Research article Special Issues

A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries

  • Received: 31 May 2020 Accepted: 17 August 2020 Published: 03 September 2020
  • This study revises the non-local macroscopic pedestrian flow model proposed in [R. M. Colombo, M. Garavello, and M. Lécureux-Mercier. A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci., 22(4):1150023, 2012] to account for anisotropic interactions and the presence of walls or other obstacles in the walking domain. We prove the well-posedness of this extended model and we apply high-resolution numerical schemes to illustrate the model characteristics. In particular, numerical simulations highlight the role of different model parameters in the observed pattern formation.

    Citation: Raimund Bürger, Paola Goatin, Daniel Inzunza, Luis Miguel Villada. A non-local pedestrian flow model accounting for anisotropic interactions and domain boundaries[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5883-5906. doi: 10.3934/mbe.2020314

    Related Papers:

  • This study revises the non-local macroscopic pedestrian flow model proposed in [R. M. Colombo, M. Garavello, and M. Lécureux-Mercier. A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci., 22(4):1150023, 2012] to account for anisotropic interactions and the presence of walls or other obstacles in the walking domain. We prove the well-posedness of this extended model and we apply high-resolution numerical schemes to illustrate the model characteristics. In particular, numerical simulations highlight the role of different model parameters in the observed pattern formation.


    加载中


    [1] R. M. Colombo, M. Garavello, M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Math. Models Methods Appl. Sci., 22 (2012), 1150023.
    [2] M. Mimault, Lois de conservation pour la modélisation des mouvements de foule, PhD thesis, 2015, University of Nice. Available from: http://www.theses.fr/2015NICE4102/document.
    [3] R. M. Colombo, E. Rossi, Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065.
    [4] R. M. Colombo, E. Rossi, Modelling crowd movements in domains with boundaries, IMA J. Appl. Math., 84 (2019), 833-853.
    [5] R. Colombo, M. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2008), 1553-1567.
    [6] R. L. Hughes, A continuum theory for the flow of pedestrians, Transpn. Res.-B, 36 (2002), 507-535.
    [7] N. Bellomo, C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.
    [8] Y. Jiang, P. Zhang, S. Wong, R. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389 (2010), 4623-4635.
    [9] R. Bürger, D. Inzunza, P. Mulet, L. M. Villada, Implicit-explicit methods for a class of nonlinear nonlocal gradient flow equations modelling collective behaviour, Appl. Numer. Math., 144 (2019), 234-252.
    [10] B. Maury, A. Roudneff-Chupin, F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2009), 1787-1821.
    [11] B. Piccoli, A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107.
    [12] L. Bruno, A. Tosin, P. Tricerri, F. Venuti, Non-local first-order modelling of crowd dynamics: a multidimensional framework with applications, Appl. Math. Model., 35 (2011), 426-445.
    [13] R. Bürger, G. Chowell, E. Gavilán, P. Mulet, L. M. Villada, Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents, Math. Biosci. Eng., 15 (2018), 95-123.
    [14] R. Bürger, G. Chowell, E. Gavilán, P. Mulet, L. M. Villada, Numerical solution of a spatio-temporal predator-prey model with infected prey, Math. Biosci. Eng., 16 (2019), 438-473.
    [15] R. M. Colombo, M. Lécureux-Mercier, Nonlocal crowd dynamics models for several populations, Acta Math. Sci. Ser. B (Engl. Ed.), 32 (2012), 177-196.
    [16] P. Kachroo, S. J. Al-Nasur, S. A. Wadoo, A. Shende, Pedestrian Dynamics, Springer-Verlag, 2008.
    [17] S. Blandin, P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241.
    [18] A. Kurganov, A. Polizzi, Non-oscillatory central schemes for traffic flow models with arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), 431-451.
    [19] A. Sopasakis, M. Katsoulakis, Stochastic modelling and simulation of traffic flow: asymmetric single exclusion process with arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921-944.
    [20] F. Betancourt, R. Bürger, K. H. Karlsen, E. M. Tory, On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885.
    [21] K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions, Quart. J. Appl. Math., 57 (1999), 573-600.
    [22] S. Göttlich, S. Hoher, P. Schindler, V. Schleper, A. Verl, Modeling, simulation and validation of material flow on conveyor belts, Appl. Math. Model., 38 (2014), 3295-3313.
    [23] C. Appert-Rolland, J. Cividini, H. J. Hilhorst, P. Degond, Pedestrian flows: from individuals to crowds, Transp. Res. Procedia, 2 (2014), 468-476.
    [24] P. Degond, C. Appert-Rolland, J. Pettré, G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839.
    [25] R. Etikyala, S. Göttlich, A. Klar, S. Tiwari, Particle methods for pedestrian flow models: from microscopic to nonlocal continuum models, Math. Models Methods Appl. Sci., 24 (2014), 2503-2523.
    [26] W. Daamen, D. C. Duives, S. P. Hoogendoorn (eds.), Proceedings of the Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The Netherlands, vol. 2 of Transportation Research Procedia, 2014.
    [27] A. Dederichs, G. Köster, A. Schadschneider (eds.), Proceedings of Pedestrian and Evacuation Dynamics 2018 (PED 2018), vol. A26 of Collective Dynamics, 2020.
    [28] W. Song, J. Ma, L. Fu (eds.), Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China, University of Science and Technology Press, Hefei, China, 2016.
    [29] C. Chalons, P. Goatin, L. M. Villada, High-order numerical schemes for one-dimensional nonlocal conservation laws, SIAM J. Sci. Comput., 40 (2018), A288-A305.
    [30] F. A. Chiarello, P. Goatin, L. M. Villada, High-order Finite Volume WENO schemes for non-local multi-class traffic flow models, in Proceedings of the XVⅡ International Conference (HYP2018) on Hyperbolic Problems, 25-29 June 2018, Pennsylvania State University, USA (eds. A. Bressan, M. Lewicka, D. Wang and Y. Zheng), American Institute of Mathematical Sciences, Springfield MO, USA, 2020, 353-360.
    [31] F. A. Chiarello, P. Goatin, L. M. Villada, Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models, Comput. Appl. Math., 39 (2020), https://doi.org/10.1007/s40314-020-1097-9.
    [32] D. Inzunza, Métodos Implicitos-Explicitos para Problemas de Convección-Difusión-Reacción no Lineales y no Locales, PhD thesis, 2019, https://www.ci2ma.udec.cl/publicaciones/tesisposgrado/graduado.php?id=70, Universidad de Concepcion.
    [33] G. S. Jiang, C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), 202-228.
    [34] X. D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), 200-212.
    [35] C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51 (2009), 82-126.
    [36] E. Rossi, Definitions of solutions to the IBVP for multi-dimensional scalar balance laws, J. Hyperbolic Differ. Equ., 15 (2018), 349-374.
    [37] J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596.
    [38] C. Bardos, A. Y. Le Roux, J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034.
    [39] S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
    [40] M. Lécureux-Mercier, Improved stability estimates on general scalar balance laws, 2010.
    [41] J. Von Zur Gathen, J. Gerhard, Modern Computer Algebra, Cambridge University Press, 2013.
    [42] A. Alhawsawi, M. Sarvi, M. Haghani, A. Rajabifard, Investigating pedestrians' obstacle avoidance behaviour, Collective Dynamics, A26 (2020), 413-422.
    [43] C. Dias, O. Ejtemai, M. Sarvi, M. Burd, Exploring pedestrian walking through angled corridors, Transp. Res. Procedia, 2 (2014), 19-25.
    [44] K. Fujii, T. Sano, Experimental study on crowd flow passing through ticket gates in railway stations, Transp. Res. Procedia, 2 (2014), 630-635.
    [45] X. Liu, W. Song, L. Fu, H. Zhang, Pedestrian inflow process under normal and special situations, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 136-143.
    [46] X. Mai, X. Zhu, W. Song, J. Ma, Qualitative analysis on two-dimensional pedestrian flows - unidirectional and bidirectional, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 151-156.
    [47] M. Twarogowska, P. Goatin, R. Duvigneau, Comparative study of macroscopic pedestrian models, Transp. Res. Procedia, 2 (2014), 477-485.
    [48] M. Twarogowska, P. Goatin, R. Duvigneau, Macroscopic modeling and simulations of room evacuation, Appl. Math. Model., 38 (2014), 5781-5795.
    [49] J. Chen, Q. Zeng, W. Zhang, Y. Wu, Q. Liu, P. Lin, Restudy the faster-is-slower effect by using mice under high competition, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 159-162.
    [50] T. Mashiko, T. Suzuki, Speed-up of evacuation by additional walls near the exit, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 334-339.
    [51] D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic, Nature, 407 (2000), 487-490.
    [52] C. Feliciano, K. Nishinari, Investigation of pedestrian evacuation scenarios through congestion level and crowd danger, Collective Dynamics, A26 (2020), 150-157.
    [53] Z. Shahhoseini, M. Sravi, M. Saberi, The impact of merging maneuvers on delay during evacuation, in Proceedings of Pedestrian and Evacuation Dynamics 2016 (PED 2016), 17-21 October 2016, Hefei, China (eds. W. Song, J. Ma and L. Fu), University of Science and Technology Press, Hefei, China, 2016, 100-104.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3323) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog