Citation: Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier. Finite difference schemes for a structured population model in the space of measures[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 747-775. doi: 10.3934/mbe.2020039
[1] | Xiaoming Su, Jiahui Wang, Adiya Bao . Stability analysis and chaos control in a discrete predator-prey system with Allee effect, fear effect, and refuge. AIMS Mathematics, 2024, 9(5): 13462-13491. doi: 10.3934/math.2024656 |
[2] | Kottakkaran Sooppy Nisar, G Ranjith Kumar, K Ramesh . The study on the complex nature of a predator-prey model with fractional-order derivatives incorporating refuge and nonlinear prey harvesting. AIMS Mathematics, 2024, 9(5): 13492-13507. doi: 10.3934/math.2024657 |
[3] | Nehad Ali Shah, Iftikhar Ahmed, Kanayo K. Asogwa, Azhar Ali Zafar, Wajaree Weera, Ali Akgül . Numerical study of a nonlinear fractional chaotic Chua's circuit. AIMS Mathematics, 2023, 8(1): 1636-1655. doi: 10.3934/math.2023083 |
[4] | A. Q. Khan, Ibraheem M. Alsulami . Complicate dynamical analysis of a discrete predator-prey model with a prey refuge. AIMS Mathematics, 2023, 8(7): 15035-15057. doi: 10.3934/math.2023768 |
[5] | Xiao-Long Gao, Hao-Lu Zhang, Xiao-Yu Li . Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture. AIMS Mathematics, 2024, 9(7): 18506-18527. doi: 10.3934/math.2024901 |
[6] | Weili Kong, Yuanfu Shao . The effects of fear and delay on a predator-prey model with Crowley-Martin functional response and stage structure for predator. AIMS Mathematics, 2023, 8(12): 29260-29289. doi: 10.3934/math.20231498 |
[7] | Asharani J. Rangappa, Chandrali Baishya, Reny George, Sina Etemad, Zaher Mundher Yaseen . On the existence, stability and chaos analysis of a novel 4D atmospheric dynamical system in the context of the Caputo fractional derivatives. AIMS Mathematics, 2024, 9(10): 28560-28588. doi: 10.3934/math.20241386 |
[8] | Yao Shi, Zhenyu Wang . Bifurcation analysis and chaos control of a discrete fractional-order Leslie-Gower model with fear factor. AIMS Mathematics, 2024, 9(11): 30298-30319. doi: 10.3934/math.20241462 |
[9] | Guilin Tang, Ning Li . Chaotic behavior and controlling chaos in a fast-slow plankton-fish model. AIMS Mathematics, 2024, 9(6): 14376-14404. doi: 10.3934/math.2024699 |
[10] | Xuyang Cao, Qinglong Wang, Jie Liu . Hopf bifurcation in a predator-prey model under fuzzy parameters involving prey refuge and fear effects. AIMS Mathematics, 2024, 9(9): 23945-23970. doi: 10.3934/math.20241164 |
Throughout the paper, we work over an algebraically closed field
Σk=Σk(C,L)⊆Pr |
of
Assume that
σk+1:Ck×C⟶Ck+1 |
be the morphism sending
Ek+1,L:=σk+1,∗p∗L, |
which is a locally free sheaf of rank
Bk(L):=P(Ek+1,L) |
equipped with the natural projection
H0(Bk(L),OBk(L)(1))=H0(Ck+1,Ek+1,)=H0(C,L), |
and therefore, the complete linear system
βk:Bk(L)⟶Pr=P(H0(C,L)). |
The
It is clear that there are natural inclusions
C=Σ0⊆Σ1⊆⋯⊆Σk−1⊆Σk⊆Pr. |
The preimage of
Theorem 1.1. Let
To prove the theorem, we utilize several line bundles defined on symmetric products of the curve. Let us recall the definitions here and refer the reader to [2] for further details. Let
Ck+1=C×⋯×C⏟k+1times |
be the
Ak+1,L:=Tk+1(L)(−2δk+1) |
be a line bundle on
The main ingredient in the proof of Theorem 1.1 is to study the positivity of the line bundle
Proposition 1.2. Let
In particular, if
In this section, we prove Theorem 1.1. We begin with showing Proposition 1.2.
Proof of Proposition 1.2. We proceed by induction on
Assume that
rz,k+1,L:H0(Ck+1,Ak+1,L)⟶H0(z,Ak+1,L|z) |
is surjective. We can choose a point
rz,k+1,L:H0(Ck+1,Ak+1,L)⟶H0(z,Ak+1,L|z) |
where all rows and columns are short exact sequences. By tensoring with
rz,k+1,L:H0(Ck+1,Ak+1,L)⟶H0(z,Ak+1,L|z) |
in which we use the fact that
Since
Lemma 2.1. Let
Proof. Note that
B′/A′⊗A′A′/m′q=B′/(m′qB′+A′)=B′/(m′p+A′)=0. |
By Nakayama lemma, we obtain
We keep using the notations used in the introduction. Recall that
αk,1:Bk−1(L)×C⟶Bk(L). |
To see it in details, we refer to [1,p.432,line –5]. We define the relative secant variety
Proposition 2.2. ([2,Proposition 3.15,Theorem 5.2,and Proposition 5.13]) Recall the situation described in the diagram
αk,1:Bk−1(L)×C⟶Bk(L). |
Let
1.
2.
3.
As a direct consequence of the above proposition, we have an identification
H0(Ck+1,Ak+1,L)=H0(Σk,IΣk−1|Σk(k+1)). |
We are now ready to give the proof of Theorem 1.1.
Proof of Theorem 1.1. Let
b:˜Σk:=BlΣk−1Σk⟶Σk |
be the blowup of
b:˜Σk:=BlΣk−1Σk⟶Σk |
We shall show that
Write
γ:˜Σk⟶P(V). |
On the other hand, one has an identification
ψ:Ck+1⟶P(V). |
Also note that
ψ:Ck+1⟶P(V). |
Take an arbitrary closed point
α−1(x)⊆π−1k(x″)∩β−1k(x′). |
However, the restriction of the morphism
[1] | L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010. |
[2] | B. Perthame, Transport Equations in Biology, Birkhäuser Basel, 2007. |
[3] | T Hillen and K. P. Hadeler, Hyperbolic systems and transport equations in mathematical biology, In Analysis and numerics for conservation laws, Springer, (2005), 257-279. |
[4] | J. A. Cañizo, J. A. Carrillo and S. Cuadrado, Measure solutions for some models in population dynamics, Acta Appl. Math., 123 (2013), 141-156. |
[5] | J. Metz and O. E. Diekmann, The dynamics of physiologically structured populations (lecture notes in biomathematics), Lecture Notes Biomath., (1986), 68. |
[6] | J. Carrillo, R. M. Colombo, P. Gwiazda, et al., Structured populations, cell growth and measure valued balance laws, J. Differ. Equations, 252 (2012), 3245-3277. |
[7] | M. Iannelli, Mathematical theory of age-structured population dynamics, Giardini editori e stampatori in Pisa, 1995. |
[8] | A. S. Ackleh and B. Ma, A second-order high-resolution scheme for a juvenile-adult model of amphibians, Numer. Func. Anal. Opt., 34 (2013), 365-403. |
[9] | J. Shen, C. W. Shu and M. Zhang, High resolution schemes for a hierarchical size-structured model, SIAM J. Numer. Anal., 45 (2007), 352-370. |
[10] | A. S. Ackleh, J. Carter, K. Deng, et al., Fitting a structured juvenile-adult model for green tree frogs to population estimates from capture-mark-recapture field data, Bull. Math. Biol., 74 (2012), 641-665. |
[11] | K. Deng and Y. Wu, Extinction and uniform strong persistence of a size-structured population model, Discrete Cont. Dyn-S, 22 (2017), 831-840. |
[12] | R. J. H. Beverton and S. J. Holt, On the dynamics of exploited fish populations, fishery investigations series ii, vol. xix, ministry of agriculture, Fisheries Food, 1-957, 1957. |
[13] | W. E. Ricker, Stock and recruitment, J. Fish. Board Can., 11 (1954), 559-623. |
[14] | D. Pauly, G. R. Morgan, et al., Length-based methods in fisheries research, volume 13. WorldFish, 1987. |
[15] | P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients, J. Differ. Equations, 248 (2010), 2703-2735. |
[16] |
P. Gwiazda, J. Jablonski, A. Marciniak-Czochra, et al., Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded lipschitz distance, Numer. Meth. Part. D. E., 30 (2014), 1797-1820. doi: 10.1002/num.21879
![]() |
[17] | J Carrillo, P. Gwiazda and A. Ulikowska, Splitting-particle methods for structured population models: Convergence and applications, Math. Mod. Meth. Appl. S., 24 (2014), 2171-2197. |
[18] | A. de Roos, Numerical methods for structured population models, Numer. Meth. Part. D. E., 4 (2005), 173-195. |
[19] | J. Smoller, Shock waves and reaction-diffusion equations, volume 258. Springer Science & Business Media, 2012. |
[20] | R. LeVeque, Numerical Mehtods for Conservation Laws. Springer Basel AG, 1992. |
[21] | A. S. Ackleh, V. K. Chellamuthu and K. Ito, Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model, Math. Biosci. Eng., 12 (2015), 233-258. |
[22] | J. Jabłoński and D. Wrzosek, Measure-valued solutions to size-structured population model of prey controlled by optimally foraging predator harvester, Math. Mod. Meth. Appl. S., 29, (2019), 1657-1689. |
[23] | H. Federer, Geometric measure theory, Springer, 2014. |
[24] | H. Federer, Colloquium lectures on geometric measure theory, B. Amer. Math. Soc., 84 (1978), 291-338. |
[25] | R. M. Dudley, Distances of probability measures and random variables, In Selected Works of RM Dudley, Springer, (2010), 28-37. |
[26] | J. H. Evers, S. C. Hille and A. Muntean, Mild solutions to a measure-valued mass evolution problem with flux boundary conditions, J. Differ. Equations, 259 (2015), 1068-1097. |
[27] | R. Fortet and E. Mourier, Convergence de la répartition empirique vers la répartition théorique, In Annales scientifiques de l'École Normale Supérieure, 70 (1953), 267-285. |
[28] | A. Lasota, J. Myjak and T. Szarek, Markov operators with a unique invariant measure, J. Math. Anal. Appl., 276 (2002), 343-356. |
[29] | P. Gwiazda, A. Marciniak-Czochra and H. R. Thieme, Measures under the flat norm as ordered normed vector space, Positivity, 22 (2017), 105-138. |
[30] | P. Gwiazda and A. Marciniak-Czochra, Structured population equations in metric spaces, J. Hyperbol. Differ. Eq., 07 (2010), 733-773. |
[31] | A. S. Ackleh and R. Miller, A numerical method for a nonlinear structured population model with an indefinite growth rate coupled with the environment, Numer. Meth. Part. D. E., 35 (2019), 2348-2374. |
[32] | J. L. Kelley, General Topology, D. Van Nostrand Company Inc., 1955. |
[33] | C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Physics, 77 (1988), 439-471. |
[34] | J. Jabłoński and A. Marciniak-Czochra, Efficient algorithms computing distances between radon measures on r, preprint, arXiv:1304.3501. |
[35] | N. N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation* 1, USSR Comp. Math. Math. Phys., 16 (1976), 105-119. |
[36] | F. Delarue, F. Lagoutière and N. Vauchelet, Convergence order of upwind type schemes for transport equations with discontinuous coefficients, J. Math. Pures Appl., 108 (2017), 918-951. |
[37] | B. A. Menge, Competition for food between two intertidal starfish species and its effect on body size and feeding, Ecology, 53 (1972), 635-644. |
[38] | M. Huss, A. Gårdmark, A. Van Leeuwen, et al., Size-and food-dependent growth drives patterns of competitive dominance along productivity gradients, Ecology, 93 (2012), 847-857. |
[39] | A. S. Ackleh, J. Cleveland and H. R. Thieme, Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, J. Differ. Equations, 261 (2016), 1472-1505. |
[40] | A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population, J. Differ. Equations, 217 (2005), 431-455. |
[41] | P. Gwiazda, S. C. Hille, K. Łyczek, et al., Differentiability in perturbation parameter of measure solutions to perturbed transport equation, Kinet. Relat. Mod., 12 (2019), 1093-1108. |
[42] | J. Skrzeczkowski, Measure solutions to perturbed structured population models-differentiability with respect to perturbation parameter, preprint arXiv:1812.01747. |
[43] | A. S. Ackleh, N. Saintier and J. Skrzeczkowski, Sensitivity equations for measure-valued solutions to transport equations, Math. Biosci. Eng., 17 (2020), 514-537. |