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Abstract: Global influenza pandemics have brought about various public health crises, such as the
2009 H1N1 swine flu. Actually, most swine influenza infections occur during the breed-slaughter
process. However, there is little research about the mathematical model to elaborate on the swine
influenza transmission with human-pig interaction. In this paper, a new breed-slaughter model with
swine influenza transmission is proposed, and the equilibrium points of the model are calculated
subsequently. Meanwhile, we analyze the existence of the equilibrium points by the persistence theory,
and discuss their stability by the basic reproduction number. And then, we focus on the invasion process
of infected domestic animals into the habitat of humans. Under certain conditions as in Theorem 2,
we construct a propagating terrace linking human habitat to animal-human coexistent habitat, then to
swine flu natural foci, which is divided by spreading speeds.
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1. Introduction

Domestic pigs originated from the Eurasian wild boar (Sus scrofa), which first appeared about 9000
years ago [1]. They are essential for the transmission of swine influenza. Human beings raise domestic
pigs, and then slaughter them for pork [2]. Domestic pigs grow in the food and environment provided
by human beings, while human beings get the necessary nutrients by eating them. Consequently,
in the breeding process, the swine flu virus is transmitted to human beings through domestic pig-
human contact [2, 3]. According to this process, a new breed-slaughter model with swine influenza
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transmission can be proposed as a model (1.1).

∂S 1(x,t)
∂t = D1

∂2S 1(x,t)
∂x2 + (B12N2(x, t) − ω0N1(x, t))N1(x, t) − s0S 1(x, t)

−β11I1(x, t)S 1(x, t) + γ1I1(x, t), x ∈ R, t > 0,
∂I1(x,t)
∂t = D1

∂2I1(x,t)
∂x2 + β11I1(x, t)S 1(x, t) − (s0 + γ1)I1(x, t), x ∈ R, t > 0,

∂S 2(x,t)
∂t = D2

∂2S 2(x,t)
∂x2 + (b2 − r2

N2(x,t)
K2

+ B21N1(x, t))N2(x, t) − d2S 2(x, t)

−
2∑

j=1
β2 jI j(x, t)S 2(x, t) + γ2I2(x, t), x ∈ R, t > 0,

∂I2(x,t)
∂t = D2

∂2I2(x,t)
∂x2 +

2∑
j=1
β2 jI j(x, t)S 2(x, t) −

[
e2 + γ2 + d2

]
I2(x, t), x ∈ R, t > 0,

Ni(x, t) = S i(x, t) + Ii(x, t), i = 1, 2, x ∈ R, t > 0.

(1.1)

Figure 1. Swine flu transmission route from pig to human.

Domestic pig population N1(x, t) and human population N2(x, t) are assumed to be divided into 2
epidemiological compartments: susceptibles (S i(x, t)) and infectives (Ii(x, t)) at time t and location x,
i = 1, 2. Susceptibles can become infected by means of intra-species or inter-species transmission and
then recover as new susceptibles. The notation B12 represents the human breeding parameter for the
population growth of domestic pigs, while B21 represents the nutrients from eating domestic pigs to
increase the birth rate of human beings. The notation s0 represents the slaughter rate of domestic pigs.
It’s noteworthy that domestic pigs cannot survive independently without human beings, but human
beings can still survive well without the supply of pork [2]. Restrictions on the development of human
population mainly come from intra-species competition.

For humans, the notation r2 = b2 − d2 is the intrinsic growth rate of humans, where b2 and d2

represents the natural natality rate and mortality rate, respectively. K2 is the environmental carrying
capacity of human population without domestic pig supply. e2 is the additional mortality rate of humans
caused by swine flu. For domestic pigs, ω0 represents the intraspecific competition. During the spread
of swine flu, the parameters βi j represent the per capita incidence rate from species j to species i, where
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i, j = 1, 2. γi denote the recovery rate for domestic animals and humans, i = 1, 2. D1 and D2 are the
diffusion coefficients for domestic animals and humans. It is noteworthy that all parameters mentioned
above is positive.

The main purpose of this paper is to propose a new breed-slaughter model with swine influenza
transmission, and study the dynamic behavior of it. And then, we focus on the invasion process of
infected domestic animals into the habitat of humans. Under certain conditions as in Theorem 2,
we construct a propagating terrace linking human habitat to animal-human coexistent habitat, then
to swine flu natural foci, which is divided by spreading speeds. Firstly, we calculate the equilibrium
points of the model without spatial heterogeneity as a model (1.2) and analyze the existence of them by
the persistence theory. Secondly, we discuss their stability by the basic reproduction number. Thirdly,
we use these equilibrium points to construct a propagating terrace linking them by spreading speeds.

dS 1(t)
dt = (B12N2(t) − ω0N1(t))N1(t) − s0S 1(t) − β11I1(t)S 1(t) + γ1I1(t),

dI1(t)
dt = β11I1(t)S 1(t) − (s0 + γ1)I1(t),

dS 2(t)
dt = (b2 − r2

N2(t)
K2

+ B21N1(t))N2(t) − d2S 2(t) −
2∑

j=1
β2 jI j(t)S 2(t) + γ2I2(t),

dI2(t)
dt =

2∑
j=1
β2 jI j(t)S 2(t) −

[
e2 + γ2 + d2

]
I2(t),

Ni(t) = S i(t) + Ii(t), i = 1, 2.

(1.2)

In model (1.2), domestic pig population N1(t) and human population N2(t) are assumed to be divided
into 2 epidemiological compartments: susceptibles (S i(t)) and infectives (Ii(t)) at time t, i = 1, 2. Other
parameters are the same with model (1.1).

2. Breed-slaughter system

At first, we focus on the breed-slaughter system without swine flu transmission and spatial
heterogeneity.

If I1(0) = I2(0) = 0, N1(0) > 0 and N2(0) > 0, model (1.2) turns to a new breed-slaughter system
without swine influenza transmission as model (2.1).

dN1(t)
dt = (B12N2(t) − ω0N1(t))N1(t) − s0N1(t),

dN2(t)
dt = r2(1 − N2(t)

K2
)N2(t) + B21N1(t)N2(t),

N1(0) > 0,N2(0) > 0,
(2.1)

Similar to the competition system in [4], breed-slaughter system also has abundant dynamic results.
For the positive equilibrium point

E∗ = (N∗1 ,N
∗
2) = (

r2(s0 − B12K2)
B12B21K2 − ω0r2

,
K2(s0B21 − ω0r2)
B12B21K2 − ω0r2

)

of model (2.1), we have three cases:
(a). If B12B21 <

ω0r2

K2
and s0 < min{

ω0r2

B21
, B12K2}, the positive equilibrium point E∗ of model (2.1)

is stable (Figure 2(a)).
(b). If B12B21 >

ω0r2

K2
and s0 > max{

ω0r2

B21
, B12K2}, the positive equilibrium point E∗ of model (2.1)

is unstable (Figure 2(b)).
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(c). Other than the condition as (a) or (b), the positive equilibrium point E∗ of model (2.1) does not
exist.

Figure 2. Phase diagram of E∗.

3. Breed-slaughter system with swine flu transmission

In order to reflect the effect of interspecific interaction on swine influenza transmission during

breeding process as model (1.2), we suppose that B12B21 <
ω0r2

K2
and s0 < min

{
ω0r2

B21
, B12K2

}
to

guarantee the existence and the stability of the boundary equilibrium point

E3 = (
r2(s0 − B12K2)

B12B21K2 − ω0r2
, 0,

K2(s0B21 − ω0r2)
B12B21K2 − ω0r2

, 0)

with I1(0) = I2(0) = 0 in model (1.2).
After calculation, we summarize that there are at most 6 equilibrium points inR4

+ of the system (1.2):
E0 = (0, 0, 0, 0), E1 = (0, 0,K2, 0), E2 = (0, 0, S 2, I2), E3 = (N∗1 , 0,N

∗
2 , 0), E4 = (N′1, 0, S

′
2, I
′
2), E5 =

(S ∗1, I
∗
1, S

∗
2, I
∗
2), where S 2 =

e2+γ2+d2
β22

, I2 =
β22K2−(e2+γ2+d2)

β22
, N∗1 = N′1 =

r2(s0−B12K2)
B12B21K2−ω0r2

, N∗2 =
K2(s0B21−ω0r2)
B12B21K2−ω0r2

,S ′2 =

e2+γ2+d2
β22

, I′2 =
β22K2(1+

s0B21−B12B21K2
B12B21K2−ω0r2

)−(e2+γ2+d2)

β22
. The exact expression of E5 is unknown. However, under

certain conditions as in Theorem 2, we can obtain its existence by persistence theory [5–7].
If there is no domestic pigs participation, namely N1(0) = S 1(0) = I1(0) = 0, The persistence and

the stability of boundary equilibrium E2 = (0, 0, S 2, I2) has been proved in [8]. Similarly, we define
R0 =

β22K1
b2+e2+γ2

. And then, we can get the following lemma.

Lemma 1. If N1(0) = S 1(0) = I1(0) = 0 and I2(0) > 0, {0} × {0} × R2
+ is a invariant set of system (1.2).

The trivial equilibrium point E0 in model (1.2) is unstable, and we have following two cases:
(a) If R0 ≤ 1, the disease-free equilibrium point E1 of model (1.2) is stable;
(b) If R0 > 1, model (1.2) has a unique equilibrium point E2 in the interior of {0} × {0} × R2

+, which
is stable, and E1 is unstable.

Furthermore, we consider the transmission process of human influenza with domestic pigs
participating, but not infected from them. Namely I1(0) = 0, I2(0) > 0 and Ni(0) > 0, i = 1, 2. The
persistence and the stability of boundary equilibrium E4 = (N′1, 0, S

′
2, I
′
2) is similar to Lemma 1.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5849–5863.
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Taking E3 as the original point by coordinate translation, we can get the following lemma by the

persistence theory [5, 9, 10], when B12B21 <
ω0r2

K2
and s0 < min

{
ω0r2

B21
, B12K2

}
.

According to the definition of basic reproduction number in a single population as [5, 11, 12], we

define R1 =
β1N∗1

s0 + γ1
as the basic reproduction number of swine flu transmission in demotic pig

population and R2 =
β22N∗2

e2 + γ2 + d2
as the basic reproduction number of swine flu transmission in

human population .

Lemma 2. If N1(0) = S 1(0) > 0, I1(0) = 0 and I2(0) > 0, R+ × {0} × R2
+ is a invariant set of system

(1.2). The trivial equilibrium point E0 and the boundary equilibrium point E1, E2 in model (1.2) are

unstable when B12B21 <
ω0r2

K2
and s0 < min

{
ω0r2

B21
, B12K2

}
, and we have following two cases:

(a) If R2 ≤ 1, the disease-free equilibrium point E3 of model (1.2) is stable;
(b) If R2 > 1, model (1.2) has a unique equilibrium point E4 in the interior of R+ × {0} × R2

+, which
is stable, and E3 is unstable.

Next we focus on the discussion about the existence and the stability of the positive equilibrium
point E5 = (S ∗1, I

∗
1, S

∗
2, I
∗
2). At first, we define Rs = max{R1,R2}. Then, we get the theorem as the

following.

Theorem 1. If Ni(0) > 0 and Ii(0) > 0, i = 1, 2, R4
+ is a invariant set of system (1.2). The trivial

equilibrium point E0 and the boundary equilibrium point E1, E2 in model (1.2) are unstable when

B12B21 <
ω0r2

K2
and s0 < min

{
ω0r2

B21
, B12K2

}
, and we have following three cases:

(a) If Rs ≤ 1, the disease-free equilibrium point E3 of model (1.2) is stable;
(b) If Rs > 1, R1 < R2 and R1 ≤ 1, model (1.2) has a unique equilibrium point E4 except for E0, E1,

E2 and E3, which is stable, and E3 is unstable;
(c) If Rs > 1 and R1 ≥ R2 (or R2 > R1 > 1) model (1.2) has a unique equilibrium point E5 in the

interior of R4
+, which is stable, and E3 and E4 are unstable.

Proof. If Rs ≤ 1, E4 and E5 do not exist. Similar to the results of Lemma 2 (a), the disease-free
equilibrium point E3 of model (1.2) is stable.

Then we consider the results of system (1.2) when Rs > 1 and B12B21 <
ω0r2

K2
and

s0 < min
{
ω0r2

B21
, B12K2

}
. At first, we define

D = {(S 1, I1, S 2, I2)
∣∣∣0 ≤ Ii ≤ S i + Ii ≤ N∗i , i = 1, 2

}
,

D1 = {(S 1, I1, S 2, I2)
∣∣∣I1 = 0 or I2 = 0 , 0 ≤ S i + Ii ≤ N∗i , i = 1, 2

}
,

D2 = D\D1, D̃2 = {(S 1, I1, S 2, I2)
∣∣∣0 < Ii ≤ S i + Ii ≤ N∗i , i = 1, 2 }.

D2 and D̃2 are forward invariant.
Let Ω∗ consists of equilibria E0, E1, E2, E3 and E4. These equilibria cannot be chained to each other

in D1. By analyzing the flow in neighborhood of each equilibrium, it is easy to see that Ω∗ is isolated
in D and D1 is a uniform strong repeller for D̃2.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5849–5863.
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If x(t) = (S 1(t), I1(t), S 2(t), I2(t)) stays close to E2, we have two cases: if I1(0) = I2(0) = 0, then
I1(t) = I2(t) = 0; if I1(0) > 0 or I2(0) > 0, then I2(t) > 0. Therefore, E2 is isolated in D. Similarly, we
can prove that E0, E1 and E3 are isolated in D.

For E4 and E5, we have two cases: (A). R1 < R2 and R1 ≤ 1; (B). R1 ≥ R2 or R2 > R1 > 1.
(A). R1 < R2 and R1 ≤ 1
If R1 < R2 and R1 ≤ 1, E5 do not exist. Similar to the results of Lemma 2 (b), the boundary

equilibrium point E4 of model (1.2) is stable.
(B). R1 ≥ R2 or R2 > R1 > 1
If x(t) = (S 1(t), I1(t), S 2(t), I2(t)) stays close to E4, we have two cases: if I1(0) = 0, then I1(t) = 0; if

I1(0) > 0, then I1(t) > 0. Since (S 1(t), I1(t), S 2(t), I2(t)) satisfying system (1.2) has no invariant subset
other than E4 in its neighborhood. E4 is isolated in D and a uniform weak repeller for D̃2. Therefore,
we can prove that E0, E1, E2, E3 and E4 are isolated in D.

Using Proposition 4.3 in [5], we can prove that D1 is a uniform weak repeller for D̃2; and using
Theorem 4.5 in [5], we can prove that D1 is a uniform strong repeller for D̃2.

Then we get that there exists an ε > 0 such that

lim in ft→∞min{I1(t), I2(t)} > ε,

with Ni(0) > 0 and Ii(0) > 0, i = 1, 2.

Therefore, if B12B21 <
ω0r2

K2
, s0 < min

{
ω0r2

B21
, B12K2

}
and R1 ≥ R2 (R2 > R1 > 1), there exists at

least one internal equilibrium of system (1.2) [9, 10, 13].
Next, we use Theorem 2 in [11] to discuss the basic reproduction number of system (1.2) .
The Jacobian matrix of (I1, I2) is

J =

(
β11S 1 − (s0 + γ1) 0

β21S 2 β22S 2 − (e2 + γ2 + d2)

)
,

Let J = F − V , F be the rate of appearance of new infections in compartment I, V be the rate of
transfer of individuals out of compartment I. Then, we get

F =

(
β11S 1 0
β21S 2 β22S 2

)
,

V = diag
(

s0 + γ1

e2 + γ2 + d2

)
.

We call FV−1 be the next generation matrix for the model (1.2) and set Rs = ρ
(
FV−1

∣∣∣
E3

)
, where

ρ(A) denotes the spectral radius of a matrix A.
Then we get

Rs = max
{
β11N∗1
s0 + γ1

,
β22N∗2

e2 + γ2 + d2

}
.

Finally, using Theorem 2 in [11], we can prove Theorem 1.
�
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4. Propagating terrace of swine flu

The basic reproduction number is an important threshold value in the research of the epidemic
mathematical model, which determines the disease to break out or not. However, it is not sufficient
to discuss the breed-slaughter model with interspecific interaction. The main purpose of this paper
is to investigate invasion process of infected domestic animal into human habitat. And we construct
a propagating terrace linking human habitat E1 to animal-human coexistent habitat E3, then to swine
flu natural foci E4 (or E5), which is divided by certain spreading speeds. The propagating terrace can
describe the spatio-temporal continuous change of the transmission of swine flu.

Based on the heterogeneity of the population structure and the temporal and spatial continuity of
the mammal movement, the population’s spatial factor is considered in the spread of swine flu. If the
swine flu host populations are distributed differently in space, the diffusion term may change their local
population structure, thus change the swine flu epidemic. In order to describe the population invasion
process, we set the initial value is zero in the area x ∈ (−∞,−x0) ∪ (x0,∞). The area of (−x0, x0) is the
original habitat of N, and N will invade to the area of x ∈ (−∞,−x0) ∪ (x0,∞) at the spreading speed
s [14].

Figure 3. Effect of r and D on the local diffusion of a single population.

The definition of spreading speed of a single population is the positive value s satisfied with the
conditions as follows,

lim
t→+∞
{sup
|x|>ct

N(x, t)} = 0,∀c > s

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5849–5863.



5856

and
lim

t→+∞
inf{ inf

|x|<ct
N(x, t)} > 0,∀c < s,

in the model [4.1] 
∂N(x,t)
∂t = D∂2N(x,t)

∂x2 + rN(x, t)(1 − N(x,t)
K ), x ∈ R, t > 0,

N(x, 0) = N0 > 0, x ∈ [−x0, x0],
N(x, 0) = 0, x ∈ (−∞, x0) ∪ (x0,∞).

(4.1)

The biological description of spreading speed s has been shown in the third figure of Figure 3. The
value of s approximates the inverse of the slope of the color lines. It is easy to see that the co-effect
of diffusion and reproduction leads to the population territory expansion, in which the local diffusion
rate D guarantees the population spatial invasion to new areas and the reproduction rate r guarantees
its development on occupied areas. The spreading speed of a single population in the model [4.1] is
expressed by s := 2

√
Dr by [14]. However, it is not enough to study the swine flu with more than

one host species [15–20]. We redefine the spreading speeds at the human-animal interface, as shown
below.

s1 := 2
√

D1(B12K2 − s0),

s2 := max
{
2
√

D1(β11N∗1 − s0 − γ1), 2
√

D2(β22N∗2 − e2 − γ2 − d2)
}
.

Due to the participation of two populations, some notations need to be redefined. The notations s
and x0 are replaced by si, xi, with i = 1, 2, corresponding to the two swine flu host populations.

Then we construct a propagating terrace linking human habitat E1 to animal-human coexistent
habitat E3, then to swine flu natural foci E4 (or E5), which is divided by certain spreading speeds.
The propagating terrace can describe the spatio-temporal continuous change of the transmission of
swine flu, which can be show in Theorem 2.

Theorem 2. For system (1.1), if B12B21 <
ω0r2

K2
,B21N∗1 < r2 and s0 < min

{
ω0r2

B21
, B12K2

}
, the initial

conditions satisfy that 0 < S 1(x, 0) < N∗1 , x ∈ [−x1, x1]; S 1(x, 0) = 0, x ∈ (−∞, x1) ∪ (x1,∞), for
some x1 > 0; 0 < I1(x, 0) < N∗1 , x ∈ [−x2, x2]; I1(x, 0) = 0, x ∈ (−∞, x2) ∪ (x2,∞), for some x2 > 0;
S 2(x, 0) = K2, I2(x, 0) = 0, x ∈ R.

We set

s1 := 2
√

D1(B12K2 − s0), s2 := max
{
2
√

D1(β11N∗1 − s0 − γ1), 2
√

D2(β22N∗2 − e2 − γ2 − d2)
}
.

Suppose that s1 > s2, x1 > x2, then there are three cases about the invasion process as following:
(a) Rs ≤ 1,

lim
t→+∞

sup
|x|>ct
{|S 1(x, t)| + |I1(x, t)| + |S 2(x, t) − K2| + |I2(x, t)|} = 0, ∀c > s1,

lim
t→+∞

sup
|x|<ct

{∣∣∣S 1(x, t) − N∗1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − N∗2
∣∣∣ + |I2(x, t)|

}
= 0, ∀c < s1.

The system (1.1) forms a propagating terrace, linking E1 to E3.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5849–5863.
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(b) If Rs > 1, R1 < R2 and R1 ≤ 1,

lim
t→+∞

sup
|x|>ct
{|S 1(x, t)| + |I1(x, t)| + |S 2(x, t) − K2| + |I2(x, t)|} = 0, ∀c > s1,

lim
t→+∞

sup
c2t<|x|<c1t

{∣∣∣S 1(x, t) − N∗1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − N∗2
∣∣∣ + |I2(x, t)|

}
= 0, ∀s2 < c2 < c1 < s1,

lim
t→+∞

sup
|x|<ct

{∣∣∣S 1(x, t) − N′1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − S ′2
∣∣∣ +

∣∣∣I2(x, t) − I′2
∣∣∣} = 0, ∀c < s2.

The system (1.1) forms a propagating terrace, linking E1 to E3, then to E4.
(c) If Rs > 1 and R1 ≥ R2 (or R2 > R1 > 1),

lim
t→+∞

sup
|x|>ct
{|S 1(x, t)| + |I1(x, t)| + |S 2(x, t) − K2| + |I2(x, t)|} = 0, ∀c > s1,

lim
t→+∞

sup
c2t<|x|<c1t

{∣∣∣S 1(x, t) − N∗1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − N∗2
∣∣∣ + |I2(x, t)|

}
= 0, ∀s2 < c2 < c1 < s1,

lim
t→+∞

sup
|x|<ct

{∣∣∣S 1(x, t) − S ∗1
∣∣∣ +

∣∣∣I1(x, t) − I∗1
∣∣∣ +

∣∣∣S 2(x, t) − S ∗2
∣∣∣ +

∣∣∣I2(x, t) − I∗2
∣∣∣} = 0, ∀c < s2.

The system (1.1) forms a propagating terrace, linking E1 to E3, then to E5.

Proof. The epidemic of swine flu originates in the interaction between humans and domestic animals
in the breeding process, so the breaking out of swine flu would lag behind this process. Therefore, we
first confirm the propagating terrace linking E1 and E3.

The breed-slaughter system without swine flu transmission can be transferred to model (4.2). ∂N1(x,t)
∂t = D1

∂2N1(x,t)
∂t2 + (B12N2(x, t) − ω0N1(x, t))N1(x, t) − s0N1(x, t),

∂N2(x,t)
∂t = D2

∂2N2(x,t)
∂t2 + r2(1 − N2(x,t)

K2
)N2(t) + B21N1(x, t)N2(x, t).

(4.2)

Let (N1,N2) be a solution to system (4.2) with the initial condition 0 < N1(x, 0) < N∗1 , x ∈ [−x1, x1];
N1(x, 0) = 0, x ∈ (−∞, x1) ∪ (x1,∞), for some x1 > 0; N2(x, 0) = K2, x ∈ R.

If B12B21 <
ω0r2

K2
and s0 < min

{
ω0r2

B21
, B12K2

}
, we claim that (N1(x, t),N2(x, t)) ∈ Σ, ∀x ∈ R, t ∈

[0,∞), where

Σ := {(N1,N2) ∈
[
0,N∗1

]
×

[
0,N∗2

]
: B12N2(x, t)−ω0N1(x, t)− s0 ≥ 0, r2(1−

N2(x, t)
K2

) + B21N1(x, t) ≥ 0}.

By the strong maximum principle, N1 ≥ 0 for t > 0. Then we get

∂N2(x, t)
∂t

≥ D2
∂2N2(x, t)

∂t2 + r2(1 −
N2(x, t)

K2
)N2(x, t).

By a comparison, N2 ≥ X, where X is the solution to ∂X(x,t)
∂t = D2

∂2X(x,t)
∂t2 + r2(1 − X(x,t)

K2
)X(x, t),

X(x, 0) = N2(x, 0).
(4.3)
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Then we get the result
lim

t→+∞
inf N2(x, t) ≥ lim

t→+∞
inf X(x, t) = K2.

Set u := N1 and v := N2 − K2. Then ∂N2(x,t)
∂t can be rewritten as

∂v(x, t)
∂t

= D2
∂2v(x, t)
∂t2 − r2

v(x, t)
K2

(v(x, t) + K2) + B21u(x, t)(v(x, t) + K2).

Due to u = N1 ∈ [0,N∗1] and v = N2 − K2 ≥ 0 then

∂v(x, t)
∂t

≤ D2
∂2v(x, t)
∂t2 − (r2 − B21N∗1)v(x, t) + B21K2u(x, t).

By the strong maximum principle, if follows that v ≤ Y in R × [0,∞), where Y is the solution to{
∂Y(x,t)
∂t = D2

∂2Y(x,t)
∂t2 − (r2 − B21N∗1)Y(x, t) + B21K2u(x, t),

X(x, 0) = 0, x ∈ R.
(4.4)

Then we have

Y(x, t) = B21K2

∫ t

0

{
e−(r2−B21N∗1 )(t−s)

∫
R

e−(x−y)2/[4(t−s)]u(y, s)dy
}

ds.

Given ε > 0, we choose δ > 0 small enough such that 2
√

D1(B12K2 − s0 + B12δ) < s1 + ε.
For this δ, we claim that there is τ � 1 such that Y(x, t) < δ + Mu(x, t), ∀x ∈ R, t ≥ τ, for some

positive constant M. Then it follows that N1 satisfies

∂N1(x, t)
∂t

≤ D1
∂2N1(x, t)

∂t2 + (B12K1 − s0 + B12δ − (B12M + ω0)N1(x, t))N1(x, t).

Therefore, according to the comparison principle and the definition of spreading speed [14–16, 19,
21], for any c ∈ (2

√
D1(B12K2 − s0 + B12δ), s1 + ε), it follows that limt→+∞ sup|x|>ct N1(x, t) = 0, and

then limt→+∞ sup|x|>ct N2(x, t) = K2.
Because of the arbitrariness of ε, we get

lim
t→+∞

sup
|x|>ct
{|N1(x, t)| + |N2(x, t) − K2|} = 0,∀c > s1.

Thus, if the swine flu does not break out, namely Rs ≤ 1, for system (1.1),

lim
t→+∞

sup
|x|>ct
{|S 1(x, t)| + |I1(x, t)| + |S 2(x, t) − K2| + |I2(x, t)|} = 0, ∀c > s1.

Then we set U := N∗1 − N1 and V := N∗2 − N2. Similar to the proof before, we can get

lim
t→+∞

sup
|x|<ct

{∣∣∣N1(x, t) − N∗1
∣∣∣ +

∣∣∣N2(x, t) − N∗2
∣∣∣} = 0, ∀c < s1.

If Rs ≤ 1, for system (1.1),

lim
t→+∞

sup
|x|<ct

{∣∣∣S 1(x, t) − N∗1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − N∗2
∣∣∣ + |I2(x, t)|

}
= 0, ∀c < s1.
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Next we consider the propagating terrace linking E3 to (E4 or E5). Let (S 1, I1, S 2, I2) be a solution
to system (1.1) with the initial condition S 1(x, 0) = N∗1 , S 2(x, 0) = N∗2 , I2(x, 0) = 0, x ∈ R. I1(x, 0) > 0,
x ∈ [−x2, x2]; I1(x, 0) = 0, x ∈ (−∞, x2) ∪ (x2,∞), for some x2 > 0.

If B12B21 <
ω0r2

K2
and s0 < min

{
ω0r2

B21
, B12K2

}
, we claim that (S 1(x, t)+I1(x, t), S 2(x, t)+I2(x, t)) ∈ Σ,

∀x ∈ R, t ∈ [0,∞).
For the spreading speed when Rs > 1, comparison principle and strong maximum principle are no

longer applicable due to the complexity of system (1.1). However, we can calculate the minimum wave
speed from largest eigenvalue of its linearized system at E3 as [22] to link E3 and E4 (or E5).

For the following eigenvalue problem

1
λ

Aληλ = cηλ,

where
Aλ = diag(Diλ

2) + J
∣∣∣
E3
.

J is the jacobian matrix,

J =


B12N2 − 2ω0N1 − s0 − β11I1 −β11S 1 + γ1 B12N1 0

β11I1 β11S 1 − (s0 + γ1) 0 0
B12N2 −β21S 2 r2(1 − 2 N2

K2
) + B21N1 − (β21I1 + β22I2) −β22S 2 + γ2

0 β21S 2 β21I1 + β22I2 β22S 2 − (e2 + γ2 + d2)

 .
For λ ≥ 0, the eigenvalues of the matrix

Aλ =


D1λ

2 − ω0N∗1 −β11N∗1 + γ1 B12N∗1 0
0 D1λ

2 + β11N∗1 − (s0 + γ1) 0 0
B12N∗2 −β21N∗2 D2λ

2 − r2
N∗2
K2

−β22N∗2 + γ2

0 β21N∗2 0 D2λ
2 + β22N∗2 − (e2 + γ2 + d2)

 .
are D1λ

2 + β11N∗1 − (s1 + γ1), D2λ
2 + β22N∗2 − (e2 + γ2 + d2) and other two impossible results, which

cannot define positive wave speed.
Thus, the minimum wave speed can be defined as follows, which can be divided the propagating

terrace, linking E3 to E4 (or E5).

s2 = max
{

inf
λ>0

D1λ
2 + β11N∗1 − (s0 + γ1)

λ
, inf
λ>0

D2λ
2 + β22N∗2 − (e2 + γ2 + d2)

λ

}
= max

{
2
√

D1(β11N∗1 − s0 − γ1), 2
√

D2(β22N∗2 − e2 − γ2 − d2)
}
.

If Rs > 1, there are two cases: (A). R1 < R2 and R1 ≤ 1; (B). R1 ≥ R2 or R2 > R1 > 1.
(A). If R1 < R2 and R1 ≤ 1, then E5 does not exist. s2 = 2

√
D2(β22N∗2 − e2 − γ2 − d2), then we get

lim
t→+∞

sup
|x|>c2t+x2

{∣∣∣S 1(x, t) − N∗1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − N∗2
∣∣∣ + |I2(x, t)|

}
= 0, ∀c > s2,

lim
t→+∞

sup
|x|<ct+x2

{∣∣∣S 1(x, t) − N′1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − S ′2
∣∣∣ +

∣∣∣I2(x, t) − I′2
∣∣∣} = 0, ∀c < s2.
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Combining the results before, linking E1 to E3, then

lim
t→+∞

sup
|x|>ct+x1

{|S 1(x, t)| + |I1(x, t)| + |S 2(x, t) − K2| + |I2(x, t)|} = 0, ∀c > s1,

lim
t→+∞

sup
c2t+x2<|x|<c1t+x1

{∣∣∣S 1(x, t) − N∗1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − N∗2
∣∣∣ + |I2(x, t)|

}
= 0, ∀s2 < c2 < c1 < s1,

lim
t→+∞

sup
|x|<ct+x2

{∣∣∣S 1(x, t) − N′1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − S ′2
∣∣∣ +

∣∣∣I2(x, t) − I′2
∣∣∣} = 0, ∀c < s2.

The system (1.1) forms a propagating terrace, linking E1 to E3, then to E4.
(B). If R1 ≥ R2 or R2 > R1 > 1, set

s2 = max
{
2
√

D1(β11N∗1 − s0 − γ1), 2
√

D2(β22N∗2 − e2 − γ2 − d2)
}
. then we get

lim
t→+∞

sup
|x|>ct+x1

{|S 1(x, t)| + |I1(x, t)| + |S 2(x, t) − K2| + |I2(x, t)|} = 0, ∀c > s1,

lim
t→+∞

sup
c2t+x2<|x|<c1t+x1

{∣∣∣S 1(x, t) − N∗1
∣∣∣ + |I1(x, t)| +

∣∣∣S 2(x, t) − N∗2
∣∣∣ + |I2(x, t)|

}
= 0, ∀s2 < c2 < c1 < s1,

lim
t→+∞

sup
|x|<ct+x2

{∣∣∣S 1(x, t) − S ∗1
∣∣∣ +

∣∣∣I1(x, t) − I∗1
∣∣∣ +

∣∣∣S 2(x, t) − S ∗2
∣∣∣ +

∣∣∣I2(x, t) − I∗2
∣∣∣} = 0, ∀c < s2.

The system (1.1) forms a propagating terrace, linking E1 to E3, then to E5.
�

5. Simulations

If s1 > s2, x1 > x2 and Rs > 1, R1 > R2 > 1, then in Figure 4, the blue area represents the original
habitat area of humans at the population size of E1. After domesticating pigs, the red part will be
shared with the two species at E3. While after swine flu transmitting between domestic pigs and
humans, the internal red part will be shared again with two populations at E5 with swine flu
transmission. It is a biological description of propagating terrace of humans with swine flu
transmission, which is the local spacial variation of the population.

Figure 4. If Rs > 1, R1 > R2 > 1, the propagating terrace from E1 to E3, then to E5. (a): The
simulation of N2; (b): Contour line of N2.
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If s1 > s2, x1 > x2 and Rs ≤ 1, then in Figure 5, the blue area represents the original habitat area
of humans at the population size of E1. After domesticating pigs, the red part will be shared with the
two species at E3. Because Rs ≤ 1, there is no swine flu transmission during the breed and slaughter
process. Then the propagating terrace links unstable equilibrium E1 and stable equilibrium E2.

Figure 5. If Rs ≤ 1, the propagating terrace from E1 to E3. (a): The simulation of N2; (b):
Contour line of N2.

6. Discussions

We establish a new swine flu mathematical model to reflect the dynamic process of swine flu
transmission with interspecific action between domestic pigs and humans, in which the roles of
different species will no longer be at the same level. Domestic pigs cannot survive independently
without human beings, but human beings can still survive well without the supply of pork. By our
new swine flu model, we find that the human-animal interface has promoted the cross-species
transmission of swine flu and resulted in the prevalence of flu in humans. In addition, the threshold
values of population development and disease transmission are also discussed in order to provide a
scientific basis for future health decision makers in swine flu prevention and control. We propose the
zoonotic basic reproduction number Rs, which is more applicable to the study of swine flu
transmission. Then, it is analyzed that the spreading speed of different species forming propagating
terraces is influenced by the intrinsic growth rate r and diffusion rate D.

In this paper, the equilibrium points of the model are calculated and we analyze the existence of
the equilibrium points by the persistence theory. Then we discuss their stability by the basic
reproduction number. In addition, after redefining the spreading speed, we divide the propagating
terrace with two populations, which is an unprecedented task. We concern with the invasion process
of infected domestic animals into the habitat of humans. Under certain conditions as in Theorem 2,
we construct a propagating terrace linking human habitat to animal-human coexistent habitat, then to
swine flu natural foci, which is divided by spreading speeds.
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