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Abstract: This study revises the non-local macroscopic pedestrian flow model proposed in [R. M.
Colombo, M. Garavello, and M. Lécureux-Mercier. A class of nonlocal models for pedestrian traffic.
Math. Models Methods Appl. Sci., 22(4):1150023, 2012] to account for anisotropic interactions and
the presence of walls or other obstacles in the walking domain. We prove the well-posedness of this
extended model and we apply high-resolution numerical schemes to illustrate the model characteristics.
In particular, numerical simulations highlight the role of different model parameters in the observed
pattern formation.
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1. Introduction

1.1. Problem statement

This paper contributes to the macroscopic modelling of crowd movements. We consider the follow-
ing initial-boundary value problem for a non-local scalar conservation law that describes the evolution
of the local density ρ of pedestrians as a function of time t and position x = (x1, x2) on a crowd
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evolution domain Ω ⊂ R2:
∂tρ + div

(
ρV(ρ)ν

(
x,I[ρ(t)](x)

))
= 0, x ∈ Ω, t ≥ 0,

ρ(0, x) = ρ0(x), x ∈ Ω,

ρ(t, x) = 0, x ∈ ∂Ω.

(1.1)

Here ν = (ν1, ν2) is a vector field that (with slight abuse of notation) is defined as

ν(t, x) := ν
(
x,I[ρ(t)](x)

)
= µ(x) + I[ρ(t)](x), (1.2)

where µ is the (normalized) fixed smooth vector field of preferred directions (e.g., given by the reg-
ularized solution of an eikonal equation), and I[ρ(t)] is a non-local correction term that depends on
the current density distribution. This notation indicates a functional dependence, i.e., I depends on
the function ρ(t) := ρ(t, ·) as a whole. The function V : R+ → R represents the average speed of
pedestrians as a function of their density.

We assume that pedestrians move in a space surrounded by walls, and that the vector field ν points
inward along the boundary ∂Ω of Ω, that is

ν(t, x) · n(x) ≤ 0 for all x ∈ ∂Ω, t ≥ 0, (1.3)

where n is the outward normal to Ω. (Of course, we may assume µ(x) · n(x) ≤ 0 for all x ∈ ∂Ω, then it
is enough to ensure that also I[ρ(t)](x) · n(x) ≤ 0 for all x ∈ ∂Ω.) In this case, the condition ρ(t, x) = 0
on ∂Ω corresponds to a zero-flux condition. If, for simulation reasons, we need to consider smaller
domains and to add adsorbing conditions on the part of the boundary not corresponding to walls (and
where the vector field points outwards), suitable modifications of the model are needed.

If supp(ρ0) ⊂ Ω and ν(t, x) · n(x) ≤ 0 for all x ∈ ∂Ω and t > 0, then problem (1.1) is equivalent to
the Cauchy problem ∂tρ + div

(
ρV(ρ)ν

(
x,I[ρ(t)](x)

))
= 0, x ∈ R2, t ≥ 0,

ρ(0, x) = ρ0(x), x ∈ R2.
(1.4)

Following Colombo et al. [1], we consider a non-local interaction term of the form

I[ρ(t)](x) = −ε
∇(η ∗w ρ(t))(x)√

1 + ‖∇(η ∗w ρ(t))(x)‖2
, 0 < ε < 1, (1.5)

where η is a smooth non-negative kernel with compact support such that
!
R2 η(x) dx = 1 and ε is a

model parameter modulating the magnitude of the interaction term. The term (1.5) models how pedes-
trians account for other pedestrian distribution close to them to correct their path. To better account
for the reaction of pedestrians to densities ahead of them, one may consider anisotropic kernels η, see
e.g., [1] and [2, Appendix D]. To account for the presence of boundaries, and walls (or obstacles) into
boundaries, unlike [3, 4], we modify the usual convolution product as follows:

(
η ∗w ρ(t)

)
(x) =

"
R2
ρw(t, y)η(x − y) dy, (1.6)
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where ρw : R2 → R+ is defined as

ρw(t, x) :=


ρ(t, x) if x ∈ Ω,
Rw if x ∈ B(Ω, d(supp η)) \Ω,

0 elsewhere,

(1.7)

with Rw ≥ R big enough so that (1.3) holds. Here we denote by

d(A) = sup
{
|x − y| : x, y ∈ A

}
the diameter of a set A ⊂ R2 and by

B(Ω, `) =

{
x ∈ R2 : inf

y∈Ω
|x − y| ≤ `

}
the “ball” of radius ` around Ω. Furthermore, we define

M :=
"
R2
χB(Ω,d(supp η))(y) dy, (1.8)

which is finite if Ω is bounded (χ denotes the characteristic function). See Figure 1.

·
x

Ω

B(Ω, d(supp η)) \Ω

supp η(x − ·)

Figure 1. Schematic illustration of the definition of ρw in (1.7): ρw = Rw in the gray
shaded area.

The presence of high density values at the wall and obstacle locations included in (1.6) and (1.7) is
intended to mimic their effect on the pedestrian dynamics. Indeed, in this way the non-local correction
term (1.5) “sees” the presence of the wall and deviates the movement from the desired trajectory, thus
acting as a discomfort term expressing the tendency of pedestrians to stay away from obstacles.

Remark 1. An explicit condition ensuring ∇(η ∗w ρ(t))(x) · n(x) ≥ 0 for all x ∈ ∂Ω (and thus ν(t, x) ·
n(x) ≤ 0) is the following:

Rw

"
Ωc
∇η(x − y) · n(x) dy ≥ R

"
Ω

(
∇η(x − y) · n(x)

)− dy for all x ∈ ∂Ω,
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where f (x)− := max{− f (x), 0} = −min{ f (x), 0} denotes the negative part of a function f and Ωc :=
R2 \Ω is the complement of Ω. Indeed we have

∇
(
η ∗w ρ(t)

)
(x) · n(x) = n(x) ·

"
R2
ρ(t, y)∇η(x − y) dy

=

"
R2
ρ(t, y)∇η(x − y) · n(x) dy

=

"
Ωc

Rw∇η(x − y) · n(x) dy +

"
Ω

ρ(t, y)∇η(x − y) · n(x) dy

≥ Rw

"
Ωc
∇η(x − y) · n(x) dy − R

"
Ω

(
∇η(x − y) · n(x)

)− dy.

1.2. Related works

Macroscopic models of (vehicular and pedestrian) traffic flow are based on balance laws describing
the spatio-temporal evolution of averaged quantities such as density and mean velocity. In analogy to
vehicular traffic models, macroscopic crowd motion models were introduced starting from the begin-
ning of this century based on scalar conservation laws [5, 6], gas dynamics equations [7, 8], gradient
flow methods [9, 10] and time evolving measures [11].

More recently, models consisting in non-local conservation laws in two-space dimension were pro-
posed by different authors [1, 3, 4, 12–16]. Conservation laws with non-local flux functions arise in a
large variety of applications, such as traffic flow [17–19], sedimentation [20,21], and material flows on
conveyor belts [22]. In particular, anisotropic kernels have been introduced in traffic models to account
for downstream interactions, see e.g., [17,19]. Physically based derivations of vision-based interaction
pedestrian dynamics can be found for example in [11, 23–25]. We emphasize that none of the previ-
ously cited models (with the obvious exception of [1]) fits into the framework of the present approach,
which is focused on the appropriate incorporation of boundary conditions and obstacles. That said,
we are well aware of a vast body of literature on empirical and numerical studies of pedestrian flows
in confined areas that call for the explicit incorporation of such boundaries, see for instance recent
proceedings volumes of conferences on Pedestrian and Evacuation Dynamics [26–28]. (We refer in
Section 4 to some specific contributions within these collections.)

The computation of numerical solutions for non-local models is challenging due to the high non-
linearity of the system and the dependence of the flux function on the convolution product. In order
to overcome the computational bottleneck, high order schemes have been developed for scalar equa-
tion [29] and systems [30, 31] in one space dimension. For crowd dynamics models, first order finite
volume approximations based on the Lax-Friedrichs scheme have been used in [1, 3, 4], aiming at
demonstrating convergence properties for existence results. Here, we will consider the finite difference
weighted essentially non-oscillatory (WENO) schemes developed in [32] to achieve high-resolution
spatial accuracy. WENO schemes [33–35] are widely employed for the simulation of complex flow
fields, their main advantage being their capability to achieve arbitrarily high order formal accuracy in
smooth regions while maintaining stable, non-oscillatory and sharp discontinuity transitions.
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1.3. Outline of the paper

The remainder of this paper is organized as follows. In Section 2, we deal with the well-posedness
of problem (1.4), (1.5)–(1.7) under the hypothesis (1.3), so that (1.4), (1.5)–(1.7) is equivalent to (1.1),
(1.5)–(1.7). Section 3 describes the WENO scheme used to compute approximate solutions and Sec-
tion 4 collects three different numerical tests investigating the model characteristics. Conclusions and
perspectives are elaborated in Section 5.

2. Well-posedness

We summarize the assumptions concerning the domain Ω and the functions V , ν, µ and η:

(I1) The domain Ω ⊆ R2 is a non-empty bounded open set with smooth boundary ∂Ω, so that the
outward normal n(x) is uniquely defined for all x ∈ ∂Ω.

(I2) The speed function V ∈ C2(R;R) is non-increasing, V(0) = Vmax and V(R) = 0 for some constants
Vmax,R > 0.

(I3) The vector field of preferred directions µ ∈ (C2 ∩ W1,∞)(R2;R2) is defined such that divµ ∈
(W1,1 ∩W1,∞)(R2;R).

(I4) The vector field ν points inward along the boundary ∂Ω of Ω, i.e., ν(t, x) · n(x) ≤ 0 for all x ∈ ∂Ω,
t ≥ 0.

(I5) The kernel function η ∈ C3
c(R2;R+) satisfies

!
R2 η(x) dx = 1.

Solutions of problem (1.4), (1.5)–(1.7), equivalently (1.1), (1.5)–(1.7), are intended in the following
sense.

Definition 1. [1, Def. 2.1] For any T > 0 and ρ0 ∈ L1(R2, [0,R]) such that supp ρ0 ⊂ Ω, a function
ρ ∈ C0([0,T ],L1(R2; [0,R]) is said to be a weak entropy solution to (1.4), (1.5)–(1.7), if it is a Kružkov
entropy solution to the Cauchy problem∂tρ + div (ρV(ρ)ν(t, x)) = 0 in R2,

ρ(0, x) = ρ0(x) in R2,
(2.1)

i.e., for all κ ∈ R and all test functions φ ∈ C∞c (] −∞,T [×R2;R+) there holds∫ T

0

∫
R2

{
|ρ − κ|∂tφ + sgn(ρ − κ)

(
ρV(ρ) − κV(κ)

)
ν(t, x) · ∇φ

}
dx dt

−

∫ T

0

∫
R2
κV(κ) div ν(t, x) sgn(ρ − κ)φ dx dt +

∫
R2
|ρ0(x) − κ|φ(0, x) dx ≥ 0.

(2.2)

Indeed, by mass conservation, we have that supp ρ(t, ·) ⊂ Ω for all t > 0, and therefore ρ(t, x) = 0
for a.e. x ∈ Ωc, see [1, Proposition 3.1]. Therefore, by abuse of notation, ρ ∈ L∞([0,T ] × Ω;R) can be
seen as a Kružkov semi-entropy solution in the sense of [37, Def. 1]: namely, from (2.2) we have
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0 ≤
∫ T

0

∫
Ω

{
(ρ − κ)±∂tφ + sgn±(ρ − κ)

(
ρV(ρ) − κV(κ)

)
ν(t, x) · ∇φ

}
dx dt

−

∫ T

0

∫
Ω

κV(κ) div ν(t, x) sgn±(ρ − κ)φ dx dt +

∫
Ω

(
ρ0(x) − κ

)±
φ(0, x) dx

≤

∫ T

0

∫
Ω

{
(ρ − κ)±∂tφ + sgn±(ρ − κ)

(
ρV(ρ) − κV(κ)

)
ν(t, x) · ∇φ

}
dx dt

−

∫ T

0

∫
Ω

κV(κ) div ν(t, x) sgn±(ρ − κ)φ dx dt +

∫
Ω

(
ρ0(x) − κ

)±
φ(0, x) dx

+ ‖ f ′(ρ)ν‖L∞([0,T ]×Ω×[0,R])

∫ T

0

∫
∂Ω

(−κ)±φ(t, x) dx dt,

where f (ρ) := ρV(ρ), s+ = max{s, 0}, s− = max{−s, 0}, sgn+(s) = sgn(s+) and sgn−(s) = − sgn(s−).
If ρ ∈ (L∞ ∩ BV)([0,T ] × Ω;R), then the classical definition introduced by Bardos, Le Roux and

Nédélec [38] holds:∫ T

0

∫
Ω

{
|ρ − κ|∂tφ + sgn(ρ − κ)

(
ρV(ρ) − κV(κ)

)
ν(t, x) · ∇φ

}
dx dt

−

∫ T

0

∫
Ω

κV(κ) div ν(t, x) sgn(ρ − κ)φ dx dt +

∫
Ω

|ρ0(x) − κ|φ(0, x) dx

+

∫ T

0

∫
∂Ω

sgn(κ)
(
tr ρ(t, x)V

(
tr ρ(t, x)

)
− κV(κ)

)
ν(t, x) · n(x)φ(t, x) dx dt ≥ 0,

where tr ρ denotes the trace of ρ at the boundary ∂Ω.
We refer the reader to [36] for a discussion on the different notions of admissible solutions for scalar

multi-dimensional initial-boundary value problems and their equivalence.
Under hypotheses (I1)–(I3), the non-local term I defined by (1.5)-(1.6)-(1.7) satisfies the following

estimates for ε as in (1.5), Rw as in (1.7) and M as in (1.8):

‖I[ρ]‖L∞ ≤ εRw‖∇η‖L1 , (2.3)
‖I[ρ]‖L1 ≤ εRwM‖∇η‖L1 , (2.4)

‖divI[ρ]‖L∞ ≤ εRw‖∇η‖W1,1

(
1 + R2

w‖∇η‖
2
L1

)
, (2.5)

‖divI[ρ]‖L1 ≤ εRwM‖∇η‖W1,1

(
1 + R2

w‖∇η‖
2
L1

)
, (2.6)

‖∇ divI[ρ]‖L1 ≤ εRwM‖∇η‖W2,1

(
1 + 8R2

w‖∇η‖L1‖∇η‖W1,1

)
. (2.7)

Moreover, for any r1, r2 ∈ L1(Ω; [0; R]) there hold

‖I[r1] − I[r2]‖L∞ ≤ ε
(
1 + R2

w‖∇η‖
2
L1

)
‖∇η‖L∞‖r1 − r2‖L1 , (2.8)

‖I[r1] − I[r2]‖L1 ≤ ε
(
1 + R2

w‖∇η‖
2
L1

)
‖∇η‖L1‖r1 − r2‖L1 , (2.9)

‖div(I[r1] − I[r2])‖L1 ≤ ε‖r1 − r2‖L1‖∇η‖W1,1

(
1 + 8R2

w‖∇η‖
2
W1,1 + 3R4

w‖∇η‖
4
W1,1

)
, (2.10)

see [1, Proof of Lemma 3.1].
Recalling that f (ρ) = ρV(ρ) and following [1, Theorem 2.1], we have the following well-posedness

result.
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Theorem 1. Let (I1)–(I4) hold and ρ0 ∈ (L1 ∩ BV)(R2; [0,R]) with supp ρ0 ⊂ Ω. Then there exists a
unique weak entropy solution ρ ∈ C0(R+; L1(R2; [0,R])) to (1.4), (1.5)–(1.7) with supp ρ(t, ·) ⊂ Ω for
t > 0. Moreover, ρ satisfies the following estimates

‖ρ(t, ·)‖L1 = ‖ρ0‖L1 for a.e. t > 0,

TV
(
ρ(t, ·)

)
≤ TV(ρ0)eK t + πteK t‖ f ‖L∞([0,R])

(
‖∇ divµ‖L1 + CM(Rw)

)
, (2.11)

where we define

K := 5‖ f ′‖L∞([0,R])

(
‖divµ‖L∞ + εRw‖∇η‖W1,1

(
1 + R2

w‖∇η‖
2
L1

))
,

CM(Rw) := εRwM‖∇η‖W2,1

(
1 + 8R2

w‖∇η‖L1‖∇η‖W1,1

)
.

Stability with respect to ρ0, v and µ also holds from [1, Theorem 2.2].

Proof of Theorem 1. Following [1], we have to check that we fit the required hypotheses. First of all,
given any r ∈ C0([0,T ]; L1(Ω; [0,R])), we verify that the scalar conservation law

∂tρ + div
(
ρV(ρ)w(t, x)

)
= 0 in R2,

with w(t, x) = µ(x) + I[r(t)](x), satisfies the assumptions of [39, Theorem 5 and Sec. 5.4], and
therefore admits a weak entropy solution ρ ∈ L∞(R+; L1(Ω; [0,R])) (see [1, Lemma 2.1]). Setting
ϕ(t, x, ρ) = f (ρ)w(t, x), it is easy to check that ϕ, ∂ρϕ, ∂2

xi,ρ
ϕ, ∂2

xi,x j
ϕ ∈ C0([0,T ] × R2 × [0,R]), ∂ρϕ ∈

L∞([0,T ] × R2 × [0,R]) and divϕ ∈ L∞([0,T ] × R2 × [0,R]), thanks to (I2), (I3) and (I4). Moreover,
by (2.6), we have that

‖div w(t, ·)‖L1 ≤ ‖divµ‖L1 + εRwM‖∇η‖W1,1

(
1 + R2

w‖∇η‖
2
L1

)
< +∞,

which guarantees that ρ ∈ C0(R+; L1(Ω; [0,R])). Moreover, by (2.5),∥∥∥div ∂ρϕ
∥∥∥

L∞ ≤ ‖ f
′‖L∞([0,R])

(
‖divµ‖L∞ + εRw‖∇η‖W1,1

(
1 + R2

w‖∇η‖
2
L1

))
,

and by (2.7)
‖∇ div(µ + I[r(t)])‖L1 ≤ ‖∇ divµ‖L1 + CM(Rw).

Therefore, by [40, Theorem 2.2], we get (2.11).
Estimates (2.8)–(2.10) ensure that the same fixed point argument used in [1, Proof of Theorem 2.1]

can be applied to prove the existence and uniqueness of solutions to (1.4). �

3. High-resolution numerical schemes

3.1. Notation and semi-discrete formulation

We take Ω = [xmin
1 , xmax

1 ] × [xmin
2 , xmax

2 ] and denote by ρ : [0,∞[×Ω→ [0,R] and

f = f
(
t, x, ρ, (η ∗w ρ)

)
:= ρV(ρ)ν

(
x,I[ρ(t)](x)

)
Mathematical Biosciences and Engineering Volume 17, Issue 5, 5883–5906.
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the solution and the flux function of problem (1.1)–(1.4). We use a uniform Cartesian grid with nodes
(xi

1, x
j
2), i = 1, . . . ,M1 and j = 1, . . . ,M2 such that xi

1 = (i − 1/2)h, x j
2 = ( j − 1/2)h, h = (xmax

1 −

xmin
1 )/M1 = (xmax

2 − xmin
2 )/M2. This corresponds to M1 × M2 grid points xi := (xi

1, x
j
2), where i = (i, j) ∈

M := {1, . . . ,M1} × {1, . . . ,M2} ⊂ N
2, and as in [9] we utilize two-dimensional unit vectors e1 := (1, 0)

and e2 := (0, 1) to address neighbouring grid points xi+e1 = (xi+1
1 , x j

2) and xi+e2 = (xi
1, x

j+1
2 ).

We define u : [0,∞)→ RM1×M2 as a solution computed at an instant t in the grid points where

ui(t) = ρ(t, xi), fi = f
(
t, xi, ρ(t, xi),

(
η ∗w ρ(t)

)
(xi)

)
for i ∈ M.

In Section 3.2 we will discuss the discretization of the convolution product. Using this notation, we
may approximate the solution of (1.1)–(1.4) in semi-discrete form (that is, discrete in space but con-
tinuous in time) by a system of ODEs

du
dt

= C(u) (3.1)

where C(u) represents the spatial discretization of the convective term with entries given by C(u) =

(C(u)i)i∈M with

C(u)i = −

2∑
l=1

1
h

(
f̂i+ 1

2 el
− f̂i− 1

2 el

)
, (3.2)

where f̂i+ 1
2 e1

and f̂i+ 1
2 e2

are the numerical fluxes, which in this paper will be a fifth-order version. To
this end, we require the summands for l = 1 and l = 2 in (3.2) to be of the same order of approximation
to ∂ f /∂x1 and ∂ f /∂x2, respectively, at x = xi. For upwinding and stability, a flux function f (ρ) is split
as follows:

f (ρ) = f +(ρ) + f −(ρ), with
d f +(ρ)

dρ
≥ 0 and

d f −(ρ)
dρ

≤ 0. (3.3)

Then each component is approximated separately using its own “wind direction” with respect to el.
The simple Lax-Friedrichs flux splitting

f ±(ρ) =
1
2
(
f (ρ) ± αρ

)
with a suitable viscosity coefficient α > 0 is used in this paper. We herein use

αk = max
ρ

∣∣∣∂ρ(ρV(ρ)
)∣∣∣ sup

x∈Ω
|ν(x) · ek|, k = 1, 2,

in direction ek, k = 1, 2. The numerical fluxes are split accordingly, i.e.,

f̂i+ 1
2 ek

= R+( f +
i+(−r:r)ek

)
+ R−

(
f −i+(−r+1:r+1)ek

)
, k = 1, 2, (3.4)

where R±
(
fi+(−r:r)ek

)
= R±

(
fi−rek , . . . , fi+rek

)
denotes (2r − 1)th-order WENO upwind-biased reconstruc-

tions for r = 2, 3, 4, see [33–35].
Ghost cells are needed to compute numerical fluxes near the boundary. To handle these cases we

use the boundary condition in (1.1) and set ui = 0 if i <M and as the vector field ν points inward along
∂Ω, i.e., ν · n(x) ≤ 0 for x ∈ ∂Ω, we set

f̂i+ 1
2 el

=

R+
(
fi+(−r:r)el

)
if xi ∈ {xmin

1 } × [xmin
2 , xmax

2 ] ∪ [xmin
1 , xmax

2 ] × {xmin
2 },

R−
(
fi+(−r:r)el

)
if xi ∈ {xmax

1 } × [xmax
2 , xmax

2 ] ∪ [xmin
1 , xmax

1 ] × {xmax
2 }.

(3.5)

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5883–5906.
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For evacuation problems, to avoid dealing with extended domains, we have to handle a vector field ν
which points outward at the exit door D ⊂ ∂Ω, i.e., ν · n(x) > 0 for x ∈ D. In this case, we set

f̂i+ 1
2 el

= R+( fi+(−r:r)el

)
for xi ∈ D.

For more details about the implementation of high-order finite difference WENO schemes for crowd
dynamics see [9, 32].

3.2. Discretization of the convolution term

In order to evaluate the non-local term in (1.5), we take into account that ∇(η ∗w ρ) = ∇η ∗w ρ,
where the convolution term ∗w is defined by (1.6). The corresponding convolutions (∂η/∂x1) ∗w ρ and
(∂η/∂x2) ∗w ρ are calculated approximately on the discrete grid via a quadrature formula, in our cases
a composite Simpson rule. Since supp(η) ⊂ [−n0h, n0h] × [−n0h, n0h] for n0 ∈ N large enough, any
convolution product is given by(

η ∗ ρ(t)
)
(xi) ≈

n0∑
p=−n0

n0∑
q=−n0

h2cpcqρ(t, xi−p)η(xp),

where cp and cq are the coefficients in the quadrature rule and p = (p, q). This formula for u = (ui) ∈
RM1×M2 and for the convolution product (1.6) can be written as

(η ∗w u)(xi) =

n0∑
p=−n0

n0∑
q=−n0

h2cpcquw,i−pη(xp), (3.6)

where uw,i is a discrete version of the function (1.7) defined by

uw,i =


ui if i ∈ M,
Rw if xi ∈ B(Ω, d(supp η)) \Ω,
0 elsewhere.

(3.7)

Clearly, the discrete convolution (3.6) causes a computational bottleneck. This is a classical problem
in scientific computing that is effectively handled by fast convolution algorithms, mainly based on Fast
Fourier Transforms [41] (see also [13, 14]).

3.3. Time discretization

Finally, the semi-discrete scheme (3.1) is discretized by a third-order TVD Runge-Kutta time dis-
cretization method [34] that can be specified as follows. Assume that un is the vector of approximate
solutions at t = tn. Then the approximate values un+1 associated with tn+1 = tn + ∆t are calculated by

u(1) = un + ∆tC(un),

u(2) =
3
4

un +
1
4

u(1) +
1
4

∆tC(u(1)),

un+1 =
1
3

un +
2
3

u(2) +
2
3

∆tC(u(2)).

(3.8)

The combined space and time discretizations define a fully discrete scheme. Observe that the time
evolution is only of third order of accuracy, while the spatial discretization is fifth-order accurate. To
have fifth-order accuracy also in time, a two-step SSP Runge-Kutta method should be used.
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(a) (b)

Figure 2. Example 1: vector fields used in the simulations: (a) vector field given by unit
vectors tangent to the geodesics to the exit door, used for model (1.5); (b) vector field (a)
plus a discomfort vector field with maximal intensity along the walls, used for model [3, 4].

4. Numerical simulations

We aim at investigating the effects of the non-local operator (1.5)–(1.7) from the crowd dynamics
modelling point of view. To this end, in the following numerical examples, we solve numerically (1.4)–
(1.7) for t ∈ [0,T ] and x ∈ Ω by using the high-resolution numerical scheme described in Section 3. In
particular, we consider here a FD-WENO5 scheme with fifth-order of accuracy in space, see [32] for a
discussion of high-order finite difference WENO schemes with different orders of accuracy for crowd
dynamics. For each iteration, the time step ∆t in (3.8) is determined by the formula

∆t
h

max{α1, α2} =
1
2

Ccfl.

We choose Ccfl as the largest multiple of 0.05 that yields oscillation-free numerical solutions. In all
numerical tests we have used Ccfl = 0.2.

4.1. Example 1: Comparison with Colombo and Rossi [3, 4].

In contrast to (1.6)–(1.7), the model proposed in [3, 4] uses the following definition of the convolu-
tion product in the non-local term (1.5)

(η ∗Ω ρ(t))(x) =
1

z(x)

"
Ω

ρ(t, y)η(x − y) dy, where z(x) :=
"

Ω

η(x − y) dy. (4.1)

We remark that the model in [3, 4] also displays non-locality in the speed, but this prevents a global
maximum principle from holding. Therefore, here we keep the speed dependence on the density local.

We consider the evacuation problem proposed in [4, Section 2.1], where Ω = R \ (C1 ∪ C2) is
composed by a room R = [0, 8] × [−2, 2] with two symmetric columns C1 = ]4.5, 7[× ]0.8, 1.5[ and
C2 = ]4.5, 7[× ]−1.5,−0.8[ that guide the evacuation through the exit door set at D = {8}× ]−0.8, 0.8[.
The functions and parameters are chosen as

V(ρ) = 2 min{1,max{0, (1 − ρ)}}, ρ0(x) = 0.9χ[0.5,3]×[−1.8,1.8](x),

ε = 0.6, Rw = 1.5 η(x) = 315
128πl18 (l4 − ‖x‖4)4χ[0,l](x),

(4.2)
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where χ[0,l](x) denotes the characteristic function. The fixed vector field µ(x) is given by the unit vector
tangent to the geodesic from x to the exit door, see Figure 2a. Since the non-local term defined by (4.1)
does not guarantee that the resulting direction of motion points inside the domain (ν(t, x) · n(x) ≤ 0 for
x ∈ ∂Ω, t ≥ 0), we need to add to µ a (fixed) discomfort vector field with maximal intensity along the
walls as in [3, 4], resulting in the vector field showed in Figure 2b.

0 1 2 3 4 5 6 7 8x 0 1 2 3 4 5 6 7 8x
−2

−1

0

1

2
y

−2

−1

0

1

2
y

−2

−1

0

1

2
y

0 0.1 0.2 0.40.3 0.5 0.6 0.7 0.8 0.9 1

Figure 3. Example 1: numerical approximation with parameters (4.2) with kernel support
l = 0.45 and Rw = 1.5 at T = 1 (top), T = 2 (middle) and T = 3 (bottom). The left and right
columns correspond to local convolution η∗w ρ (see (1.6)), and global convolution η∗Ω ρ (see
(4.1)), respectively.

We display numerical approximations computed with FD-WENO5 scheme with h = 1/80 at times
T = 1, 3 and 6 for two kernel supports (l = 0.45 in Figure 3 and l = 0.9 in Figure 4). We observe that
the non-local correction term (1.5) allows pedestrians to “see” the presence of the wall and obstacles,
and to deviate the movement from the desired trajectory. For l = 0.45, we can observe that pedestrians
can pass between the obstacles and the wall, as in the Colombo-Rossi model, however this effect is
less remarkable for larger kernel supports like l = 0.9. Indeed, comparing Figures 3 and 4, we can
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see that a larger kernel support corresponds to a wider discomfort effect, impacting the velocity vector
field on larger portions of the walkable domain. More generally, qualitative differences between the
two models depend on the parameter choices of Rw and the discomfort vector field. Nevertheless, we
remark that our definition of the convolution (1.6)–(1.7) qualitatively captures the discomfort due to
the presence of walls and obstacles delimiting the walking domain.

0 0.1 0.2 0.40.3 0.5 0.6 0.7 0.8 0.9 1

0 1 2 3 4 5 6 7 8x 0 1 2 3 4 5 6 7 8x
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2
y

Figure 4. Example 1: numerical approximation with parameters (4.2) with kernel support
l = 0.9 and Rw = 1.5 at T = 1 (top), T = 2 (middle) and T = 3 (bottom). The left and right
columns correspond to local convolution η∗w ρ (see (1.6)), and global convolution η∗Ω ρ (see
(4.1)), respectively.
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Figure 5 illustrates the effect of the parameter value Rw. Specifically, the scenario of the left column
of Figure 5 is the same as in the left column of Figure 3, with l = 0.45 and Rw = 1.5 replaced by Rw = 2.
On the right column of Figure 5, we change also l to l = 0.9 and compare it to Figure 4, left. Larger
values of Rw increase the “discomfort” effect exerted by walls and obstacles, as it becomes apparent
if one compares, for instance, the widths of the streams of pedestrians to either side and between the
obstacles: they are thinner for Rw = 2 than for Rw = 1.5.

0 0.1 0.2 0.40.3 0.5 0.6 0.7 0.8 0.9 1
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Figure 5. Example 1: numerical approximation with parameters (4.2) with local convolution
η ∗w ρ (see (1.6)), Rw = 2, and kernel support l = 0.45 (left) and l = 0.9 (right), at T = 1
(top), T = 2 (middle) and T = 3 (bottom).
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Finally, Figure 6 shows the impact of the parameters Rw and l on the evacuation time for both mod-
els. We can observe that the model is quite sensitive to changes in the convolution support since, as
previously mentioned, this affects heavily the resulting velocity field near obstacles and walls. Fur-
thermore, the evacuation process for a given value of l is slower for Rw = 2 than for Rw = 1.5. We
mention that the parameters and obstacles have been chosen to illustrate the model and the difference
to [3, 4], but do not correspond to a specific real-world scenario. There are however, abundant exper-
imental studies providing data on pedestrian flows with obstacles that could form the basis for future
comparison with simulations, see e.g., [42–45].
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Figure 6. Example 1: time evolution of the mass inside the room and evacuation time for
the set of parameters (4.2) with kernel supports l = 0.45 and l = 0.9 for global convolution
η ∗Ω ρ (see (4.1)) and local convolution η ∗w ρ (see (1.6)) with Rw = 1.5 and Rw = 2.

4.2. Example 2: Comparison between isotropic and anisotropic kernels (lane formation).

In this section, we consider that pedestrians have a limited vision field oriented in a given direction.
We study a simple example of evacuation of a rectangular room Ω = [0, 8] × [−3, 3], where the vector
field µ(x) = (1, 0) is fixed constantly oriented towards the right of the domain. We investigate the
influence of a conic convolution kernel on the evacuation dynamics and the pattern formation. We take
the kernel function η(x) given in (4.2) and cut a conic section η(x)χS(x,l,α,γ)(x) of angle 2α oriented to
direction γ(x) which is described by the region

S(x, l, α,γ) =

{
y ∈ R2 : ‖y − x‖ ≤ l,

(y − x) · γ(x)
‖y − x‖‖γ(x)‖

≥ cosα
}

(see Figure 7). The section ηχS(x,l,α,γ) is smoothed by convolution with a Gaussian kernel g(x) =

exp(−(‖x‖2/2σ)) with σ = 5 × 10−4, then normalized and finally shifted by the distance 0.04 to ensure
that the maximum of the normalized smoothed kernel is centered in (0, 0). Other parameters are taken
as

V(ρ) = 6 min{1,max{0, (1 − ρ)}}, ε = 0.6, l = 0.9, ρ0(x) = 0.9χ[0.5,4]×[−1,1](x).

We compare the dynamics given by different kernel orientations and different angle amplitudes. Be-
sides the circular symmetric kernel η (i.e., α = π), we consider
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• γ(x) = (−1, 0), corresponding to forward interaction (by central symmetry of the convolution
product), and α = π/2, π/4;

• γ(x) = (1, 0), corresponding to backward interaction, and α = π/4;

• γ(x) = (0,−1), modeling pedestrian reacting to the presence of other individuals (or obstacles) on
their left, and α = π/4;

• γ(x) = (−1,−1), for forward-left interactions, and α = π/4.

The corresponding convolution kernels are depicted in Figure 7. In Figures 8–10, we display numerical
approximations and the corresponding vector fields of preferred directions computed with FD-WENO5
scheme with h = 1/80 at times T = 0.1, T = 0.2 and T = 0.4. We observe that symmetric and
half-circular downstream interaction kernels lead to similar patterns consisting of horizontal lanes (see
Figure 8), while narrower angles α lead to vertical patterns, both for forward and backward interactions
(displayed in Figure 9). Finally, lateral interactions mostly lead to diagonal waves (Figure 10). Again,
the scenario is hypothetical, but could be compared with experimental results from the literature [26–
28, 46].
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(a)
α = π

(b)
γ = (−1, 0), α = π/2

(c)
γ = (−1, 0), α = π/4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(d)
γ = (1, 0), α = π/4

(e)
γ = (0,−1), α = π/4

(f)
γ = (−1,−1), α = π/4

Figure 7. Example 2: anisotropic kernels ηχS(x,l,α,γ) for different interaction orientations,
before smoothing, normalization and shift: (a) symmetric, (b) wide forward, (c) narrow for-
ward, (d) backward, (e) left, (f) forward left.
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Figure 8. Example 2: evacuation dynamics and vector field for (left) the angle 2α with α = π

(see Figure 7a), (right) α = π/2 and the kernel orientation γ(x) = (−1, 0) (as in Figure 7b), at
simulated times (top) T = 0.1, (middle) T = 0.2 and (bottom) T = 0.4.
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Figure 9. Example 2: evacuation dynamics and vector field for angle 2α for α = π/4 and the
kernel orientation (left) γ(x) = (−1, 0) (see Figure 7c), (right) γ(x) = (1, 0) (see Figure 7d),
at simulated times (top) T = 0.1, (middle) T = 0.2 and (bottom) T = 0.4.
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Figure 10. Example 2: evacuation dynamics and vector field for angle 2α for α = π/4
and the kernel orientation (left) γ(x) = (0,−1) (see Figure 7e), (right) γ(x) = (−1, 1) (see
Figure 7f), at simulated times (top) T = 0.1, (middle) T = 0.2 and (bottom) T = 0.4.

4.3. Example 3: Room evacuation with and without obstacles

In this section, we consider the problem of evacuating people in a room through a door. In particular,
we are interested in studying the impact of the presence of obstacles in front of the door on the evac-
uation time. This problem has already been discussed by several authors, see for example [4, 47, 48]
and references therein. In these works, the authors infer that, in some cases, the location and size of
the obstacles may speed up the population to the exit. The interest in this phenomenon, sometimes
called “faster-is-slower effect” [49, 50], goes back to the well-known paper by Helbing et al. [51]. De-
lays during evacuation due to other effects have been investigated, for instance, in [52, 53]. For this
example, we consider the walking domain available to pedestrians is Ω = R \ Ci, i = 1, 2, 3, where the
room R = [0, 8] × [−3, 3] contains obstacles Ci. The door D, the functions v and η, and the parameter
ε and Rw are the same as in (4.2). The initial condition is a linear combination of characteristic func-
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tions with values 0.9 in [0.5, 2] × [−2.2, 0], 0.6 in [0.5, 2.2] × [0, 2.2], 0.5 in [2, 4] × [−2.2, 0] and 0.8
in [2.2, 4] × [0, 2.2] (see Figure 11). The obstacles and parameter l for the three different scenarios
considered are

C1 = ∅,

C2 = ] 7, 7.8 [ × ( ]−1.8, 1.3 [ ∪ ] 1.3, 1.8 [ ) ,
C3 = ] 5, 6 [ × ]−0.25, 0.25 [ ,

l = 1.

(4.3)

The numerical solutions for the three scenarios at three different times is displayed in Figure 12, where
we have used the FD-WENO5 scheme to computed the approximate solutions.

Figure 13 shows the time evolution of the mass inside the room. We observe that in case C1 the
evacuation time is higher in comparison to cases C2 and C3, where the evacuation time is lower, espe-
cially for case C3. This is confirmed by Figure 12, which shows the evacuation of the populations at
times T = 6, 20 and 32, for the cases C1, C2 and C3 respectively.
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Figure 11. Example 3: initial condition.

5. Conclusion

In this work, we have proposed and studied a non-local macroscopic pedestrian flow model account-
ing for the presence of walls and obstacles limiting the walking domain. In particular, the proposed
model is able to capture pedestrians’ discomfort near obstacles and walls. Under suitable regular-
ity assumptions, the model turns out to be well-posed. Moreover, we analyzed the impact of different
anisotropic kernels on the formation of patterns in the solutions. High-resolution numerical schemes of
WENO type allow to perform accurate simulations, bypassing the computational bottleneck given by
the dependence of the flux function on integral terms. Future research should focus on multi-population
models accounting for groups with different characteristics and/or destinations, and on the theoretical
analysis of the observed pattern formation.
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Figure 12. Example 3: numerical solution at times (top) T = 6, (middle) T = 20, and
(bottom) T = 32, showing the evacuation of pedestrians corresponding to the different exit
designs (left) C1, (middle) C2, and (right) C3 (see (4.3)) .
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Figure 13. Example 3: total amount of population inside the room. The obstacles C2 and C3

speed up evacuation, while the case C1 evacuates slower.
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