Citation: Lu Lu, Jiyou Fei, Ling Yu, Yu Yuan. A rolling bearing fault detection method based on compressed sensing and a neural network[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5864-5882. doi: 10.3934/mbe.2020313
[1] | D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, 52 (2006), 1289-1306. |
[2] | H. Zhao, H. Liu, J. Xu, W. Deng, Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine, IEEE Trans. Instrum. Meas., 69 (2020), 4165-4172. |
[3] | T. Li, J. Shi, X. Li, J. Wu, F. Pan, Image encryption based on pixel-level diffusion with dynamic filtering and DNA-level permutation with 3D Latin cubes, Entropy, 21 (2019), 1-21. |
[4] | M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, et al, Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag., 25 (2008), 83-91. |
[5] | Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, X. Zhang, Enhanced Moth-flame optimizer with mutation strategy for global optimization, Inf. Sci., 492 (2019), 181-203. |
[6] | H. Zhao, J. Zheng, J. Xu, W. Deng, Fault diagnosis method based on principal component analysis and broad learning system, IEEE Access, 7 (2019), 99263-99272. |
[7] | E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52, (2006), 489-509. |
[8] | D. Takhar, M. Wakin, M. Duarte, D. Baron, S. Sarvotham, K. Kelly, et al., A new compressive imaging camera architecture using optical domain compression, Proc. SPIE, (2006), 6065. |
[9] | R. Chen, S. K. Guo, X. Z. Wang, T. Zhang, Fusion of multi-RSMOTE with fuzzy integral to classify bug reports with an imbalanced distribution, IEEE Trans. Fuzzy Syst., 27 (2019), 2406-2420. |
[10] | H. Zhao, S. Zuo, M. Hou, W. Liu, L. Yu, A novel adaptive signal processing method based on enhanced empirical wavelet transform technology, Sensors, 18 (2018), 1-17. |
[11] | Y. Liu, X. Wang, Z. Zhai, R. Chen, Y. Jiang, Timely daily activity recognition from headmost sensor events, ISA Trans., 94 (2019), 379-390. |
[12] | H. Zhao, J. Zheng, W. Deng, Y. Song, Semi-supervised broad learning system based on manifold regularization and broad network, IEEE Trans. Circuits Syst. I, 67 (2020), 983-994. |
[13] | T. Li, Z. Qian, T. He, Short-term load forecasting with improved CEEMDAN and GWO-based multiple kernel ELM, Complexity, 2020 (2020), 1-20. |
[14] | J. Yu, Y. Xu, G. Yu, L. Liu, Fault severity identification of roller bearings using flow graph and Non-naive Bayesian inference, P. I. Mech. Eng. C-J. Mec., 233 (2019), 5161-5171. |
[15] | Z. Wang, Z. Ji, X. Wang T., Wu, W. Huang, A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model, BioSystems, 162 (2017), 59-65. |
[16] | H. Zhao, D. Li, W. Deng, Research on vibration suppression method of alternating current motor based on fractional order control strategy, Proc. Inst. Mech. Eng. E J. Process, 231 (2017), 786-799. |
[17] | M. Lustig, D. Donoho, L. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., 58 (2007), 1182-1195. |
[18] | R. Baraniuk, P. Steeghs, Compressive radar imaging, IEEE Radar Conf., (2007), 128-133. |
[19] | W. Deng, H. Liu, J. Xu, H. M. Zaho, An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE Trans. Instrum. Meas., 2020 (2020), 1-8. |
[20] | Z. Ji, Z. Wang, X. Deng, W. Huang, T. Wu, A new parallel algorithm to solve one classic water resources optimal allocation problem based on inspired computational model, Desalin. Water Treat., 160 (2019), 214-218. |
[21] | W. Deng, J. Xu, Y. Song, H. M. Zaho, An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application, Int. J. Bio-Inspired Comput., 2020 (2020),1-10. |
[22] | H. Shao, J. Cheng, H. Jiang, Y. Yang, Z. Wu, Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing, Knowledge-Based Syst., 188 (2020), 1-14. |
[23] | H. Chen, Q. Zhang, J. Luo, Y. Xu, X. Zhang, An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine, Appl. Soft Comput., 86 (2020), 1-24 |
[24] | I. Maravic, M. Vetterli, K. Ramchandran, High resolution acquisition methods for wideband communication systems, Proc. Acoust. Speech Signal Process., 4 (2003), IV-133-6. |
[25] | K. Gedalyahu, Y. Eldar, Time-delay estimation from low-rate samples: A union of subspaces approach, IEEE Trans. Signal Process., 58 (2010), 3017-3031. |
[26] | M. Davenport, C. Hegde, M. Duarte, R. Baraniuk, Joint manifolds for data fusion, IEEE Trans. Image Process., 19 (2010), 2580-2594. |
[27] | W. Deng, J. Xu, H. Zhao, An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem, IEEE Access, 7 (2019), 20281-20292. |
[28] | Y. Liu, Y. Mu, K. Chen, Y. Li, J. Guo, Daily activity feature selection in smart homes based on Pearson correlation coefficient, Neural Process. Lett., 51 (2020), 1771-1787. |
[29] | Z. He, H. Shao, X. Zhang, J. Cheng, Y. Yang, Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples, IEEE Access, 7 (2019), 115368-115377. |
[30] | J. Luo, H. Chen, A. A. Heidari, Y. Xu, Q. Zhang, C. Li, Multi-strategy boosted mutative whale-inspired optimization approaches, Appl. Math. Model, 73 (2019),109-123. |
[31] | H. Chen, F. Miao, X. Shen, Hyperspectral remote sensing image classification with CNN based on quantum genetic-optimized sparse representation, IEEE Access, 8 (2020), 99900-99909. |
[32] | J. Yu, M. Bai, G. Wang, X. Shi, Fault diagnosis of planetary gearbox with incomplete information using assignment reduction and flexible naive Bayesian classifier, J. Mech. Sci. Technol., 32 (2018), 37-47. |
[33] | F. R. Sun, Y. D. Yao, G. Z. Li, W. Liu, Simulation of real gas mixture transport through aqueous nanopores during the depressurization process considering stress sensitivity, J. Petrol. Sci. Eng., 178 (2019), 829-837. |
[34] | W. Deng, H. M. Zhao, L. Zou, G. Y. Li, X. H. Yang, D. Q. Wu, A novel collaborative optimization algorithm in solving complex optimization problems, Soft Comput., 21 (2017), 4387-4398. |
[35] | J. Zheng, Y. Yuan, L. Zou, W. Deng, C. Guo, H. Zhao, Study on a novel fault diagnosis method based on VMD and BLM, Symmetry, 11 (2019), 747. |
[36] | W. Deng, W. Li, X. Yang, A novel hybrid optimization algorithm of computational intelligence techniques for highway passenger volume prediction, Expert Syst. Appl., 38 (2011), 4198-4205. |
[37] | J. Yu, Y. He, Planetary gearbox fault diagnosis based on data-driven valued characteristic multigranulation model with incomplete diagnostic information, J. Sound Vib., 429 (2018), 63-77. |
[38] | H. L. Fu, M. M. Wang, P. Li, S. Jiang, M. Cao, Tracing knowledge development trajectories of the internet of things domain: A main path analysis, IEEE T. Ind. Inform., 15 (2019), 6531-6540. |
[39] | W. Deng, R. Yao, H.M. Zhao, X. H. Yang, G. Y. Li, A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm, Soft Computing, 23 (2019), 2445-2462. |
[40] | Z. Wang, X. Ren, Z. Ji, W. Huang, T. Wu, A novel bio-heuristic computing algorithm to solve the capacitated vehicle routing problem based on Adleman-Lipton model, Biosystems, 184 (2019), 103997. |
[41] | H. L. Fu, M. M. Wang, P. Li, S. Jiang, M. Cao, Tracing knowledge development trajectories of the internet of things domain: A main path analysis, IEEE T. Ind. Inform., 15 (2019), 6531-6540. |
[42] | J. Yu, Y. Xu, K. Liu, Planetary gear fault diagnosis using stacked denoising autoencoder and gated recurrent unit neural network under noisy environment and time-varying rotational speed conditions, Meas. Sci. Technol., 30 (2019), 095003. |
[43] | M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, signal processing, IEEE Trans. Inf. Theory, 54 (2006), 4311-4322. |
[44] | M. Davenport, M. Wakin, Analysis of orthogonal matching pursuit using the restricted isometry property, IEEE Trans. Inf. Theory, 56 (2011), 4395-4401. |
[45] | S. Lu, Q. He, J. Wang, A review of stochastic resonance in rotating machine fault detection, Mech. Syst. Signal Pr., 116 (2019), 230-260. |
[46] | W. Dai, O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE Trans. Inf. Theory, 55 (2009), 2230-2249. |
[47] | H. shao, M. Xia, G. Han, Y. Zhang, J. Wan, Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer CNN and thermal images, IEEE T Ind. Inform., 2020, Doi: 10.1109/TII.2020.3005965. |
[48] | J. Zheng, Z. Dong, H. Pan, Q. Ni, J. Zhang, Composite multi-scale weighted permutation entropy and extreme learning machine based intelligent fault diagnosis for rolling bearing, Measurement, 143 (2019), 69-80. |
[49] | S. Lu, P. Zheng, Y. Liu, Z. Cao, H. Yang, Q. Wang, Sound-aided vibration weak signal enhancement for bearing fault detection by using adaptive stochastic resonance, J Sound Vib., 449 (2019), 18-29. |
[50] | J. Zheng, H. Pan, Q. Liu, K. Ding, Refined time-shift multiscale normalised dispersion entropy and its application to fault diagnosis of rolling bearing, Phys. A, 545 (2020), 123641. |