Citation: Raimund Bürger, Paola Goatin, Daniel Inzunza, Luis Miguel Villada. A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5883-5906. doi: 10.3934/mbe.2020314
[1] | R. M. Colombo, M. Garavello, M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023. |
[2] | M. Mimault, Lois de conservation pour la modélisation des mouvements de foule, PhD thesis, 2015, University of Nice. Available from: http://www.theses.fr/2015NICE4102/document. |
[3] | R. M. Colombo, E. Rossi, Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065. |
[4] | R. M. Colombo, E. Rossi, Modelling crowd movements in domains with boundaries, IMA J. Appl. Math., 84 (2019), 833-853. |
[5] | R. Colombo, M. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2008), 1553-1567. |
[6] | R. L. Hughes, A continuum theory for the flow of pedestrians, Transpn. Res.-B, 36 (2002), 507-535. |
[7] | N. Bellomo, C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345. |
[8] | Y. Jiang, P. Zhang, S. Wong, R. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389 (2010), 4623-4635. |
[9] | R. Bürger, D. Inzunza, P. Mulet, L. M. Villada, Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour, Appl. Numer. Math., 144 (2019), 234-252. |
[10] | B. Maury, A. Roudneff-Chupin, F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2009), 1787-1821. |
[11] | B. Piccoli, A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. |
[12] | L. Bruno, A. Tosin, P. Tricerri, F. Venuti, Non-local first-order modelling of crowd dynamics: a multidimensional framework with applications, Appl. Math. Model., 35 (2011), 426-445. |
[13] | R. Bürger, G. Chowell, E. Gavilán, P. Mulet, L. M. Villada, Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents, Math. Biosci. Eng., 15 (2018), 95-123. |
[14] | R. Bürger, G. Chowell, E. Gavilán, P. Mulet, L. M. Villada, Numerical solution of a spatio-temporal predator-prey model with infected prey, Math. Biosci. Eng., 16 (2019), 438-473. |
[15] | R. M. Colombo, M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations, Acta Math. Sci. Ser. B (Engl. Ed.), 32 (2012), 177-196. |
[16] | P. Kachroo, S. J. Al-Nasur, S. A. Wadoo, A. Shende, Pedestrian Dynamics, Springer-Verlag, 2008. |
[17] | S. Blandin, P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241. |
[18] | A. Kurganov, A. Polizzi, Non-oscillatory central schemes for traffic flow models with arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451. |
[19] | A. Sopasakis, M. Katsoulakis, Stochastic modelling and simulation of traffic flow: asymmetric single exclusion process with arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921-944. |
[20] | F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885. |
[21] | K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions, Quart. J. Appl. Math., 57 (1999), 573-600. |
[22] | S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl, Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), 3295-3313. |
[23] | C. Appert-Rolland, J. Cividini, H. J. Hilhorst, P. Degond, Pedestrian flows: from individuals to crowds, Transp. Res. Procedia, 2 (2014), 468-476. |
[24] | P. Degond, C. Appert-Rolland, J. Pettré, G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839. |
[25] | R. Etikyala, S. Göttlich, A. Klar, S. Tiwari, Particle methods for pedestrian flow models: from microscopic to nonlocal continuum models, Math. Models Methods Appl. Sci., 24 (2014), 2503-2523. |
[26] | W. Daamen, D. C. Duives, S. P. Hoogendoorn (eds.), Proceedings of the Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The Netherlands, vol. 2 of Transportation Research Procedia, 2014. |
[27] | A. Dederichs, G. Köster, A. Schadschneider (eds.), Proceedings of Pedestrian and Evacuation Dynamics 2018 (PED 2018), vol. A26 of Collective Dynamics, 2020. |
[28] | W. Song, J. Ma, L. Fu (eds.), Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China, University of Science and Technology Press, Hefei, China, 2016. |
[29] | C. Chalons, P. Goatin, L. M. Villada, High-order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., 40 (2018), A288-A305. |
[30] | F. A. Chiarello, P. Goatin, L. M. Villada, High-order Finite Volume WENO schemes for non-local multi-class traffic flow models, in Proceedings of the XVⅡ International Conference (HYP2018) on Hyperbolic Problems, 25-29 June 2018, Pennsylvania State University, USA (eds. A. Bressan, M. Lewicka, D. Wang and Y. Zheng), American Institute of Mathematical Sciences, Springfield MO, USA, 2020, 353-360. |
[31] | F. A. Chiarello, P. Goatin, L. M. Villada, Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models, Comput. Appl. Math., 39 (2020), https://doi.org/10.1007/s40314-020-1097-9. |
[32] | D. Inzunza, Métodos Implicitos-Explicitos para Problemas de Convección-Difusión-Reacción no Lineales y no Locales, PhD thesis, 2019, https://www.ci2ma.udec.cl/publicaciones/tesisposgrado/graduado.php?id=70, Universidad de Concepcion. |
[33] | G. S. Jiang, C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202-228. |
[34] | X. D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), 200-212. |
[35] | C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51 (2009), 82-126. |
[36] | E. Rossi, Definitions of solutions to the IBVP for multi-dimensional scalar balance laws, J. Hyperbolic Differ. Equ., 15 (2018), 349-374. |
[37] | J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596. |
[38] | C. Bardos, A. Y. Le Roux, J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034. |
[39] | S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[40] | M. Lécureux-Mercier, Improved stability estimates on general scalar balance laws, 2010. |
[41] | J. Von Zur Gathen, J. Gerhard, Modern Computer Algebra, Cambridge University Press, 2013. |
[42] | A. Alhawsawi, M. Sarvi, M. Haghani, A. Rajabifard, Investigating pedestrians' obstacle avoidance behaviour, Collective Dynamics, A26 (2020), 413-422. |
[43] | C. Dias, O. Ejtemai, M. Sarvi, M. Burd, Exploring pedestrian walking through angled corridors, Transp. Res. Procedia, 2 (2014), 19-25. |
[44] | K. Fujii, T. Sano, Experimental study on crowd flow passing through ticket gates in railway stations, Transp. Res. Procedia, 2 (2014), 630-635. |
[45] | X. Liu, W. Song, L. Fu, H. Zhang, Pedestrian inflow process under normal and special situations, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 136-143. |
[46] | X. Mai, X. Zhu, W. Song, J. Ma, Qualitative analysis on two-dimensional pedestrian flows - unidirectional and bidirectional, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 151-156. |
[47] | M. Twarogowska, P. Goatin, R. Duvigneau, Comparative study of macroscopic pedestrian models, Transp. Res. Procedia, 2 (2014), 477-485. |
[48] | M. Twarogowska, P. Goatin, R. Duvigneau, Macroscopic modeling and simulations of room evacuation, Appl. Math. Model., 38 (2014), 5781-5795. |
[49] | J. Chen, Q. Zeng, W. Zhang, Y. Wu, Q. Liu, P. Lin, Restudy the faster-is-slower effect by using mice under high competition, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 159-162. |
[50] | T. Mashiko, T. Suzuki, Speed-up of evacuation by additional walls near the exit, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 334-339. |
[51] | D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic, Nature, 407 (2000), 487-490. |
[52] | C. Feliciano, K. Nishinari, Investigation of pedestrian evacuation scenarios through congestion level and crowd danger, Collective Dynamics, A26 (2020), 150-157. |
[53] | Z. Shahhoseini, M. Sravi, M. Saberi, The impact of merging maneuvers on delay during evacuation, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 100-104. |