Research article

Second main theorem for holomorphic curves on annuli with arbitrary families of hypersurfaces

  • Received: 02 October 2023 Revised: 23 December 2023 Accepted: 09 January 2024 Published: 01 February 2024
  • The aim of this paper is to establish the second main theorem for holomorphic curves from the annulus into a complex projective variety intersecting an arbitrary family of hypersurfaces. This is done by using the notion of "Distributive Constant" for a family of hypersurfaces with respect to a complex projective variety developed by Quang. We also give an explicit estimate for the level of truncation.

    Citation: Liu Yang, Yuehuan Zhu. Second main theorem for holomorphic curves on annuli with arbitrary families of hypersurfaces[J]. Electronic Research Archive, 2024, 32(2): 1365-1379. doi: 10.3934/era.2024063

    Related Papers:

  • The aim of this paper is to establish the second main theorem for holomorphic curves from the annulus into a complex projective variety intersecting an arbitrary family of hypersurfaces. This is done by using the notion of "Distributive Constant" for a family of hypersurfaces with respect to a complex projective variety developed by Quang. We also give an explicit estimate for the level of truncation.



    加载中


    [1] R. Nevanlinna, Zur theorie der meromorphen funktionen, Acta. Math., 46 (1925), 1–99. https://doi.org/10.1007/BF02543858 doi: 10.1007/BF02543858
    [2] H. Cartan, Sur les zeros des combinaisions linearires de p fonctions holomorpes donnees, Mathematica, 7 (1933), 80–103.
    [3] E. I. Nochka, On the theory of meromorphic curves, Dokl. Akad. Nauk SSSR, 269 (1983), 547–552.
    [4] M. Ru, A defect relation for holomorphic curves intersecting hypersurfaces, Amer. J. Math., 126 (2004), 215–226. https://doi.org/10.1353/ajm.2004.0006 doi: 10.1353/ajm.2004.0006
    [5] M. Ru, Holomorphic curves into algebraic varieties, Ann. Math., 169 (2009), 255–267. https://doi.org/10.4007/annals.2009.169.255 doi: 10.4007/annals.2009.169.255
    [6] S. Axler, Harmomic functions from a complex analysis viewpoit, Amer. Math. Monthly, 93 (1986), 246–258. https://doi.org/10.1080/00029890.1986.11971799 doi: 10.1080/00029890.1986.11971799
    [7] A. Y. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna Theory for meromorphic functions on annuli Ⅰ, Mathematychni Studii, 23 (2005), 19–30.
    [8] A. Y. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna Theory for meromorphic functions on annuli Ⅱ, Mathematychni Studii, 24 (2005), 57–68.
    [9] H. T. Phuong, N. V. Thin, On fundamental theorems for holomorphic curves on the annuli, Ukra. Math. J., 67 (2015), 1111–1125. https://doi.org/10.1007/s11253-015-1138-5 doi: 10.1007/s11253-015-1138-5
    [10] J. L. Chen, T. B. Cao, Second main theorem for holomorphic curves on annuli, Math. Rep., 22 (2020), 261–275.
    [11] S. D. Quang, Meromorphic mappings into projective varieties with arbitrary families of moving hypersurfaces, J. Geom. Anal., 32 (2022), Article number: 52. https://doi.org/10.1007/s12220-021-00765-3 doi: 10.1007/s12220-021-00765-3
    [12] S. D. Quang, Generalizations of degeneracy second main theorem and Schmidts subspace theorem, Pacific J. Math., 318 (2022), 153–188. https://doi.org/10.2140/pjm.2022.318.153 doi: 10.2140/pjm.2022.318.153
    [13] S. D. Quang, Second main theorem for holomorphic maps from complex disks with moving hyperplanes and application, Complex Var Elliptic Equ., 65 (2023), 150–156.
    [14] M. Ru, Nevanlinna Theory and its Relation to Diophantine Approximation, 2$^{nd}$ edition, World Scientific, Singapore, 2021. https://doi.org/10.1142/12188
    [15] S. D. Quang, Degeneracy second main theorems for meromorphic mappings into projective varieties with hypersurfaces, Trans. Amer. Math. Soc., 371(4) (2019), 2431–2453. https://doi.org/10.1090/tran/7433 doi: 10.1090/tran/7433
    [16] S. D. Quang, D. P. An, Second main theorem and unicity of meromorphic mappings for hypersurfaces in projective varieties, Acta Math Vietnam, 42 (2017), 455–470. https://doi.org/10.1007/s40306-016-0196-6 doi: 10.1007/s40306-016-0196-6
    [17] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1994. https://doi.org/10.1002/9781118032527
    [18] J. H. Evertse, R. G. Ferretti, Diophantine inequalities on projective varieties, Internat. Math. Res. Notices, 25 (2002), 1295–1330. https://doi.org/10.1155/S107379280210804X doi: 10.1155/S107379280210804X
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(582) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog