Citation: Sebastien Motsch, Mehdi Moussaïd, Elsa G. Guillot, Mathieu Moreau, Julien Pettré, Guy Theraulaz, Cécile Appert-Rolland, Pierre Degond. Modeling crowd dynamics through coarse-grained data analysis[J]. Mathematical Biosciences and Engineering, 2018, 15(6): 1271-1290. doi: 10.3934/mbe.2018059
[1] | [ S. A. AlGadhi, H. S. Mahmassani and R. Herman, A speed-concentration relation for bi-directional crowd movements with strong interaction, Pedestrian and Evacuation Dynamics, (2002), 3-20. |
[2] | [ S. Ali and M. Shah, Floor fields for tracking in high density crowd scenes, Computer Vision – ECCV 2008: 10th European Conference on Computer Vision, 2008, 1–14; Netw Heterog Media., 6 (2008), 401–423. |
[3] | [ C. Appert-Rolland, P. Degond and S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw Heterog Media, 6 (2011), 351-381. doi: 10.3934/nhm.2011.6.351 |
[4] | [ A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J Appl Math., 60 (2000), 916-938. doi: 10.1137/S0036139997332099 |
[5] | [ N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation, Comp. & Fluids, 141 (2016), 13-21. doi: 10.1016/j.compfluid.2016.04.022 |
[6] | [N. Bellomo, B. Piccoli and A. Tosin, Modeling crowd dynamics from a complex system viewpoint Math Mod Meth Appl S., 22 (2012), 1230004, 29pp. doi: 10.1142/S0218202512300049 |
[7] | [B. Benfold and I. Reid, 2011 Stable multi-target tracking in real-time surveillance video, Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 3457–3464. |
[8] | [ J. H. Bick and G. F. Newell, A continuum model for two-directional traffic flow, Q. Appl. Math., 1960. |
[9] | [ C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation, CRC Press, 2014. |
[10] | [ V. J. Blue and J. L. Adler, Cellular automata microsimulation of bidirectional pedestrian flows, Trans Res B., 1678 (1999), 135-141. |
[11] | [ W. Daamen and S. P. Hoogendoorn, Controlled experiments to derive walking behaviour, Eur J of Trans Infrastruct Res., 3 (2003), 39-59. |
[12] | [ H. Fehske, R. Schneider and A. Weisse, Computational Many-Particle Physics, Springer, 2007. |
[13] | [ C. Feliciani and K. Nishinari, Empirical analysis of the lane formation process in bidirectional pedestrian flow, Physical Review E., 94 (2016), 032304. |
[14] | [ G. Fltterd and G. Lmmel, Bidirectional pedestrian fundamental diagram, Transportation Research Part B: Methodological, 71 (2015), 194-212. |
[15] | [ P. Goatin and M. Mimault, A mixed system modeling two-directional pedestrian flows, Math Biosci Eng., 12 (2015), 375-392. |
[16] | [ D. Helbing, Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions, Transport Sci., 39 (2005), 1-24. |
[17] | [ D. Helbing, Saving human lives: What complexity science and information systems can contribute, J. Stat Phys., 158 (2015), 735-781. doi: 10.1007/s10955-014-1024-9 |
[18] | [D. Helbing and P. Mukerji, Crowd disasters as systemic failures: Analysis of the Love Parade disaster, EPJ Data Science, 1 (2012), 1-40. |
[19] | [ D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Physical Review E., 51 (1995), 4282-4286. |
[20] | [ D. Helbing, Traffic and related self-driven many-particle systems, Rev Mod Phys., 73 (2001), 1067. |
[21] | [ D. Helbing, A. Johansson and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys Rev E., 75 (2007), 046109. |
[22] | [ L. F. Henderson, The statistics of crowd fluids, Nature, 229 (1971), 381-383. |
[23] | [ S. P. Hoogendoorn and P. H. Bovy, Pedestrian route-choice and activity scheduling theory and models, Transport Res B-Meth., 38 (2004), 169-190. |
[24] | [R. L. Hughes, A continuum theory for the flow of pedestrians, Transport Res B-Meth., 36 (2002), 507-535. |
[25] | [ L. Jian, Y. Lizhong and Z. Daoliang, Simulation of bi-direction pedestrian movement in corridor, Physica A., 354 (2005), 619-628. |
[26] | [ A. Johansson, From crowd dynamics to crowd safety: A video-based analysis, Adv Complex Syst., 11 (2008), 497-527. |
[27] | [ B. S. Kerner, The physics of traffic: Empirical freeway pattern features, engineering applications, and theory, Springer Verlag, 2004. |
[28] | [ A. Kirchner, K. Nishinari and A. Schadschneider, Friction effects and clogging in a cellular automaton model for pedestrian dynamics, Phys Rev E., 67 (2003), 056122. |
[29] | [ A. Klar, Multivalued fundamental diagrams and stop and go waves for continuum traffic flow equations, SIAM J Appl Math., 64 (2004), 468-483. doi: 10.1137/S0036139902404700 |
[30] | [L. Kratz and K. Nishino, Tracking pedestrians using local spatio-temporal motion patterns in extremely crowded scenes, IEEE Trans. on Pattern Analysis and Machine Intelligence, 34 (2012), 987-1002. |
[31] | [ T. Kretz, et. al., Experimental study of pedestrian counterflow in a corridor, J Stat Mech-Theory E., 2006 (2006), P10001. |
[32] | [ A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J Comput Phys., 160 (2000), 241-282. doi: 10.1006/jcph.2000.6459 |
[33] | [ W. H. Lam, A generalised function for modeling bi-directional flow effects on indoor walkways in Hong Kong, Transport Res A-Pol, 37 (2003), 789-810. |
[34] | [ S. Lemercier, Reconstructing motion capture data for human crowd study, Motion in Games, (2011), 365-376. |
[35] | [ S. Lemercier, Realistic following behaviors for crowd simulation, Comput Graph Forum, 31 (2012), 489-498. |
[36] | [ R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253 |
[37] | [ R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1992. doi: 10.1007/978-3-0348-8629-1 |
[38] | [ M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, P Roy Soc Lond A Mat., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089 |
[39] | [ A. N. Marana, Real-time crowd density estimation using images, Lect Notes Comput Sc., (2005), 355-362. |
[40] | [ G. Martine and A. Marshall, State of world population 2007: Unleashing the potential of urban growth, UNFPA, 2007. |
[41] | [ M. Moussaid, How simple rules determine pedestrian behavior and crowd disasters, Proc Natl Acad Sci., 108 (2011), 6884-6888. |
[42] | [ M. Moussaid, et al., Traffic instabilities in self-organized pedestrian crowds, Plos Comput Biol., 8 (2012), e1002442. |
[43] | [ J. Ondrej, et al., A synthetic-vision based steering approach for crowd simulation, ACM Transactions on Graphics, 29 2010. |
[44] | [ M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos and Y. Wang, Review of road traffic control strategies, Proceedings of the IEEE, 91 (2003), 2043-2067. |
[45] | [H J. Payne, FREFLO: A macroscopic simulation model of freeway traffic, Transp Res Record, 1979. |
[46] | [M. Plaue, M. Chen, G. Brwolff and H. Schwandt, Trajectory extraction and density analysis of intersecting pedestrian flows from video recordings, Photogrammetric Image Analysis, Springer, (2011), 285-296. |
[47] | [C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21 (1987), 25-34. |
[48] | [P. Rietveld, Non-motorised modes in transport systems: A multimodal chain perspective for The Netherlands, Transportation Research Part D: Transport and Environment, 5 (2000), 31-36. |
[49] | [ E. Ronchi, F. N. Uriz, X. Criel and P. Reilly, Modelling large-scale evacuation of music festivals, Case Studies in Fire Safety, 5 (2016), 11-19. |
[50] | [ M. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Springer, 2013. doi: 10.1007/978-3-319-00155-5 |
[51] | [M. Saberi, K. Aghabayk and A. Sobhani, Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization, Physica A: Statistical Mechanics and its Applications, 434 (2016), 120-128. |
[52] | [N. Shiwakoti and M. Sarvi, Enhancing the panic escape of crowd through architectural design, Transportation Research Part C: Emerging Technologies, 37 (2013), 260-267. |
[53] | [G. K. Still, Crowd Dynamics, PhD Thesis, University of Warwick, 2000. |
[54] | [E. Tory, et. al., An adaptive finite-volume method for a model of two-phase pedestrian flow, 2011. |
[55] | [W. G. Weng, A behavior-based model for pedestrian counter flow, Physica A, 375 (2007), 668-678. |
[56] | [N. Wijermans, C. Conrado, M. van Steen, C. Martella and J. Li, A landscape of crowd-management support: An integrative approach, Safety Science, 86 (2016), 142-164. |
[57] | [M. Wirz, Probing crowd density through smartphones in city-scale mass gatherings, EPJ Data Science, 2 (2013), 1-24. |
[58] | [S. Yaseen, Real-time crowd density mapping using a novel sensory fusion model of infrared and visual systems, Safety Sci, 57 (2013), 313-325. |
[59] | [J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, J. Stat. Mech. Theory Exp., 2 (2012), P02002. |
[60] | [ B. Zhou, F. Zhang and L. Peng, Higher-order SVD analysis for crowd density estimation, Comput Vis Image Und., 116 (2012), 1014-1021. |