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Abstract: Education empowers humans and gets them ready to face challenges of life efficiently.
Literacy and social media campaigns make people aware of the tools and techniques requisite for
protection against the emerging diseases. In this paper, we investigate the combined impacts of literacy
and social media on the dynamics of infectious diseases spreading through direct contact. Normalized
forward sensitivity indices explore the impacts of parameters on basic reproduction number. We
perform global sensitivity analysis for the infective population with respect to some controllable
epidemiologically important parameters. If the growth rate of broadcasting informations through social
media is very high, the system shows limit cycle oscillations. On the other hand, the baseline number
of social media advertisements stabilize the system by evacuating persistent oscillations and ultimately
settling the system from stable endemic equilibrium to stable disease-free state. The dissemination
of awareness among literate people also suppresses the prevalence of limit cycle oscillations and
drives the system to disease-free zone. An extension in model is made by assuming the growth rate
of social media advertisements as periodic function of time. The simulation results show that the
nonautonomous system showcases periodic as well as higher periodic solutions on the increase in the
growth rate of advertisements. Our results evoke that media and education play a tremendous role in
mounting awareness among the population leading to elimination of disease in the society.
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1. Introduction

Infectious diseases are major threats for mankind and affect the community at gross root level;
posing a huge economic burden due to adverse effects on human health [1, 2]. Mathematical models
are considered as one of the most effective tools to predict the transmission mechanism of various
infectious diseases. In case a pandemic occurs, at the early stage of progression of infection when
health care demands are not sufficient to protect the people against new emerging disease, the first-
hand informations propagated through social media, TV, internet, regarding preventive measures, is an
easy, fast and less expensive way to suppress the burden of disease [1, 3–6].

In contemporary times, media coverage is identified as an alternate control measure [5, 7–10].
People become alert due to media campaigns and take necessary precautions to avoid their contact
with infected individuals [11–13]. The individuals who are substantially aware of transmission
mechanisms, adjust their routine work, travel and pay significant attention on isolating themselves and
use precautionary measures, and hence reduce their possibility of contracting the infection. Currently,
the whole world including government of India is taking unprecedented steps and running various
social media advertising campaigns regarding the protection against the coronavirus pandemic. They
are employing different modes of propagating informations including social media, TV, radio, internet
using various types of slogan such as “Stay home, Stay safe”, “Be clean, Be healthy” etc.. The main
motive of such social media campaigns is to stimulate people to adopt healthy sanitation practices,
frequent hand washing, use of face mask, sanitizer, maintain social distancing, and disseminate
awareness among the people regarding the current scenario of disease threats and their control
mechanisms [14]. On the other hand, media has some negative effects as well. For example, the
negative effects of media at the time of the plague outbreak in India during 1994 largely affected
tourism and other businesses [15]. The epicenter of plague was Surat, Gujarat. In total, 52 people died
and a large number of people left the city due to media-induced panic, but the plague lasted in two
weeks.

Some studies have been conducted to understand the dynamics of infectious diseases and their
prevention by considering transmission rate as a decreasing function of infected individuals due to
information alerts [16–20]. Authors have also considered media as a dynamic variable and assumed
that information is propagated based on the prevalence of disease [4, 21–25]. Awareness programs
have the capability to reduce the epidemic threshold and thus control the spread of infection [26–28].
Misra et al. [22] have investigated the impacts of media campaigns and individuals behavioral response
towards the disease by assuming that aware individuals are fully immune via protective measures
during the infection period whereas Samanta et al. [21] have considered that aware individuals are
also vulnerable to infection with lower transmission rate than unaware individuals. Results of these
studies reveal that prior knowledge about disease threat through media coverage significantly reduces
the burden of disease. To assess the impact of awareness program on cholera dynamics, Yang et al. [29]
have investigated two models; in the first one they considered transmission rate as a decreasing function
of number of awareness programs while in the second one, they classified the susceptible individuals
into two compartments based on their prior knowledge about the disease.

Recently, Misra et al. [4] have investigated the impacts of TV and social media advertisements on
the spread of infectious diseases. They considered that the growth rate of information is proportional to
disease prevalence, and is a decreasing function of aware individuals. Misra and Rai [5] have assumed
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equal importance of broadcasting the information via TV and radio, and showed that the information
broadcasted through TV, radio and social media have potential to bring behavioral changes among
the individuals thereby reduces the disease burden. Misra and Rai [6] have investigated the impacts
of TV and radio on the spread of influenza; their findings reveal that media coverage is effective at
the early stage of epidemic outbreak. More recently, Chang et al. [3] have assessed the impact of
media coverage on the spread of COVID-19 in Hubei Province, China. Continuous propagation of
information through media campaigns is found to encourage the people to adopt preventive measures
to combat the pandemic together.

Moreover, literacy plays a crucial role to become aware regarding the protection against the disease
and change in behavior to adopt a healthy life style. Literate people have the capacity of intellectual
thinking and follow all the instructions provided by the government officials to halt the spread of
disease. In [30], it is reported that the odds of awareness among highly educated women and men were
more than those of uneducated women and men. Besides, both women and men who regularly watch
TV were more likely to be aware about AIDS compared to those who never watched TV. During the
spread of severe acute respiratory syndrome (SARS) in 2002 and 2004, media coverage and education
played important roles in reducing the contact rate of human beings [31]. After the media report
and education, people became aware of disease threat and began to reduce their contact with others
by stopping some unimportant works such as delayed some meetings, cancelled some dinner parties,
schools arranged for their students to teach themselves at home on the internet etc.. These behaviors
overall resulted in reduced contact with others. These results motivated us to study the effects of media
and education on the dynamics of infectious diseases.

Keeping in mind the importance of media coverage and education on disease control, we extend here
the study of Misra et al. [4] by dividing the unaware susceptible in two parts: Literate and illiterate
susceptible. In the present study, we investigate the effects of literacy and social media advertisements
on the dynamical behavior of the system and try to find out the best strategy to control the spread
of the disease. Further, it may be noted that on the progress of an epidemic, government also make
expenditure on the treatment of infectives, spraying chemicals for sanitation, etc., and thus reduces
the expenditure on advertisements. At the same time, the cost of the advertisement also depends on
the time slot and the season. Keeping these facts in mind, it is important to consider the coefficient
of growth rate of advertisements as a function of time rather than a constant value. The inclusion of
this variation in the parameter captures the fluctuations in the number of advertisements and make the
populations of all classes to behave periodically. Positive periodic solution represents an equilibrium
situation consistent with the variability of environmental conditions, and ensures that the populations
survive.

The remaining portion of this article is organized in the following way: In the next section, a
mathematical model is proposed for the effects of literacy and social media advertisements on the
spread of infectious diseases. In section 3, we study the dynamics of disease-free and endemic
equilibrium. Existence of Hobf-bifurcation is discussed by taking the growth rate of social media
advertisements as bifurcation parameter. In section 4, we extend our model by assuming the growth
rate of social media advertisements as a periodic function of time. Sufficient conditions are derived
for global attractivity of positive periodic solution. We numerically investigate the behaviors of the
autonomous and nonautonomous systems in section 5. Finally, the results are compiled and discussed
in section 6.
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2. The mathematical model

In a region under consideration, let N be the total human population at any instant of time t > 0.
Depending upon the state of infection and awareness, we divide the total human population into four
subpopulations namely; literate susceptible individuals Xl, illiterate susceptible individuals Xu,
infected individuals Y , and aware individuals Xa. Let T be the cumulative number of social media
advertisements which includes internet informations as well as TV, radio and print media, etc.
Descriptions of all the dynamical variables of the considered model are given in Table 1. The urge of
social media advertisements is to disseminate accurate and reliable informations about the disease,
create awareness about its transmission and prevention, clear existing myths and misconceptions, and
induce behavioral changes at the individual level so that the disease prevalence could be minimized.
We emphasize that aware individuals are much conscious and take all precautionary measures not to
contract the infection and thus are fully protected. However, on loosing the awareness due to
forgetfulness or social norms, the individuals of aware class become prone to infection and thus move
to susceptible class where they may contract the infection [22].

Table 1. Descriptions of variables used in the system (2.1).

Variables Descriptions
Xl Number of literate susceptible individuals
Xu Number of illiterate susceptible individuals
Y Number of infected individuals
Xa Number of aware individuals
T Cumulative number of social media advertisements

Figure 1. Schematic diagram for the systems (2.1) and (4.1). Here, purple lines represent the
impacts of social media advertisements on making literate/illiterate people aware about the
disease whereas blue color corresponds to the seasonal variation in the growth rate of social
media advertisements.
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Our model is based on the following assumptions.

(a) Individuals join the susceptible class at a constant rate Λ, a fraction µ of which join the literate
class while the remaining join the illiterate susceptible class.

(b) The population is homogeneously mixed and when literate/illiterate susceptible individuals
come in direct contact with infected individuals they become infected and join the infected class,
following the simple law of mass action.

(c) Literate susceptible individuals adopt healthy life style during the course of infection, and hence
have less possibility to be infected. Also, with the passage of time, illiterate susceptibles become
literate through education campaigns at a constant rate γ.

(d) During an endemic, useful informations are broadcasted through different modes of social media.
These informations are disseminated frequently to warn people about the epidemic.

(e) Thus, informations broadcasted in public do not remain constant but depend on prevalence of
infection, i.e., the growth rate of informations campaigns increases in proportion to the number
of infected individuals.

(f) Following [4], we assume that the growth rate of social media advertisements is a decreasing
function of aware population in the region. The reason behind such consideration is the
involvement of cost in broadcasting the information.

(g) As time passes, informations broadcasted in public lose their impact. Thus, depletion in
cumulative number of advertisements is also incorporated in the model. Moreover, a baseline
number of social media advertisements is always maintained in the region.

(h) The information broadcasted in public changes individuals’ behaviors towards the disease and
they (literate and illiterate individuals) avoid their contacts with infected individuals by forming
a separate aware class which is fully protected from infection as they adopt all precautionary
measures during the infection period [22]. However, individuals in aware class may lose
awareness with the passage of time and become susceptible again at a constant rate λ0.

(i) The informations broadcasted through social media, TV, internet etc., have limited impact on
literate and illiterate susceptible individuals. Thus, literate and illiterate susceptible become aware

at the rates λ1Xl
T

p + T
and λ2Xu

T
p + T

with λ1 and λ2 as dissemination rates of awareness among

literate and illiterate susceptibles, respectively.

With these model assumptions, schematic diagram for the interactions among the considered dynamical
variables is depicted in Figure 1, and the proposed model is given as,

dXl

dt
= µΛ − β1XlY − λ1Xl

T
p + T

+ γXu + λ0Xa + νY − dXl,

dXu

dt
= (1 − µ)Λ − β2XuY − λ2Xu

T
p + T

− γXu − dXu,

dY
dt

= β1XlY + β2XuY − (ν + α + d)Y, (2.1)

dXa

dt
= λ1Xl

T
p + T

+ λ2Xu
T

p + T
− (λ0 + d)Xa,

dT
dt

= r
(
1 − θ

Xa

w + Xa

)
Y − r0(T − T0).
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Initial conditions for system (2.1) are chosen as Xl(0) > 0, Xu(0) > 0, Y(0) ≥ 0, Xa(0) > 0 and
T (0) ≥ T0. It may be pointed out that β1 < β2, λ1 > λ2 and 0 < θ ≤ 1. Note that β1 < β2 represents the
fact that the literate susceptible individuals have less probability to contract the infection than the
illiterate susceptible individuals whereas λ1 > λ2 tells that the rate of dissemination of awareness
among literate susceptible individuals is more in comparison to that among the illiterate susceptible
individuals. All the parameters involved in system (2.1) are assumed to be positive and their
descriptions are given in Table 2.

Table 2. Descriptions of parameters involved in the system (2.1) and their values taken within
the range prescribed in various previous literature sources [4–6, 26, 27].

Parameters Descriptions Units Values
Λ Immigration rate in the class of literate/illiterate persons day−1 5

susceptible population
µ Fraction of newly recruited individuals joining the literate — 0.1

susceptible class
β1 Contact rate of literate susceptible with infected person−1day−1 0.0000035

individuals
β2 Contact rate of illiterate susceptible with infected person−1day−1 0.000004

individuals
λ1 Dissemination rate of awareness among the literate day−1 0.014

susceptible individuals
λ2 Dissemination rate of awareness among the illiterate day−1 0.008

susceptible individuals
λ0 Rate of transfer of aware individuals to literate day−1 0.008

susceptible class
p Half saturation constant ads. 1200
γ Rate of transfer of illiterate susceptible individuals to day−1 0.005

literate susceptible class
ν Recovery rate of human population day−1 0.2
α Disease-induced death rate of human population day−1 0.00001
d Natural death rate of human population day−1 0.00004
r Growth rate of broadcasting the information ads. person−1day−1 0.01
θ Decay in advertisements due to increase in number of — 0.0005

aware individuals
w Half saturation constant persons 60
r0 Diminution rate of advertisements due to inefficiency and day−1 0.005

psychological barriers
T0 Baseline number of social media advertisements ads. 500

Using the fact that Xl + Xu + Xa + Y = N, the system (2.1) reduces to following equivalent system:

dY
dt

= β1(N − Y − Xu − Xa)Y + β2XuY − (ν + α + d)Y,
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dXu

dt
= (1 − µ)Λ − β2XuY − λ2Xu

T
p + T

− (γ + d)Xu,

dXa

dt
= λ1(N − Y − Xu − Xa)

T
p + T

+ λ2Xu
T

p + T
− (λ0 + d)Xa, (2.2)

dN
dt

= Λ − dN − αY,

dT
dt

= r
(
1 − θ

Xa

w + Xa

)
Y − r0(T − T0).

Now onwards, we study the dynamical behavior of system (2.2).
The feasible region for system (2.2) is given in the following lemma [32, 33].

Lemma 2.1. The region of attraction for all solutions of system (2.2) initiating in the positive orthant
is given by

Ω =

{
(Y, Xu, Xa,N,T ) ∈ R5

+ : 0 ≤ Y, Xu, Xa ≤ N ≤
Λ

d
, 0 ≤ T ≤ T0 +

rΛ

r0d

}
,

which is compact and invariant with respect to system (2.2). The region Ω is closed and bounded in
the positive cone of the five dimensional space. Consequently, the system (2.2) is dissipative and any
solution is defined for t ≥ 0.

Proof. Fourth equation of system (2.2) yields

dN
dt

= Λ − dN − αY ≤ Λ − dN.

Using a standard comparison theorem [34], we have 0 ≤ N(t) ≤
Λ

d
+

(
N(0) −

Λ

d

)
e−dt. Thus, as t → ∞,

0 ≤ N(t) ≤
Λ

d
, we have for any t > 0, 0 ≤ N(t) ≤

Λ

d
. Since Xl = N − Y − Xu − Xa ≥ 0, so

0 ≤ Y, Xu, Xa ≤
Λ

d
for all t ≥ 0.

Now, from the last equation of system (2.2), we have

dT
dt

= r
(
1 − θ

Xa

w + Xa

)
Y − r0(T − T0) ≤ rY + r0T0 − r0T ≤

rΛ

d
+ r0T0 − r0T.

Following the above arguments, we can show that for any t > 0, 0 ≤ T (t) ≤ T0 +
rΛ

r0d
. Therefore, all

feasible solutions of the system (2.2) enter the region Ω implying that the region is an attracting set.
�

2.1. System without literacy and awareness

Ignoring the impacts of media and literacy among people, system (2.2) reduces to the following
simple subsystem

dY
dt

= β(N − Y)Y − (ν + α + d)Y,
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dN
dt

= Λ − dN − αY, (2.3)

which is a simple SIS model with immigration whose dynamics is well studied [35].
System (2.3) has disease-free equilibrium E0 = (0,Λ/d) and endemic equilibrium E

∗
= (Y

∗
,N
∗
),

where

Y
∗

=
βΛ − d(ν + α + d)

β(α + d)
and N

∗
=
βΛ + α(ν + α + d)

β(α + d)
.

For system (2.3), the expression of basic reproduction number is obtained as,

R0 =
βΛ

d(ν + α + d)
.

The disease-free equilibrium E0 always exists whereas the endemic equilibrium E
∗

exists if R0 > 1.
The equilibrium E0 is stable whenever R0 < 1 and unstable for R0 > 1 whereas the equilibrium E

∗
is

locally as well as globally asymptotically stable for R0 > 1.

2.2. System without awareness

In the absence of social media advertisements, system (2.2) becomes

dY
dt

= β1(N − Y − Xu)Y + β2XuY − (ν + α + d)Y,

dXu

dt
= (1 − µ)Λ − β2XuY − (γ + d)Xu, (2.4)

dN
dt

= Λ − dN − αY.

System (2.4) has disease-free equilibrium Ê0 =

(
0,

(1 − µ)Λ
γ + d

,
Λ

d

)
and endemic equilibrium Ê∗ =

(Ŷ∗, X̂∗u, N̂
∗). The components of equilibrium Ê∗ are given by N̂∗ =

Λ − αŶ∗

d
, X̂∗u =

(1 − µ)Λ

β2Ŷ∗ + γ + d
and

Ŷ∗ is positive root of the following quadratic equation:

aY2 + bY − c = 0, (2.5)

where

a = β1β2(α + d), b = β1(α + d)(γ + d) − β2{β1Λ − d(ν + α + d)}, c = d(γ + d)(ν + α + d)(R̂0 − 1)

with R̂0 =
β1Λ

d(ν + α + d)
+

(β2 − β1)(1 − µ)Λ
(γ + d)(ν + α + d)

. The quantity R̂0 is basic reproduction number for

system (2.4). Clearly, Eq (2.5) has exactly one positive root if R̂0 > 1.
The disease-free equilibrium Ê0 is stable whenever R̂0 < 1 and unstable for R̂0 > 1. If R̂0 > 1, the

endemic equilibrium Ê∗ exists and always locally asymptotically stable. The equilibrium Ê∗ is globally
asymptotically stable if the following condition holds:

β2X̂∗u(β2 − β1) < β1(γ + d). (2.6)
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2.3. System without literacy

If we ignore literacy among population, then system (2.2) takes the form

dY
dt

= β(N − Y − Xa)Y − (ν + α + d)Y,

dXa

dt
= λ(N − Y − Xa)

T
p + T

− (λ0 + d)Xa,

dN
dt

= Λ − dN − αY, (2.7)

dT
dt

= r
(
1 − θ

Xa

w + Xa

)
Y − r0(T − T0)

whose dynamics is well studied by Misra et al. [4]. Here, we summarize the dynamics of system (2.7)
as follows.

System (2.7) has disease-free equilibrium Ẽ0 =

(
0,

λΛT0

d{λT0 + (λ0 + d)(p + T0)}
,
Λ

d
,T0

)
and endemic

equilibrium Ẽ∗ = (Ỹ∗, X̃∗a, Ñ
∗, T̃ ∗). The components of equilibrium Ẽ∗ are positive solutions of the

equilibrium equations of system (2.7). The expression for basic reproduction number is obtained as

R̃0 =
βΛ

d(ν + α + d)
(λ0 + d)(p + T0)

λT0 + (λ0 + d)(p + T0)
.

The equilibrium Ẽ0 is stable whenever R̃0 < 1 and unstable for R̃0 > 1 whereas the equilibrium Ẽ∗

exists if R̃0 > 1 and locally asymptotically stable if Ã3(Ã1Ã2 − Ã3) − Ã2
1Ã4 > 0, where

Ã1 = ã21 + λ0 + 2d + r0 + βỸ∗,

Ã2 = r0(̃a21 + λ0 + d) + ã24
rθwỸ∗

(w + X̃∗a)2
+ βỸ∗(λ0 + r0 + d) + αβỸ∗ + d(̃a21 + λ0 + r0 + d) + dβỸ∗,

Ã3 = βỸ∗r0(λ0 + d) + βỸ∗ã24
rθwỸ∗

(w + X̃∗a)2
+ βỸ∗ã24r

1 − θ X̃∗a
w + X̃∗a

 + αβỸ∗(λ0 + r0 + d)

+dr0(̃a21 + λ0 + d) + dã24
rθwỸ∗

(w + X̃∗a)2
+ βdỸ∗(λ0 + r0 + d),

Ã4 = βdỸ∗r0(λ0 + d) + dβỸ∗ã24
rθwỸ∗

(w + X̃∗a)2
+ dβỸ∗ã24r

1 − θ X̃∗a
w + X̃∗a

 + αβỸ∗r0(λ0 + d)

+αβ̃a24Ỹ∗
rθwỸ∗

(w + X̃∗a)2

with

ã21 =
λT̃ ∗

p + T̃ ∗
, ã24 =

λp(Ñ∗ − Ỹ∗ − X̃∗a)

(p + T̃ ∗)2
.

It is shown that the increment in growth rate of social media advertisements destabilizes the system
and periodic oscillations arise through Hopf-bifurcation. Endemic equilibrium of the system changes
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its stability from stable to unstable to stable state as the dissemination rate of awareness among
susceptible individuals due to popularity of new advertisements increases and the large values of
dissemination rate can ceases the feasibility of endemic equilibrium, the system settles to stable
disease-free state. The broadcasting of advertisements through TV and social media regarding the
spread of infectious diseases are found to have the potential to bring behavioral changes among the
people and control the spread of diseases. Further, if the dissemination rate of awareness among the
susceptible individuals is fast enough then disease can be effectively controlled in the population.

3. Mathematical analysis of system (2.2)

3.1. Disease-free equilibrium and its stability

For system (2.2), the disease-free equilibrium is E0 =

(
0, Xu0 , Xa0 ,

Λ

d
,T0

)
, where

Xu0 =
(1 − µ)Λ(p + T0)

λ2T0 + (γ + d)(p + T0)
,

Xa0 =
λ1T0Λ{λ2T0 + (γ + µd)(p + T0)} + d(1 − µ)Λλ2T0(p + T0)

d{λ1T0 + (λ0 + d)(p + T0)}{λ2T0 + (γ + d)(p + T0)}
.

The equilibrium E0 always exists in the system.

3.1.1. Basic reproduction number

The basic reproduction number (R0), an index worldwide commonly used by public health
organizations as a key estimator of the severity of a given epidemic. The new infection terms and
transition terms of the system (2.2) are respectively given by

F =


β1(N − Y − Xu − Xa)Y + β2XuY

0
0
0
0


,

V =



(ν + α + d)Y

−(1 − µ)Λ + β2XuY + λ2Xu
T

p + T
+ (γ + d)Xu

−λ1(N − Y − Xu − Xa)
T

p + T
− λ2Xu

T
p + T

+ (λ0 + d)Xa

−Λ + dN + αY

−r
(
1 −

θXa

w + Xa

)
Y + r0(T − T0)


.
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Using next-generation operator method [36], we determine the expression for basic reproduction
number. For this, we find the matrices F (of new infection terms) and V (of the transition terms) as

F =


F11 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, V =


V11 0 0 0 0
V21 V22 0 0 V25

V31 V32 V33 V34 V35

V41 0 0 V44 0
V51 0 0 0 V55


,

where

F11 =
Λ

d

[
β1(p + T0){λ2T0(λ0 + µd) + (p + T0)(λ0 + d)(γ + µd)}
{λ1T0 + (λ0 + d)(p + T0)}{λ2T0 + (γ + d)(p + T0)}

+
β2dT0(1 − µ)

λ2T0 + (γ + d)(p + T0)

]
,

V11 = ν + α + d, V21 = β2Xu0 , V22 =
λ2T0

p + T0
+ γ + d, V25 =

λ2 pXu0

(p + T0)2 , V31 =
λ1T0

p + T0
,

V32 =
(λ1 − λ2)T0

p + T0
, V33 =

λ1T0

p + T0
+ λ0 + d, V34 = −

λ1T0

p + T0
,

V35 = −

[
λ1 p(Λ/d − Xu0 − Xa0)

(p + T0)2 +
λ2 pXu0

(p + T0)2

]
, V41 = α, V44 = d, V51 = −r

(
1 −

θXa0

w + Xa0

)
,

V55 = r0.

The basic reproduction number is given by R0 = ρ(FV−1), where ρ is the spectral radius of the next-
generation matrix (FV−1). Thus, from the model system (2.2), we obtain the expression for R0 as

R0 =
Λ

d(ν + α + d)

[
β1(p + T0){λ2T0(λ0 + µd) + (p + T0)(λ0 + d)(γ + µd)}
{λ1T0 + (λ0 + d)(p + T0)}{λ2T0 + (γ + d)(p + T0)}

+
β2dT0(1 − µ)

λ2T0 + (γ + d)(p + T0)

]
. (3.1)

Following [36], local stability of the disease-free equilibrium E0 can be stated as follows.

Theorem 3.1. For system (2.2), the disease-free equilibrium E0 is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.

Proof. Jacobian matrix of system (2.2) is given by

J =


J11 J12 J13 J14 0
J21 J22 0 0 J25

J31 J32 J33 J34 J35

J41 0 0 J44 0
J51 0 J53 0 J55


,

where

J11 = β1(N − 2Y − Xu − Xa) + β2Xu − (ν + α + d), J12 = (β2 − β1)Y, J13 = −β1Y,

J14 = β1Y, J21 = −β2Xu, J22 = −

[
β2Y +

λ2T
p + T

+ γ + d
]
, J25 = −

λ2 pXu

(p + T )2 ,
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J31 = −
λ1T

p + T
, J32 = −

(λ1 − λ2)T
p + T

, J33 = −

[
λ1T

p + T
+ λ0 + d

]
, J34 =

λ1T
p + T

,

J35 =
λ1 p(N − Y − Xu − Xa)

(p + T )2 +
λ2 pXu

(p + T )2 , J41 = −α, J44 = −d, J51 = r
(
1 −

θXa

w + Xa

)
,

J53 = −
rθwY

(w + Xa)2 , J55 = −r0.

At the equilibrium E0, the Jacobian matrix becomes

JE0 =


a11 0 0 0 0
a21 a22 0 0 a25

a31 a32 a33 a34 a35

a41 0 0 a44 0
a51 0 0 0 a55


,

where

a11 = (ν + α + d)(R0 − 1), a21 = −β2Xu0 , a22 = −

[
λ2T0

p + T0
+ γ + d

]
, a25 = −

λ2 pXu0

(p + T0)2 ,

a31 = −
λ1T0

p + T0
, a32 = −

(λ1 − λ2)T0

p + T0
, a33 = −

[
λ1T0

p + T0
+ λ0 + d

]
, a34 =

λ1T0

p + T0
,

a35 =
λ1 p(Λ/d − Xu0 − Xa0)

(p + T0)2 +
λ2 pXu0

(p + T0)2 , a41 = −α, a44 = −d, a51 = r
(
1 −

θXa0

w + Xa0

)
,

a55 = −r0.

Eigenvalues of the matrix JE0 are obtained as,

(ν + α + d)(R0 − 1), −
[
λ2T0

p + T0
+ γ + d

]
, −

[
λ1T0

p + T0
+ λ0 + d

]
, −d, −r0.

Clearly, the last four eigenvalues are always negative while the first one is negative if R0 < 1 and
positive if R0 > 1. That is, the equilibrium E0 is stable if R0 < 1 and unstable if R0 > 1.

�

3.2. Endemic equilibrium and its stability

For system (2.2), an endemic equilibrium is E∗=(Y∗, X∗u, X
∗
a,N

∗,T ∗), whose components are positive
solutions of equilibrium equations of the system (2.2).

From the fourth equilibrium equation of system (2.2), we have

N∗ =
Λ − αY∗

d
. (3.2)

From the fifth equilibrium equation of system (2.2), we have

T ∗ = T0 +
rY∗

r0

(
1 −

θX∗a
w + X∗a

)
= f1(Y∗, X∗a). (3.3)
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Figure 2. Intersections of isoclines (3.5) and (3.6). Here, green and red colors represent the
isoclines (3.5) and (3.6), respectively. Parameters are at the same values as in Table 2.

From the second equilibrium equation of system (2.2), we have

X∗u =
(1 − µ)Λ(p + T ∗)

λ2T ∗ + (p + T ∗)(β2Y∗ + γ + d)
. (3.4)

From the first equilibrium equation of system (2.2), we have

β1

[
Λ − (α + d)Y

d
− Xa

]
+

(β2 − β1)(1 − µ)Λ{p + f1(Y, Xa)}
λ2 f1(Y, Xa) + (β2Y + γ + d){p + f1(Y, Xa)}

− (ν + α + d) = 0. (3.5)

Finally, from the third equilibrium equation of system (2.2), we have

f1(Y, Xa)
p + f1(Y, Xa)

[
λ1

(
Λ − (α + d)Y

d
− Xa

)
−

(λ1 − λ2)(1 − µ)Λ{p + f1(Y, Xa)}
λ2 f1(Y, Xa) + (β2Y + γ + d){p + f1(Y, Xa)}

]
−(λ0 + d)Xa = 0. (3.6)

Note that Eqs (3.5) and (3.6) are two isoclines in Y and Xa. It is difficult to analyze the behaviors of
isoclines (3.5) and (3.6) mathematically. To visualize numerically, in Figure 2, we plot
isoclines (3.5) and (3.6) for the set of parameter values given in Table 2. It is clear from the figure that
isoclines (3.5) and (3.6) intersect uniquely in the interior of positive quadrant. Let the point of
intersection be (X∗a,Y

∗).
In Table 3, we listed equilibria and basic reproduction for the full system (2.2) and the corresponding

subsystems (2.3), (2.4) and (2.7).

Remark 1. The quantity R0 is basic reproduction number when there is no social media
advertisements and also literacy is ignored among people, which captures the dynamics of simple SIS
model with immigration. In the presence of social media advertisements, this basic reproduction

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5812–5848.



5825

Table 3. Equilibria and basic reproduction for the systems (2.2)–(2.4) and (2.7).

Models Equilibria Basic reproduction number

(2.3) E0 = (0, Λ
d ) R0 =

βΛ

d(ν+α+d)

E
∗

= (Y
∗
,N
∗
)

(2.4) Ê0 =
(
0, (1−µ)Λ

γ+d , Λ
d

)
R̂0 =

β1Λ

d(ν+α+d) +
(β2−β1)(1−µ)Λ
(γ+d)(ν+α+d)

Ê∗ = (Ŷ∗, X̂∗u, N̂
∗)

(2.7) Ẽ0 =
(
0, λΛT0

d{λT0+(λ0+d)(p+T0)} ,
Λ
d ,T0

)
R̃0 =

βΛ

d(ν+α+d)
(λ0+d)(p+T0)

λT0+(λ0+d)(p+T0)

Ẽ∗ = (Ỹ∗, X̃∗a, Ñ
∗, T̃ ∗)

(2.2) E0 =
(
0, Xu0 , Xa0 ,

Λ
d ,T0

)
R0 = Λ

d(ν+α+d)

[
β1(p+T0){λ2T0(λ0+µd)+(p+T0)(λ0+d)(γ+µd)}
{λ1T0+(λ0+d)(p+T0)}{λ2T0+(γ+d)(p+T0)} +

β2dT0(1−µ)
λ2T0+(γ+d)(p+T0)

]
E∗=(Y∗, X∗u, X

∗
a,N

∗,T ∗)

number is modified and becomes R̃0. It can be easily observed that R̃0 < R0, showing the impact of
broadcasting information through social media advertisements on epidemic threshold. The quantity
R̂0 represents the basic reproduction number in the presence of educational campaigns. From the
expression of R̂0, it is inferred that the epidemic threshold decreases in the presence of education
campaigns indicating the role of education campaigns on controlling the epidemic outbreak. From the
expression of R0, the role of dissemination of awareness among literate people on the disease
prevalence is evident. It is to be noted that by increasing the rate of dissemination of awareness
among literate people, the value of R0 decreases. To explore the role of model parameters on R0, we
will perform later sensitivity analysis of R0 with respect to each parameter.

Regarding local stability of the endemic equilibrium E∗, we have the following theorem.

Theorem 3.2. The endemic equilibrium E∗, if feasible, is locally asymptotically stable if and only if
the following conditions hold:

A5 > 0, A1A2 − A3 > 0, A3(A1A2 − A3) − A1(A1A4 − A5) > 0,
A4{A3(A1A2 − A3) − A1(A1A4 − A5)} − A5{A2(A1A2 − A3) − (A1A4 − A5)} > 0,

(3.7)

where Ai’s (i = 1−5) are defined in the proof.

Proof. Evaluating the Jacobian matrix J at the endemic equilibrium E∗, we get

JE∗ =


−β1Y∗ (β2 − β1)Y∗ −β1Y∗ β1Y∗ 0
−β2X∗u −a22 0 0 −a25

−a31 −(a31 − a32) −(a31 + λ0 + d) a31 a35

−α 0 0 −d 0
a51 0 −a53 0 −r0


,

where

a22 = β2Y∗ +
λ2T ∗

p + T ∗
+ γ + d, a25 =

λ2 pX∗u
(p + T ∗)2 , a31 =

λ1T ∗

p + T ∗
, a32 =

λ2T ∗

p + T ∗
,
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a35 =
λ1 p(N∗ − Y∗ − X∗u − X∗a)

(p + T ∗)2 +
λ2 pX∗u

(p + T ∗)2 , a51 = r
(
1 − θ

X∗a
w + X∗a

)
, a53 =

rθwY∗

(w + X∗a)2 .

The associated characteristic equation is obtained as

ξ5 + A1ξ
4 + A2ξ

3 + A3ξ
2 + A4ξ + A5 = 0, (3.8)

where

A1 = β1Y∗ + a22 + a31 + λ0 + r0 + 2d,

A2 = r0(a31 + λ0 + d) + a35a53 + a22(a31 + λ0 + r0 + d) + β1Y∗(a22 + λ0 + r0 + d)
+(β2 − β1)β2Y∗X∗u + d(β1Y∗ + a22 + a31 + λ0 + r0 + d) + αβ1Y∗,

A3 = a22{r0(a31 + λ0 + d) + a35a53} + a25a53(a31 − a32)
+β1Y∗{r0(λ0 + d) + a35a53 + a22(λ0 + r0 + d)}
+(β2 − β1)Y∗{β2X∗u(a31 + λ0 + r0 + d) + a25a51} + β1β2Y∗X∗u(a31 − a32) + β1Y∗a35a51

+d{r0(a31 + λ0 + d) + a35a53 + a22(a31 + λ0 + r0 + d) + β1Y∗(a22 + λ0 + r0 + d)
+(β2 − β1)β2Y∗X∗u} + αβ1Y∗(λ0 + r0 + d) + αβ1Y∗a22,

A4 = β1Y∗[a22{r0(λ0 + d) + a35a53} + a25a53(a31 − a32)]
+(β2 − β1)Y∗[β2X∗u{r0(a31 + λ0 + d) + a35a53} + a25a31a53 + a25a51(a31 + λ0 + d)]
+β1β2Y∗X∗ur0(a31 − a32) + β1Y∗{a22a35a51 + a25a51(a31 − a32)}
+d[a22{r0(a31 + λ0 + d) + a35a53} + a25a53(a31 − a32)
+β1Y∗{r0(λ0 + d) + a35a53 + a22(λ0 + r0 + d)}
+(β2 − β1)Y∗{β2X∗u(a31 + λ0 + r0 + d) + a25a51}

+β1β2Y∗X∗u(a31 − a32) + β1Y∗a35a51]
+αβ1Y∗{r0(λ0 + d) + a35a53} + αa22β1Y∗(λ0 + r0 + d),

A5 = dβ1Y∗[a22{r0(λ0 + d) + a35a53} + a25a53(a31 − a32)]
+dY∗(β2 − β1)[β2X∗u{r0(a31 + λ0 + d) + a35a53} + a25a31a53 + a25a51(a31 + λ0 + d)]
+dβ1β2Y∗X∗ur0(a31 − a32) + dβ1Y∗{a22a35a51 + a25a51(a31 − a32)}
+αβ1Y∗a22{r0(λ0 + d) + a35a53} + αa25a53Y∗{(β2 − β1)a31 + β1(a31 − a32)}.

Employing Routh-Hurwitz criterion, roots of the Eq (3.8) are either negative or with negative real parts
if and only if the conditions stated in (3.7) are satisfied.

�
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3.3. Global stability of endemic equilibrium

Regarding global stability of the endemic equilibrium E∗, we have the following theorem.

Theorem 3.3. The endemic equilibrium E∗, if feasible, is globally asymptotically stable inside the
region of attraction Ω if the following conditions are satisfied:[

λ2Λr
dr0(p + T ∗)

(
1 − θ

X∗a
w + X∗a

)]2

<
β1β2X∗u

6(β2 − β1)

(
λ2T ∗

p + T ∗
+ γ + d

)
, (3.9)[

λ1T ∗

λ1T ∗ + (λ0 + d)(p + T ∗)

]2

max

3β1

2
,

2m4

r0

(
rθΛ

d(w + X∗a)

)2


<
1
9

min

2β1

3
,

λ2
1

(λ1 − λ2)2

(
λ2T ∗

p + T ∗
+ γ + d

)
,

2β1d
α

,
m4r0d2

2Λ2

(
λ1T ∗

λ1 + λ2

)2
 ,

(3.10)

where m4 is defined in the proof.

Proof. To establish the global stability of the endemic equilibrium E∗, we consider the following
positive definite function:

V =

[
Y − Y∗ − Y∗ ln

( Y
Y∗

)]
+

m1

2
(Xu − X∗u)2 +

m2

2
(Xa − X∗a)2

+
m3

2
(N − N∗)2 +

m4

2
(T − T ∗)2, (3.11)

where m1, m2, m3 and m4 are positive constants to be chosen appropriately.
Calculating the time derivative of V along the solution of model system (2.2), and choosing m1 =

β2 − β1

β2X∗u
and m3 =

β1

α
, we get

dV
dt

= −β1(Y − Y∗)2 −
β2 − β1

β2X∗u

[
β2Y +

λ2T ∗

p + T ∗
+ γ + d

]
(Xu − X∗u)2

−m2

[
λ1T ∗

p + T ∗
+ λ0 + d

]
(Xa − X∗a)2 −

β1d
α

(N − N∗)2 − m4r0(T − T ∗)2

−β1(Y − Y∗)(Xa − X∗a) − m2
λ1T ∗

p + T ∗
(Y − Y∗)(Xa − X∗a)

+m4r
(
1 − θ

X∗a
w + X∗a

)
(Y − Y∗)(T − T ∗)

−m2
(λ1 − λ2)T ∗

p + T ∗
(Xu − X∗u)(Xa − X∗a) −

β2 − β1

β2X∗u

λ2 pXu

(p + T )(p + T ∗)
(Xu − X∗u)(T − T ∗)

+m2
λ1T ∗

p + T ∗
(Xa − X∗a)(N − N∗) + m2

λ1 p(N − Y − Xu − Xa) + λ2 pXu

(p + T )(p + T ∗)
(Xa − X∗a)(T − T ∗)

−m4
rθwY

(w + Xa)(w + X∗a)
(Xa − X∗a)(T − T ∗).
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Thus,
dV
dt

will be negative definite inside the region of attraction Ω provided the following conditions
are satisfied:

β1 <
2m2

9

(
λ1T ∗

p + T ∗
+ λ0 + d

)
, (3.12)

m2

[
λ1T ∗

p + T ∗

]2

<
2β1

9

(
λ1T ∗

p + T ∗
+ λ0 + d

)
, (3.13)

m4r2
[
1 − θ

X∗a
w + X∗a

]2

<
β1r0

3
, (3.14)

m2

[
(λ1 − λ2)T ∗

p + T ∗

]2

<
1
3

(
λ1T ∗

p + T ∗
+ λ0 + d

) (
λ2T ∗

p + T ∗
+ γ + d

)
, (3.15)

β2 − β1

β2X∗u

[
λ2Λ

d(p + T ∗)

]2

<
m4r0

2

(
λ2T ∗

p + T ∗
+ γ + d

)
, (3.16)

m2

[
λ1T ∗

p + T ∗

]2

<
2β1d
3α

(
λ1T ∗

p + T ∗
+ λ0 + d

)
, (3.17)

m2

[
Λ(λ1 + λ2)
d(p + T ∗)

]2

<
m4r0

6

(
λ1T ∗

p + T ∗
+ λ0 + d

)
, (3.18)

m4

[
rθΛ

d(w + X∗a)

]2

<
m2r0

6

(
λ1T ∗

p + T ∗
+ λ0 + d

)
. (3.19)

From inequalities (3.14) and (3.16), we can choose a positive value of m4 if condition (3.9) holds.
Now, from inequalities (3.12), (3.13), (3.15)−(3.19), we can choose a positive value of m2 provided
condition (3.10) holds.

�

Remark 2. Conditions of Theorem 3.3 indicate that the growth rate of social media advertisements
may destabilize the system, i.e., on increasing the value of r, conditions stated in (3.7) for local
stability of the equilibrium E∗ may be violated and the equilibrium E∗ may lose its stability. Thus,
there is a possibility of occurrence of Hopf bifurcation which leads to existence of limit cycle
oscillations around the equilibrium E∗ as the parameter r passes through its critical value from below.
The stabilizing/destabilizing roles of dissemination rates of awareness among literate/illiterate
susceptible individuals and the baseline number of social media advertisements are not clear from the
inequalities (3.9) and (3.10). Numerically, we will check which parameters in system (2.2) have
capability to alter the stability behavior of the system.
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3.4. Existence of Hopf-bifurcation

In this section, we investigate for the possibility of Hopf bifurcation from the endemic
equilibrium E∗ by taking the growth rate of broadcasting the information through social media, r, as a
bifurcation parameter, keeping other parameters fixed. In this regard, we have the following theorem.

Theorem 3.4. When the growth rate of broadcasting the information through social media, r, exceeds
a critical value, r∗, the system (2.2) enters into Hopf bifurcation around the endemic equilibrium E∗ if
the following necessary and sufficient conditions are satisfied:

(a) ψ(r∗) ≡ {A3(r∗) − A1(r∗)A2(r∗)}{A5(r∗)A2(r∗) − A3(r∗)A4(r∗)}
−{A5(r∗) − A1(r∗)A4(r∗)}2 = 0,

(b) A1(r∗) > 0, A1(r∗)A2(r∗) − A3(r∗) > 0, A3(r∗) − A1(r∗)ω∗0 > 0,

ω∗0 =
A5(r∗) − A1(r∗)A4(r∗)
A3(r∗) − A1(r∗)A2(r∗)

> 0,

(c)
dψ(r)

dr

∣∣∣∣∣∣
r=r∗
, 0.

Proof. The characteristic polynomial (3.8) has a pair of purely imaginary roots ξ1,2 = ±i
√
ω0, ω0 > 0

if and only if it can be written as

p(ξ) = (ξ2 + ω0)g(ξ), g(ξ) = ξ3 + B1ξ
2 + B2ξ + B3. (3.20)

Thus, we have

p(ξ) = ξ5 + B1ξ
4 + (B2 + ω0)ξ3 + (B3 + B1ω0)ξ2 + B2ω0ξ + B3ω0. (3.21)

Equating the coefficients of Eqs (3.8) and (3.21), we get

A1 = B1, A2 = B2 + ω0, A3 = B3 + B1ω0, A4 = B2ω0, A5 = B3ω0. (3.22)

For the consistence of the above relations, we have

ω2
0 − A2ω0 + A4 = 0, A1ω

2
0 − A3ω0 + A5 = 0. (3.23)

The elimination of ω2
0 gives

(A3 − A1A2)ω0 = A5 − A1A4. (3.24)

Thus, Eq (3.8) can be written as

p(ξ) = ξ5 + A1ξ
4 + A2ξ

3 + A3ξ
2 + ω0(A2 − ω0)ξ + ω0(A3 − A1ω0). (3.25)

If (A3 − A1A2)(A5 − A1A4) > 0, then from Eq (3.24), we have

ω0 = ω∗0 =
A5 − A1A4

A3 − A1A2
> 0. (3.26)
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Substituting ω0 = ω∗0 in Eq (3.25), we find that Eqs (3.8) and (3.25) are identical if and only if

ψ = (A3 − A1A2)(A5A2 − A3A4) − (A5 − A1A4)2 = 0. (3.27)

Now, the necessary and sufficient condition under which the polynomial

g(ξ) = ξ3 + A1ξ
2 + (A2 − ω0)ξ + A3 − A1ω0 = 0 (3.28)

does not have zero roots is

A3 − A1ω0 , 0. (3.29)

The polynomial g(ξ) has all roots with negative real parts if and only if all leading principal minors of
the matrix 

B1 B3 0
1 B2 0
0 B1 B3

 =


A1 A3 − A1ω0 0
1 A2 − ω0 0
0 A1 A3 − A1ω0

 (3.30)

are positive (Routh-Hurwitz conditions for stability [37]). The positivity of the determinants lead to
the following conditions

A1 > 0, A1A2 − A3 > 0, A3 − A1ω0 > 0. (3.31)

To complete the discussion, it remains to verify the transversality condition. The function ψ(r) can
be expressed in the form of Orlando’s formula as follows:

ψ(r) = (ξ1 + ξ2)(ξ1 + ξ3)(ξ1 + ξ4)(ξ1 + ξ5)(ξ2 + ξ3)(ξ2 + ξ4)(ξ2 + ξ5)
(ξ3 + ξ4)(ξ3 + ξ5)(ξ4 + ξ5). (3.32)

As ψ(r∗) is a continuous function of all its roots, there exists an open interval Ir∗ = (r∗ − ε, r∗ + ε),
where ξ1 and ξ2 are complex conjugates for all r ∈ Ir∗ . Let their general forms in this neighborhood be
ξ1(r) = φ1(r) + iφ2(r), ξ2(r) = φ1(r)− iφ2(r) with φ1(r∗) = 0, φ2(r∗) =

√
ω0 > 0 while Re(ξ3,4,5(r∗)) , 0.

Then, we have

ψ(r) = 2φ1{(ξ3 + φ1)2 + φ2
2}{(ξ4 + φ1)2 + φ2

2}{(ξ5 + φ1)2 + φ2
2}(ξ3 + ξ4)(ξ3 + ξ5)(ξ4 + ξ5),

ψ(r∗) = 0.

Differentiating with respect to r and putting r = r∗, we obtain[
dψ(r)

dr

]
r=r∗

=

[
2(φ2

2 + ξ2
3)(φ2

2 + ξ2
4)(φ2

2 + ξ2
5)(ξ3 + ξ4)(ξ3 + ξ5)(ξ4 + ξ5)

dφ1(r)
dr

]
r=r∗

. (3.33)

Since the roots ξ3,4,5 have negative real parts at r = r∗, therefore[
dφ1(r)

dr

]
r=r∗
, 0 ⇐⇒

[
dψ(r)

dr

]
r=r∗
, 0. (3.34)

Thus, the transversality condition holds and hence the claim.
�
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4. Seasonally forced model

Social media advertisements are increasingly used worldwide to control the prevalence of disease
and are viable options to reduce the disease transmission. However, the cost involved in the
advertisements through social media varies with time and season. Therefore, it is reasonable to
consider the growth rate coefficient of social media advertisements as a function of time, r(t), rather
than a constant, r. Incorporating the seasonal variations of the social media advertisements will
explore a more realistic and explicit outcome of the social media on disease outbreak. Thus, by
assuming the growth rate of social media advertisements as seasonally forced, we extend our
autonomous system (2.2) as,

dY
dt

= β1(N − Y − Xu − Xa)Y + β2XuY − (ν + α + d)Y,

dXu

dt
= (1 − µ)Λ − β2XuY − λ2Xu

T
p + T

− (γ + d)Xu,

dXa

dt
= λ1(N − Y − Xu − Xa)

T
p + T

+ λ2Xu
T

p + T
− (λ0 + d)Xa, (4.1)

dN
dt

= Λ − dN − αY,

dT
dt

= r(t)
(
1 − θ

Xa

w + Xa

)
Y − r0(T − T0).

Here, we assume that the rate parameter r(t) is positive, continuous and bounded with positive lower
bound. For simplicity, we neglect phase shift and simply incorporate the effect of seasonal changes
by considering the periodic rate parameter, r(t), with a period of one year. Denote rM = max

t>0
r(t) and

rm = min
t>0

r(t).

Lemma 4.1. Let κ be a real number and f be a nonnegative function which is integrable and uniformly
continuous on [κ,+∞), then lim

t→+∞
f (t) = 0 [38].

4.1. Global attractivity

Theorem 4.2. If the system (4.1) has at least one positive periodic solution, the positive periodic
solution is unique and globally attractive if there exist µi > 0 (i = 1−5) such that the following
conditions hold:

µ1β1 − µ2β2 −
µ4α

eρ44
−
µ3rM

eρ55
−

µ5rMθeρ3

eρ55(w + eρ33)
−

µ3λ1eρ5

eρ33(p + eρ55)
> 0, (4.2)

µ2(1 − µ)Λ
e2ρ2

− µ1(β1 + β2) −
µ3(λ1 + λ2)eρ5

eρ33(p + eρ55)
> 0, (4.3)

µ3eρ55(λ1eρ44 + λ2eρ22)
e2ρ3(p + eρ5)

− µ1β1 −
µ3λ1eρ5(eρ1 + eρ2)

e2ρ33(p + eρ55)
−
µ5rMθ (weρ1 + 2eρ1+ρ3)

eρ55(w + eρ33)2 > 0,

(4.4)
µ4Λ

e2ρ4
− µ1β1 −

µ4αeρ1

e2ρ44
−

µ3λ1eρ5

eρ33(p + eρ55)
> 0, (4.5)
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µ2λ2 p
(p + eρ5)2 +

µ5(rmeρ11 + r0T0)
e2ρ5

−
µ5rMθeρ1+ρ3

e2ρ55(w + eρ33)

−
(p + 2eρ5){µ3λ1(eρ1 + eρ2 + eρ4) + µ3λ2eρ2}

eρ33(p + eρ55)2 > 0. (4.6)

Proof. Let system (4.1) has at least one positive periodic solution, (Y(t), Xu(t), Xa(t),N(t),T (t)).
Further, let

eρ11 ≤ Y(t) ≤ eρ1 , eρ22 ≤ Xu(t) ≤ eρ2 , eρ33 ≤ Xa(t) ≤ eρ3 , eρ44 ≤ N(t) ≤ eρ4 , eρ55 ≤ T (t) ≤ eρ5 .

Let (Y(t), Xu(t), Xa(t),N(t),T (t)) be any positive periodic solution of system (4.1).
Consider the Lyapunov functional,

V(t) = µ1| ln Y(t) − ln Y(t)| + µ2| ln Xu(t) − ln Xu(t)| + µ3| ln Xa(t) − ln Xa(t)|
+µ4| ln N(t) − ln N(t)| + µ5| ln T (t) − ln T (t)|.

Calculating the right hand Dini’s derivatives, we get

D+V(t) = µ1sgn(Y(t) − Y(t))

 Ẏ(t)
Y(t)
−

Ẏ(t)

Y(t)

 + µ2sgn(Xu(t) − Xu(t))

 Ẋu(t)
Xu(t)

−
Ẋu(t)

Xu(t)


+µ3sgn(Xa(t) − Xa(t))

 Ẋa(t)
Xa(t)

−
Ẋa(t)

Xa(t)

 + µ4sgn(N(t) − N(t))

 Ṅ(t)
N(t)

−
Ṅ(t)

N(t)


+µ5sgn(T (t) − T (t))

 Ṫ (t)
T (t)

−
Ṫ (t)

T (t)

 .
Now, we have

µ1sgn(Y(t) − Y(t))

 Ẏ(t)
Y(t)
−

Ẏ(t)

Y(t)


≤ µ1[β1{|N(t) − N(t)| + |Y(t) − Y(t)| + |Xu(t) − Xu(t)| + |Xa(t) − Xa(t)|

+β2|Xu(t) − Xu(t)|}];

µ2sgn(Xu(t) − Xu(t))

 Ẋu(t)
Xu(t)

−
Ẋu(t)

Xu(t)


≤ µ2

[
−

(1 − µ)Λ

Xu(t)Xu(t)
|Xu(t) − Xu(t)| + β2|Y(t) − Y(t)|

+
λ2 p

(p + T (t))(p + T (t))
|T (t) − T (t)|

]
;

µ3sgn(Xa(t) − Xa(t))

 Ẋa(t)
Xa(t)

−
Ẋa(t)

Xa(t)


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≤ µ3

[
λ1

{
T (t)

Xa(t)(p + T (t))
|Y(t) − Y(t)| +

T (t)

Xa(t)(p + T (t))
|Xu(t) − Xu(t)|

−
T (t)(N(t) − Y(t) − Xu(t))

Xa(t)Xa(t)(p + T (t))
|Xa(t) − Xa(t)|

+
T (t)

Xa(t)(p + T (t))
|N(t) − N(t)|

+
Xa(t){p(N(t) + Y(t) + Xu(t)) + 2T (t)(N(t) + Y(t) + Xu(t))}

Xa(t)Xa(t)(p + T (t))(p + T (t))
|T (t) − T (t)|


+

λ1 p

(p + T (t))(p + T (t))
|T (t) − T (t)|

+λ2

{
−

Xu(t)T (t)

Xa(t)Xa(t)(p + T (t))
|Xa(t) − Xa(t)| +

T (t)

Xa(t)(p + T (t))
|Xu(t) − Xu(t)|

+
Xa(t)(pXu(t) + 2Xu(t)T (t))

Xa(t)Xa(t)(p + T (t))(p + T (t))
|T (t) − T (t)|

 ;

µ4sgn(N(t) − N(t))

 Ṅ(t)
N(t)

−
Ṅ(t)

N(t)


≤ µ4

[
−

Λ

N(t)N(t)
|N(t) − N(t)| + α

{
Y(t)

N(t)N(t)
|N(t) − N(t)| +

1

N(t)
|Y(t) − Y(t)|

}]
;

µ5sgn(T (t) − T (t))

 Ṫ (t)
T (t)

−
Ṫ (t)

T (t)


≤ µ5

[
r(t)

{
1

T (t)
|Y(t) − Y(t)| −

Y(t)

T (t)T (t)
|T (t) − T (t)|

}
−

r0T0

T (t)T (t)
|T (t) − T (t)|

+r(t)θ
T (t)(wY(t) + Xa(t)Y(t) + Xa(t)Y(t))

T (t)T (t)(w + Xa(t))(w + Xa(t))
|Xa(t) − Xa(t)|

+
Xa(t)

T (t)(w + Xa(t))
|Y(t) − Y(t)| +

Xa(t)Y(t)

T (t)T (t)(w + Xa(t))
|T (t) − T (t)|

}]
.

Thus, we have

D+V(t) ≤ −

[
µ1β1 − µ2β2 −

µ4α

N(t)
−
µ5r(t)
T (t)

−
µ5r(t)θXa(t)

T (t)(w + Xa(t))
−

µ3λ1T (t)

Xa(t)(p + T (t))

]
|Y(t) − Y(t)|

−

[
−µ1(β1 + β2) +

µ2(1 − µ)Λ

Xu(t)Xu(t)
−
µ3(λ1 + λ2)T (t)

Xa(t)(p + T (t))

]
|Xu(t) − Xu(t)|

−

−µ1β1 −
µ5r(t)θ(wY(t) + Xa(t)Y(t) + Xa(t)Y(t))

T (t)(w + Xa(t))(w + Xa(t))

+µ3
T (t){λ1(N(t) − Y(t) − Xu(t)) + λ2Xu(t)}

Xa(t)Xa(t)(p + T (t))

]
|Xa(t) − Xa(t)|
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−

[
−µ1β1 +

µ4(Λ − αY(t))

N(t)N(t)
−

µ3λ1T (t)

Xa(t)(p + T (t))

]
|N(t) − N(t)|

−

[
µ2λ2 p

(p + T (t))(p + T (t))
+
µ5(r(t)Y(t) + r0T0)

T (t)T (t)
−

µ5r(t)θXa(t)Y(t)

T (t)T (t)(w + Xa(t))

−µ3λ1
Xa(t){p(N(t) + Y(t) + Xu(t)) + 2T (t)(N(t) + Y(t) + Xu(t))}

Xa(t)Xa(t)(p + T (t))(p + T (t))

+µ3λ2
pXu(t) + 2Xu(t)T (t)

Xa(t)Xa(t)(p + T (t))(p + T (t))

 |T (t) − T (t)|.

Therefore,

D+V(t) ≤ −k1|Y(t) − Y(t)| − k2|Xu(t) − Xu(t)| − k3|Xa(t) − Xa(t)| − k4|N(t) − N(t)|
−k5|T (t) − T (t)|, (4.7)

where

k1 = µ1β1 − µ2β2 −
µ4α

eρ44
−
µ3rM

eρ55
−

µ5rMθeρ3

eρ55(w + eρ33)
−

µ3λ1eρ5

eρ33(p + eρ55)
,

k2 =
µ2(1 − µ)Λ

e2ρ2
− µ1(β1 + β2) −

µ3(λ1 + λ2)eρ5

eρ33(p + eρ55)
,

k3 =
µ3eρ55(λ1eρ44 + λ2eρ22)

e2ρ3(p + eρ5)
− µ1β1 −

µ3λ1eρ5(eρ1 + eρ2)
e2ρ33(p + eρ55)

−
µ5rMθ (weρ1 + 2eρ1+ρ3)

eρ55(w + eρ33)2 ,

k4 =
µ4Λ

e2ρ4
− µ1β1 −

µ4αeρ1

e2ρ44
−

µ3λ1eρ5

eρ33(p + eρ55)
,

k5 =
µ2λ2 p

(p + eρ5)2 +
µ5(rmeρ11 + r0T0)

e2ρ5
−

µ5rMθeρ1+ρ3

e2ρ55(w + eρ33)

−
(p + 2eρ5){µ3λ1(eρ1 + eρ2 + eρ4) + µ3λ2eρ2}

eρ33(p + eρ55)2 .

If the conditions (4.2)−(4.6) hold, then V(t) is monotonic decreasing on [0,∞). Now integrating
inequality (4.7) over [0, t], we have

V(t) +

∫ t

0
[k1|Y(t) − Y(t)| + k2|Xu(t) − Xu(t)| + k3|Xa(t) − Xa(t)| + k4|N(t) − N(t)|

+k5|T (t) − T (t)|]dt ≤ V(0) < ∞, ∀ t ≥ 0.

Hence, by Lemma 4.1, we have

lim
t→∞
|Y(t) − Y(t)| = 0, lim

t→∞
|Xu(t) − Xu(t)| = 0, lim

t→∞
|Xa(t) − Xa(t)| = 0,

lim
t→∞
|N(t) − N(t)| = 0, lim

t→∞
|T (t) − T (t)| = 0.

Therefore, the positive periodic solution (Y(t), Xu(t), Xa(t),N(t),T (t)) is globally attractive.
To prove that the globally attractive periodic solution (Y(t), Xu(t), Xa(t),N(t),T (t)) is unique, we

assume that (Y1(t), Xu1(t), Xa1(t),N1(t),T 1(t)) is another globally attractive periodic solution of
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system (4.1) with period 1. If this solution is different from the solution (Y(t), Xu(t), Xa(t),N(t),T (t)),
then there exists at least one κ ∈ [0, 1] such that Y(κ) , Y1(κ), which means |Y(κ) − Y1(κ)| = ε11 > 0.
Thus,

ε11 = lim
n→∞
|Y(κ + n) − Y1(κ + n)|

= lim
t→∞
|Y(t) − Y1(t)| > 0,

which contradicts the fact that the periodic solution (Y , Xu, Xa,N,T ) is globally attractive. Therefore,
Y(t) = Y1(t) for all t ∈ [0, 1]. Similar arguments can be used for other components Xu, Xa, N and T
also. Hence, the system (4.1) has unique positive 1-periodic solution, which is globally attractive.

�

5. Numerical simulations

Here, we report the simulations to investigate the behaviors of systems (2.2) and (4.1). The set of
parameter values are chosen within the range prescribed in various previous literature sources [4–6,
26, 27], and are given in Table 2. Unless it is mentioned, the values of parameters used for numerical
simulations are the same as in Table 2. For the set of parameter values in Table 2, the components of
endemic equilibrium E∗ are obtained as:

Y∗ = 979.2622032, X∗u = 313.9752, X∗a = 66663.63299, N∗ = 124755.1844,
T ∗ = 2457.546025.

The eigenvalues of the Jacobian matrix at the equilibrium E∗ are given by,

− 0.02480, −0.00056 ± 0.01025i, −0.01429, −0.00004. (5.1)

Note that three eigenvalues are negative whereas two have negative real parts showing that the
equilibrium E∗ is locally asymptotically stable. Further, for the parameters in Table 2, the value of
basic reproduction number is found to be R0 = 1.440734831. As R0 > 1, the disease always persists
in the system for this set of parameter values. Thus, we look for the controllable parameters which
can drive the value of R0 below unity, and hence enhance the possibility of disease eradication.

5.1. Sensitivity analysis

To see how the model parameters influence the basic reproduction number R0, we find the
normalized forward sensitivity indices of R0 to each parameter involved in the expression of R0 [39].
We choose λ2 = 0.012, α = 0.02, p = 500 and λ0 = 0.00005, and keep rest of the parameters at the
same values as in Table 2. The normalized forward sensitivity index of a variable to a parameter is a
ratio of the relative change in the variable to the relative change in the parameter. The sensitivity
indices of R0 with respect to the parameters of interest are plotted in Figure 3. The figure shows that
when the parameters Λ, β1, β2, γ and λ0 increase, keeping the other parameters constant, the value of
R0 increases as they have positive indices. Instead, increase in the values of parameters ν, α, d, λ1, λ2

and T0 cause decrement in the values of R0 as they have negative indices. It is noted that the
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Figure 3. Normalized forward sensitivity indices of R0 with respect to Λ, ν, α, d, β1, β2, λ1,
λ2, γ, λ0 and T0. Parameters are at the same values as in Table 2 except λ2 = 0.012, α = 0.02,
p = 500 and λ0 = 0.00005.

sensitivity index of R0 is 1 for the parameter Λ. It means that 1% increase in Λ, keeping other
parameters fixed, will produce 1% increase in R0. A lower value of R0 is preferable because it
increases the possibility of disease eradication in the region. Therefore, it is imperative to prevent an
increase in the parameters Λ, β1, β2, γ and λ0, while increasing ν, α, d, λ1, λ2 and T0 should instead be
fostered. Thus, any external measure aiming at reducing the former parameters and enhancing the
latter should therefore be taken into serious consideration.

Next, we select some controllable parameters: Λ, β1, β2, λ1, λ2 and T0 as input parameters and
infective population, Y , as response function. We employed the approach of [40,41] to perform global
sensitivity analysis. The procedure consists of two statistical techniques: Latin Hypercube Sampling
(LHS) and Partial Rank Correlation Coefficients (PRCCs). LHS allows us to vary several parameters
simultaneously in an efficient way while PRCCs correlate the model output and the input parameters.
PRCCs assign values between −1 and 1; the sign indicates the type of correlation while the value its
strength. We observed nonlinear and monotone relationships for the infective population with the input
parameters, a prerequisite condition before computing PRCCs. We consider a uniform distribution for
each parameter and run 500 simulations per LHS. We choose baseline values of parameters as

Λ = 50, µ = 0.05, β1 = 0.032, β2 = 0.035, λ1 = 0.9, λ2 = 0.85, λ0 = 0.05, p = 5,
γ = 0.8, ν = 0.2, α = 0.02, d = 0.4, r = 0.5, θ = 0.05, w = 6, r0 = 0.3, T0 = 150

(5.2)

and allow them to deviate ±25% from these values. The PRCCs values are depicted in Figure 4. It can
be noted from the figure that the parameters Λ, β1 and β2 have positive correlation with infective
population whereas the parameters having negative impact on infective population are λ1, λ2 and T0.
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Figure 4. Effect of uncertainty of the model (2.2) on infected population. Baseline values of
parameters are given in (5.2).

Of these, the parameters having significant correlations with the infective population are Λ, β1, β2 and
λ2 (p-value< 0.05). Identification of parameters with positive or negative correlation with infective
population is crucial information for the formulation of effective control strategy necessary for
controlling the burden of disease.

5.2. Effects of some key parameters on disease control

To better represent the combined actions of three important model parameters−the dissemination
rate of awareness among literate people (λ1) and illiterate people (λ2), and the baseline number of social
media advertisements (T0)−on the basic reproduction number (R0), we plot R0 with respect to T0 and
λ1 (Figure 5a), and T0 and λ2 (Figure 5b). It is apparent from the graphs that, if the dissemination rates
of awareness among literate/illiterate people and the baseline number of social media advertisements
increase, the basic reproduction number decreases and can be less than unity for certain ranges of
λ1, λ2 and T0. Thus, it can be inferred that the prevalence of disease can be controlled by increasing
the dissemination rates of awareness among literate/illiterate people and the baseline number of social
media advertisements in the region. Next, we plot the infective population by varying two parameters
at a time viz. (r, r0), (λ1, p), (λ2, p) and (T0, λ0) (Figure 6). We find that the infective population
decreases with increments in the parameters r, λ1, λ2 and T0 whereas increase in the parameters r0, p
and λ0 lead to rise in the infected population. It can be easily noted that the most effective parameters
are p, λ1 and T0. Diminution of advertisements due to psychological barrier causes significant rise in
infectives. Thus, the active advertisements should be maintained in the society.
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are at the same values as in Table 2 except λ1 = 0.04 in (b).
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Figure 7. Effects of social media advertisements on the equilibrium level of infective
population. Parameters are at the same values as in Table 2 except λ1 = 0.01.

Further, we see the equilibrium level of infective population for different values of r and T0,
Figure 7. We fix λ1 = 0.01 and keep rest of the parameters at the same values as in Table 2. First, we
choose r = T0 = 0 i.e., there is no advertisements in the region; we find that the equilibrium level of
infective is very high is such case. Next, we assume there is baseline number of advertisements but no
growth in number of advertisements, the number of infective is found to attain a lower equilibrium
level than in the previous case. Sudden decrease in the infective is seen if there is continuous growth
in the number of advertisements although the baseline number of advertisements is zero. Further, we
consider that there is always baseline number of advertisements and the number of advertisements
also increases; due to this combined efforts of social media, the equilibrium level of infective
decreases to a low value. Finally, we see that the equilibrium value of infective becomes negligible if
the baseline number of advertisements is sufficiently large and also there is continuous growth in the
number of advertisements.

5.3. Bifurcation results

At first, we see how the growth rate of broadcasting the informations, r, affects the dynamics of
system (2.2). For this, we vary the parameter r in the interval [0.01, 0.04] and draw the bifurcation
diagram of the system (2.2), Figure 8. This figure demonstrates the rising of periodic solution from
stationary solution on increasing the value of r in Y−Xa plane. We note that for lower values of r,
the system (2.2) showcases the steady state dynamics while on increasing r, we get a critical value,
namely r∗ ≈ 0.02789, at which the system’s behavior changes drastically. At r = r∗, the system
enters into limit cycle oscillations from stable equilibrium via supercritical Hopf bifurcation. Thus,
broadcasting the information through social media may induce instability in the system. Next, we
observe the impact of dissemination rate of awareness among the literate susceptible individuals on
system’s stability behavior. In Figure 9, we plot bifurcation diagram of system (2.2) with respect to
the parameter λ1. We find that for lower ranges of λ1, system (2.2) exhibits stable dynamics at the
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endemic equilibrium. On increasing the values of λ1, we obtain two threshold values of λ1: λh1
1 ≈

0.01342 and λh2
1 ≈ 0.0247, at which the stability behavior of the system changes. At the former,

the system enters into limit cycle oscillations from stable dynamics via supercritical Hopf bifurcation
whereas at the latter, the oscillations are killed out and the system settles to stable disease-free steady
state. Therefore, awareness among literate people due to popularity of social media advertisements
are helpful to eradicate the disease in the region. Further, we explore the effect of baseline number of
social media advertisements (T0) on the dynamics of system (2.1), Figure 10. The dynamics of system
is oscillatory upto certain level of baseline number of advertisements and stability is achieved after the
critical value T c

0 = 462; the disease dies out and the system settles to stable disease-free equilibrium
for T0 > 614. Thus, we find that whenever the baseline number of social media advertisements is
above a threshold value, the disease can not persist in the system. Therefore, one should focus on the
augmentation in baseline number of advertisements together with dissemination of awareness among
literate people in order to have disease-free system.

5.4. Simulation results of nonautonomous system (4.1)

We simulate system (4.1) by considering the growth rate of broadcasting the information through
social media, r(t), as a sinusoidal function: r(t) = r + r11 sin(ωt) with period of 365 days. The solution
trajectories of the nonautonomous system (4.1) are plotted in Figure 11. We observe that there exists a
positive periodic solution at r = 0.015. Thus, for the same set of the parameter values, the
nonautonomous system (4.1) exhibits positive periodic solution whereas the corresponding
autonomous system shows stable dynamics. Next, we show global stability of the endemic
equilibrium E∗ of system (2.2) and positive periodic solution of system (4.1), Figure 12. We note that
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Figure 9. Bifurcation diagram of system (2.2) with respect to λ1. Rest of the parameters are
at the same values as in Table 2 except r = 0.05.

the conditions (3.9) and (3.10) for the global stability of the endemic equilibrium E∗ are satisfied for
λ1 = 0.0003 and λ2 = 0.00002 while the remaining parameters are at the same values as in Table 2. In
Figure 12a, we have shown the global stability of the endemic equilibrium E∗ inside the region of
attraction Ω in Y−Xa−T space. It is evident from the figure that all the solution trajectories that
originate inside the region of attraction approach the point (Y∗, X∗a,T

∗). Using this approach, the
global asymptotic stability of the endemic equilibrium E∗ in other spaces can also be shown. Thus,
the statement of Theorem 3.3 is numerically verified. Further, we see the global stability of the
positive periodic solution of the nonautonomous system (4.1). For better understanding, we choose
two values of r from below and above the threshold value r∗. We fix the value of r at r = 0.015 and
plot the solution trajectories of the system (4.1) for the infected population only by choosing three
different initial conditions, Figure 12b. It is apparent from the figure that all the periodic solutions
initiating from three different initial values converge to a single periodic solution. It is noted that for
other variables of the system, different solutions trajectories coincide to unique positive periodic
solution. Thus, the positive periodic solution is globally attractive. Hence, the results of Theorem 4.2
is numerically validated. Next, we choose r = 0.03 (r > r∗) and plot the solution trajectories of the
nonautonomous system for the parameter values given in Table 2, Figure 13. It is evident from the
figure that the system shows higher periodic solutions for r = 0.03. Therefore, the global stability of
the nonautonomous system is affected due to enhancement in broadcasting the information whereas
the persistence of the system is not affected by broadcasting of the information through social media.
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6. Results and discussions

Here, we have investigated the roles of social media advertisements and literacy on the prevalence
of infectious diseases. Social media makes people aware about the disease and brings behavioral
changes among the individuals regarding the risk of infection whereas literacy plays a very crucial
role to guide people towards awareness. Our model comprises five dynamical variables: Literate and
illiterate population, aware population, infective population and cumulative number of social media
advertisements. We find that literacy, awareness and baseline number of social media advertisements
have crucial impacts on basic reproduction number and can push back the epidemic threshold below
unity. Our sensitivity results suggest to device a strategy of intervention which aimed to reduce the
immigration of population, contact rates of literate and illiterate susceptibles with infectives;
simultaneously one should focus on the augmentation in dissemination rate of awareness due to
popularity of new advertisements among the people and baseline number of awareness programs in
the endemic regions.

We have found that in absence of awareness or literacy and awareness, the system is locally as well
as globally stable at the endemic state. Our numerical results show destabilizing role of growth rate of
advertisements; the system enters into limit cycle oscillations from stable endemic state as the growth
rate of social media advertisements surpasses a critical value. In contrast, the baseline number of
advertisements play an important role in the system dynamics; it stabilizes an otherwise unstable
endemic equilibrium and drive the system to disease-free environment after crossing a threshold
value. Previous studies have only shown reduction in infected populations with enhancement in
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Figure 12. Global stability of (a) equilibrium E∗ of systems (2.2) and (b) positive periodic
solution of system (4.1). Parameters are at the same values as in Table 2 except in (a)
λ1 = 0.0003 and λ2 = 0.00002, and (b) r = 0.015, r11 = 0.01 and ω = 2π/365. Figures
show that solution trajectories starting from different initial points ultimately converge to the
equilibrium E∗ in (a) and a unique positive periodic solution in (b).

baseline number of media campaigns [4–6, 22]. The impact of dissemination rate of awareness among
literate susceptible population shows interesting dynamics. The system is stable for low and high rate
of disseminating awareness among literate susceptible people but for moderate values of this
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parameter, the system coexist in oscillatory state. However, if the dissemination rate of awareness
among literate susceptible population is very high, then the endemic equilibrium disappears and
stable disease-free steady state emerges in the system. In epidemiology, it can be interpreted that the
augmentation in dissemination rate of awareness among the literate susceptible individuals due to
popularity of new advertisements increases the number of aware individuals leading to decrease in the
number of social media advertisements, and hence increases the infected individuals in the region.
Now, as the infectives increased, the number of social media advertisements again rise, causing
increments in the aware individuals. Such interplay between the number of infected individuals and
dissemination of awareness through social media advertisements give the birth to oscillation in the
system. However, if the infectives are too low and aware individuals reach a plateau, persistent
oscillations disappeared and system gained stable coexistence. Moreover, if the dissemination rate of
awareness among literate susceptibles is too large, the disease is completely eradicated from the
region. Recall that Misra et al. [4] have also shown the similar effects of growth rate of social media
advertisements and dissemination rate of awareness among susceptible individuals. Note that in their
study, effect of literacy was not considered. Our study shows an additional and excitable result: The
stabilizing role of baseline number of social media advertisements, higher values of which results in
complete eradication of the disease.

We have also seen the effect of seasonally varying rate of broadcasting advertisements through
social media. We have considered the growth rate of social media advertisements as a periodic
function of time with a period of one year. The numerical results revealed that the nonautonomous
system exhibited positive periodic solution which is globally attractive whenever the corresponding
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autonomous system shows stable dynamics. The existence of periodic solutions should be viewed as a
condition allowing for the survival of the populations under consideration. We observed that the
global attractivity of the periodic solution is altered if the social media advertisements are broadcasted
at a high rate. For the larger values of rate of advertisements, the nonautonomous system shows the
occurrence of higher periodic solutions. Thus, the seasonal variations of the rate of broadcasting
social media advertisements impose synergistic effects for inducing higher periodic oscillations in the
system. The outcomes of the present investigation suggest that the dissemination of awareness due to
popularity of new advertisements among literate people and the baseline number of social media
advertisements act as effective control parameters by altering the prevalence of limit cycle oscillations
to order, and ultimately settling the system to disease-free region. Moreover, the dissemination of
awareness among illiterate people through social media advertisements greatly reduces the infective
cases. Recall that in the case of autonomous system, the disease can be eradicated for higher
dissemination rate of awareness among literate susceptible individuals and also by maintaining a large
number of social media advertisements in the endemic region. However, for the nonautonomous
system, existence of unique positive periodic solution is observed. It is worthy to note that the
existence of positive periodic solution represents an equilibrium situation consistent with the
variability of social media advertisements, and hence persistence of disease in the society. That is to
say, in the former case there is possibility of disease termination while in the latter case, the
population density of infective behaves periodically.

The results reported in this paper indicate that the broadcasting of information through social
media advertisements is a crucial factor in the prevention of disease transmission and may be used as
a potential strategy in controlling the disease. The effects of awareness should be increased in both
literate and illiterate susceptible populations. Efforts should focus on radical behavioral changes
among literate and illiterate susceptible populations, in particular among those deemed at-risk, in
order to completely eradicate the disease. In this context, the public-health authorities and policy
makers have a major contribution. They should monitor the situation to ensure that intervention
strategies are being implemented properly. For example, Guinea-worm disease is eradicated only
through proper program-implementation strategies [42–44]. Similarly, the burden of other diseases
such as HIV [10], coronavirus [3] etc., can be reduced by disseminating awareness among literate and
illiterate susceptible individuals, and increasing the baseline number of social media advertisements
in the endemic zones. Due to absence of any proper vaccine or therapeutics, different
non-pharmaceutical interventions are imposed to impede COVID-19 transmission. Several countries
are focusing on media advertising campaigns for stimulating people to adopt healthy sanitation
practices, frequent hand washing, use of face mask, sanitizer, maintain social distancing etc. In this
regard, different modes of media such as social media, TV, radio, internet etc., are playing tremendous
role to propagate information among people. These social media campaigns are helpful to
disseminate awareness among the people about menace of the pandemic and their non-pharmaceutical
prevention practices [14]. Disseminations of information through social media advertisements have
definitely encouraged the people to adopt preventive measures to combat the coronavirus pandemic.
After the media reporting about COVID-19, people became aware of the disease threat and began to
reduce their contact with others. In almost all the affected countries, government imposed complete
lockdown to reduce social distancing, educational institutions arranged online classes, webinars etc.
These behaviors overall resulted in reduced contact with others and delayed disease spread, and
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consequently suppress the burden of disease.
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