Citation: Fangyuan Chen, Rong Yuan. Dynamic behavior of swine influenza transmission during the breed-slaughter process[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312
[1] | E. Giuffra, J. M. H. Kijas, V. Amarger, O. Carlborg, J. T. Jeon, L. Andersson, The origin of the domestic pig: Independent domestication and subsequent introgression, Genetics, 154 (2000), 1785-1791. |
[2] | J. S. Mackenzie, M. Jeggo, P. Daszak, J. A. Richt, One Health: The human-animal-environment interfaces in emerging infectious diseases, Springer, (2013). |
[3] | B. J. Coburn, C. Cosner, S. Ruan, Emergence and dynamics of influenza super-strains, BMC Public Health, 11 (2011), 597-615. |
[4] | J. Murray, Mathematical Biology: I. An Introduction, Springer, (2013). |
[5] | H. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993),407-435. |
[6] | A. Pugliese, Population models for disease with no recovery, J. Math. Biol., 28 (1990) 65-82. |
[7] | J. Zhou, H. W. Hethcote, Population size dependent incidence in models for diseases without immunity, J. Math. Biol., 32 (1994), 809-834. |
[8] | H. Hu, L. Xu, K. Wang, A comparison of deterministic and stochastic predator-prey models with disease in the predator, Discrete Cont. Dyn. B, 24 (2018), 2837-2863. |
[9] | L. Han, A. Pugliese, Epidemics in two competing species, Nonlinear Anal. Real World Appl., 10 (2009), 723-744. |
[10] | P. Magal, X. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. |
[11] | P. Dreessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, SIAM J. Math. Anal., 180 (2002), 29-48. |
[12] | O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. |
[13] | J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection, Cambridge University Press, (1988). |
[14] | D. G. Aronson, H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations And Related Topics, Springer, (1975), 5-49. |
[15] | C. Carrère, Spreading speeds for a two-species competition-diffusion system, J. Differ. Equations, 264 (2018), 2133-2156. |
[16] | Y. Kan-On, Parameter dependence of propagation speed of travelling waves for competitiondiffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. |
[17] | M. A. Lewis, B. Li, H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45 (2002), 219-233. |
[18] | H. F. Weinberger, M. A. Lewis, B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol. 45 (2002), 183-218. |
[19] | G. Lin, Spreading speeds of a lotka-volterra predator-prey system: the role of the predator, Nonlinear Anal. Theory Methods Appl., 74 (2011), 2448-2461. |
[20] | G. Lin, W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions, Eur. J. Appl. Math., 23 (2012), 669-689. |
[21] | C. C. Wu, The spreading speed for a predator-prey model with one predator and two preys, Appl. Math. Lett. 91 (2019), 9-14. |
[22] | H. Wang, X. S. Wang, Traveling wave phenomena in a kermack-mckendrick sir model, J. Dyn. Differ. Equations, 28 (2016), 143-166. |