simple SItype model for HIV/AIDS with media and self-imposed psychological fear, Math. Biosci., 306 (2018), 160-169. |
[11] | A. K. Misra, A. Sharma, J. B. Shukla, Stability analysis and optimal control of an epidemic model with awareness programs by media, BioSystems, 138 (2015), 53-62. |
[12] | J. M. Tchuenche, C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission, ISRN Biomath., 581274 (2012), 1-11. |
[13] | J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith, C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11 (2011), 1-16. |
[14] | Government of India, Information about COVID-19, #IndiaFightsCorona COVID-19 in India, 2020. Available from: https://www.mygov.in/covid-19. |
[15] | A. Dutt, Surat plague of 1994 re-examined, Review, 37 (2006), 755-760. |
[16] | C. Sun, W. Yang, J. Arino, K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 230 (2011), 87-95. |
[17] | J. Cui, X. Tao, H. Zhu, An SIS infection model incorporating media coverage, Rocky Mountain J. Math., 38 (2008), 13-23. |
[18] | Y. Liu, J. A. Cui, The impact of media coverage on the dynamics of infectious diseases, Int. J. Biomath., 1 (2008), 65-74. |
[19] | Y. Li, J. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 2353-2365. |
[20] | F. Nyabadza, C. Chiyaka, Z. Mukandavire, S. D. H. Musekwa, Analysis of an HIV/AIDS model with public-health information campaigns and individual withdrawal, J. Biol. Syst., 18 (2010), 357-375. |
[21] | S. Samanta, S. Rana, A. Sharma, A. K. Misra, J. Chattopadhyay, Effect of awareness programs by media on the epidemic outbreaks: A mathematical model, Appl. Math. Comput., 219 (2013), 6965-6977. |
[22] | A. K. Misra, A. Sharma, J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comp. Model., 53 (2011), 1221-1228. |
[23] | S. Samanta, J. Chattopadhyay, Effect of awareness program in disease outbreak − A slow-fast dynamics, Appl. Math. Comput., 237 (2014), 98-109. |
[24] | S. Collinson, K. Khan, J. M. Heffernan, The effects of media reports on disease spread and important public health measurements, PLoS One, 10 (2015), e0141423. |
[25] | H. F. Huo, P. Yang, H. Xiang, Stability and bifurcation for an SEIS epidemic model with the impact of media, Physica A, 490 (2018), 702-720. |
[26] | A. K. Misra, R. K. Rai, Y. Takeuchi, Modeling the effect of time delay in budget allocation to control an epidemic through awareness, Int. J. Biomath., 11 (2018), 1850027. |
[27] | R. K. Rai, A. K. Misra, Y. Takeuchi, Modeling the impact of sanitation and awareness on the spread of infectious diseases, Math. Biosci. Eng., 16 (2019), 667-700. |
[28] | G. O. Agaba, Y. N. Kyrychko, K. B. Blyuss, Mathematical model for the impact of awareness on the dynamics of infectious diseases, Math. Biosci., 286 (2017), 22-30. |
[29] | C. Yang, X. Wang, D. Gao, J. Wang, Impact of awareness programs on Cholera dynamics: Two modeling approaches, Bull. Math. Biol., 79 (2017), 2109-2131. |
[30] | M. S. Rahman, M. L. Rahman, Media and education play a tremendous role in mounting AIDS awareness among married couples in Bangladesh, AIDS Res. Therapy, 4 (2007), 10-17. |
[31] | WHO, Epidemic curves: Serve acute respiratory syndrome (SARS). Available from: https://www.who.int/csr/sars/epicurve/epiindex/en/index1.html. |
[32] | H. I. Freedman, J. W. H. So, Global stability and persistence of simple food chains, Math. Biosci., 76 (1985), 69-86. |
[33] | J. K. Hale, Ordinary Differential Equations, Wiley-Inscience, New York, 1969. |
[34] | V. Lakshmikantham, S. Leela, A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Springer, Switzerland, 1989. |
[35] | M. Zhien, L. Jia, Dynamical Modeling and Analysis of Epidemics, World Scientific, 2009. |
[36] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[37] | G. Gandolfo, Economic Dynamics, Springer, New York, 1996. |
[38] | K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Boston, 1992. |
[39] | I. Ghosh, P. K. Tiwari, J. Chattopadhyay, Effect of active case finding on dengue control: Implications from a mathematical model, J. Theor. Biol., 464 (2019), 50-62. |
[40] | S. M. Blower, M. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int. Stat. Rev., 62 (1994), 229-243. |
[41] | S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196. |
[42] | South Sudan stops transmission of guinea worm disease, 2020. Available from: https://www.cartercenter.org/news/pr/guinea-worm-032118.html. |
[43] | D. Molyneux, D. P. Sankara, Guinea worm eradication: Progress and challenges-should we beware of the dog?, PLoS Negl. Trop. Dis. 11 (2016), e0005495. |
[44] | I. Ghosh, P. K. Tiwari, S. Mandal, M. Martcheva, J. Chattopadhyay, A mathematical study to control Guinea worm disease: A case study on Chad, J. Biol. Dyn., 12 (2018), 846-871. |