Citation: Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier. Finite difference schemes for a structured population model in the space of measures[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 747-775. doi: 10.3934/mbe.2020039
[1] | L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010. |
[2] | B. Perthame, Transport Equations in Biology, Birkhäuser Basel, 2007. |
[3] | T Hillen and K. P. Hadeler, Hyperbolic systems and transport equations in mathematical biology, In Analysis and numerics for conservation laws, Springer, (2005), 257-279. |
[4] | J. A. Cañizo, J. A. Carrillo and S. Cuadrado, Measure solutions for some models in population dynamics, Acta Appl. Math., 123 (2013), 141-156. |
[5] | J. Metz and O. E. Diekmann, The dynamics of physiologically structured populations (lecture notes in biomathematics), Lecture Notes Biomath., (1986), 68. |
[6] | J. Carrillo, R. M. Colombo, P. Gwiazda, et al., Structured populations, cell growth and measure valued balance laws, J. Differ. Equations, 252 (2012), 3245-3277. |
[7] | M. Iannelli, Mathematical theory of age-structured population dynamics, Giardini editori e stampatori in Pisa, 1995. |
[8] | A. S. Ackleh and B. Ma, A second-order high-resolution scheme for a juvenile-adult model of amphibians, Numer. Func. Anal. Opt., 34 (2013), 365-403. |
[9] | J. Shen, C. W. Shu and M. Zhang, High resolution schemes for a hierarchical size-structured model, SIAM J. Numer. Anal., 45 (2007), 352-370. |
[10] | A. S. Ackleh, J. Carter, K. Deng, et al., Fitting a structured juvenile-adult model for green tree frogs to population estimates from capture-mark-recapture field data, Bull. Math. Biol., 74 (2012), 641-665. |
[11] | K. Deng and Y. Wu, Extinction and uniform strong persistence of a size-structured population model, Discrete Cont. Dyn-S, 22 (2017), 831-840. |
[12] | R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations, fishery investigations series ii, vol. xix, ministry of agriculture, Fisheries Food, 1-957, 1957. |
[13] | W. E. Ricker, Stock and recruitment, J. Fish. Board Can., 11 (1954), 559-623. |
[14] | D. Pauly, G. R. Morgan, et al., Length-based methods in fisheries research, volume 13. WorldFish, 1987. |
[15] | P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients, J. Differ. Equations, 248 (2010), 2703-2735. |
[16] | P. Gwiazda, J. Jablonski, A. Marciniak-Czochra, et al., Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded lipschitz distance, Numer. Meth. Part. D. E., 30 (2014), 1797-1820. doi: 10.1002/num.21879 |
[17] | J Carrillo, P. Gwiazda and A. Ulikowska, Splitting-particle methods for structured population models: Convergence and applications, Math. Mod. Meth. Appl. S., 24 (2014), 2171-2197. |
[18] | A. de Roos, Numerical methods for structured population models, Numer. Meth. Part. D. E., 4 (2005), 173-195. |
[19] | J. Smoller, Shock waves and reaction-diffusion equations, volume 258. Springer Science & Business Media, 2012. |
[20] | R. LeVeque, Numerical Mehtods for Conservation Laws. Springer Basel AG, 1992. |
[21] | A. S. Ackleh, V. K. Chellamuthu and K. Ito, Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model, Math. Biosci. Eng., 12 (2015), 233-258. |
[22] | J. Jabłoński and D. Wrzosek, Measure-valued solutions to size-structured population model of prey controlled by optimally foraging predator harvester, Math. Mod. Meth. Appl. S., 29, (2019), 1657-1689. |
[23] | H. Federer, Geometric measure theory, Springer, 2014. |
[24] | H. Federer, Colloquium lectures on geometric measure theory, B. Amer. Math. Soc., 84 (1978), 291-338. |
[25] | R. M. Dudley, Distances of probability measures and random variables, In Selected Works of RM Dudley, Springer, (2010), 28-37. |
[26] | J. H. Evers, S. C. Hille and A. Muntean, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, J. Differ. Equations, 259 (2015), 1068-1097. |
[27] | R. Fortet and E. Mourier, Convergence de la répartition empirique vers la répartition théorique, In Annales scientifiques de l'École Normale Supérieure, 70 (1953), 267-285. |
[28] | A. Lasota, J. Myjak and T. Szarek, Markov operators with a unique invariant measure, J. Math. Anal. Appl., 276 (2002), 343-356. |
[29] | P. Gwiazda, A. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space, Positivity, 22 (2017), 105-138. |
[30] | P. Gwiazda and A. Marciniak-Czochra, Structured population equations in metric spaces, J. Hyperbol. Differ. Eq., 07 (2010), 733-773. |
[31] | A. S. Ackleh and R. Miller, A numerical method for a nonlinear structured population model with an indefinite growth rate coupled with the environment, Numer. Meth. Part. D. E., 35 (2019), 2348-2374. |
[32] | J. L. Kelley, General Topology, D. Van Nostrand Company Inc., 1955. |
[33] | C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Physics, 77 (1988), 439-471. |
[34] | J. Jabłoński and A. Marciniak-Czochra, Efficient algorithms computing distances between radon measures on r, preprint, arXiv:1304.3501. |
[35] | N. N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation* 1, USSR Comp. Math. Math. Phys., 16 (1976), 105-119. |
[36] | F. Delarue, F. Lagoutière and N. Vauchelet, Convergence order of upwind type schemes for transport equations with discontinuous coefficients, J. Math. Pures Appl., 108 (2017), 918-951. |
[37] | B. A. Menge, Competition for food between two intertidal starfish species and its effect on body size and feeding, Ecology, 53 (1972), 635-644. |
[38] | M. Huss, A. Gårdmark, A. Van Leeuwen, et al., Size-and food-dependent growth drives patterns of competitive dominance along productivity gradients, Ecology, 93 (2012), 847-857. |
[39] | A. S. Ackleh, J. Cleveland and H. R. Thieme, Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, J. Differ. Equations, 261 (2016), 1472-1505. |
[40] | A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population, J. Differ. Equations, 217 (2005), 431-455. |
[41] | P. Gwiazda, S. C. Hille, K. Łyczek, et al., Differentiability in perturbation parameter of measure solutions to perturbed transport equation, Kinet. Relat. Mod., 12 (2019), 1093-1108. |
[42] | J. Skrzeczkowski, Measure solutions to perturbed structured population models-differentiability with respect to perturbation parameter, preprint arXiv:1812.01747. |
[43] | A. S. Ackleh, N. Saintier and J. Skrzeczkowski, Sensitivity equations for measure-valued solutions to transport equations, Math. Biosci. Eng., 17 (2020), 514-537. |