Citation: Benjamin Wacker, Jan Schlüter. An age- and sex-structured SIR model: Theory and an explicit-implicit numerical solution algorithm[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5752-5801. doi: 10.3934/mbe.2020309
[1] | W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, P. Roy. Soc. A Math. Phy., 115(1927), 700-721. https://dx.doi.org/10.1098/rspa.1927.0118. |
[2] | F. Brauer, Epidemic models with treatment and heterogeneous mixing, B. Math. Biol., 70(2008), 1869-1885. https://dx.doi.org/10.1007/s11538-008-9326-1. |
[3] | F. Brauer, Age of infection models and the final size relation, Math. Biosci. Eng., 5(2008), 681-690. https://dx.doi.org/10.3934/mbe.2008.5.681. |
[4] | R. Lande, S. H. Orzack, Extinction dynamics of age-structured populations in fluctuating environment, P. Natl. Acad. Sci. USA, 85(1988), 7418-7421. https://dx.doi.org/10.1073/pnas.85.19.7418. |
[5] | C. Liu, X. X. Zhan, Z. K. Zhang, G. Q. Sun, P. M. Hui, How events determine spreading patterns: Information transmission via internal and external influences on social networks, New J. Phys., 17(2015), 113045. https://dx.doi.org/10.1088/1367-2630/17/11/113045. |
[6] | Z. K. Zhang, C. Liu, X. X. Zhan, X. Li, C. X. Zhang, Y. C. Zhang, Dynamics of information diffusion and its applications on complex networks, Phys. Rep., 651(2016), 1-34. https://dx.doi.org/10.1016/j.physrep.2016.07.002. |
[7] | X. X. Zhan, C. Liu, G. Zhou, Z. K. Zhang, G. Q. Sun, J. J. H. Zhu, et al., Coupling dynamics of epidemic spreading and information diffusion on complex networks, Appl. Math. Comput., 332(2018), 437-448. https://dx.doi.org/10.1016/j.amc.2018.03.050. |
[8] | M. T. Li, G. Q. Sun, J. Zhang, Y. Zhao, X. Pei, L. Li, et al., Analysis of COVID-19 transmission in Shanxi Province with discrete time imported cases, Math. Biosci. Eng., 17(2020), 3710-3720. https://dx.doi.org/10.3934/mbe.2020208. |
[9] | G. F. Webb, Population models structured by age, size, and spatial position, In: Structured Population Models in Biology and Epidemiology, Lecture Notes in Mathematics 1936, Springer, Berlin (2008). https://dx.doi.org/10.1007/978-3-540-78273-5_1. |
[10] | M. Iannelli, F. A. Milner, The basic approach to age-structured population dynamics: Models, methods and numerics, Springer, New York (2017). https://dx.doi.org/10.1007/978-94-024-1146-1. |
[11] | B. Wacker, T. Kneib, J. Schlüter, Revisiting maximum log-likelihood parameter estimation for two-parameter weibull distributions: Theory and applications, Preprint (2020). https://dx.doi.org/10.13140/RG.2.2.15909.73444/1. |
[12] | F. Brauer, Some simple epidemic models, Math. Biosci. Eng., 3(2006), 1-15. https://dx.doi.org/10.3934/mbe.2006.3.1. |
[13] | E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis., (2020). https://dx.doi.org/10.1016/S1473-3099(20)30120-1. |
[14] | D. G. Schaeffer, J. W. Cain, Ordinary differential equations: Basics and beyond, Springer, New York (2016). https://dx.doi.org/10.1007/978-1-4939-6389-8. |
[15] | M. Reed, B. Simon, Functional analysis, Academic Press, San Diego (1980). |
[16] | F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Springer, New York (2012). https://dx.doi.org/10.1007/978-1-4614-1686-9. |
[17] | M. Martcheva, An introduction to mathematical epidemiology, Springer, New York (2015). https://dx.doi.org/10.1007/978-1-4899-7612-3. |
[18] | R. Kress, Numerical analysis, Springer, New York (1998). https://dx.doi.org/10.1007/978-1-4612-0599-9. |
[19] | M. Hanke-Bourgeois, Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens (Basics of Numerical Mathematics and Scientific Computing), Vieweg, Wiesbaden (2009). |
[20] | F. M. G. Magpantay, Vaccine impact in homogeneous and age-structured models, J. Math. Biol., 75(2017), 1591-1617. https://dx.doi.org/10.1007/s00285-017-1126-5. |
[21] | F. M. G. Magpantay, A. A. King, P. Rohani, Age-structure and transient dynamics in epidemiological systems, J. Roy. Soc. Interf., 16(2019), 20190151. https://dx.doi.org/10.1098/rsif.2019.0151. |
[22] | N. Kosovalić, F. M. G. Magpantay, Y. Chen, J. Wu, Abstract algebraic-delay differential systems and age structured population dynamics, J. Differ. Equat., 255 (2014), 593-609. https://dx.doi.org/10.1016/j.jde.2013.04.025. |
[23] | J. F. David, S. A. Iyaniwura, M. J. Ward, F. Brauer, A novel approach to modelling the spatial spread of Airborne diseases: An epidemic model with indirect transmission, Math. Biosci. Eng., 17(2020), 3294-3328. https://dx.doi.org/10.3934/mbe.2020188. |
[24] | F. A. Milner, R. Zhao, S-I-R Model with Directed Spatial Diffusion, Math. Popul. Stud., 15(2008), 160-181. https://dx.doi.org/10.1080/08898480802221889. |
[25] | T. Kostova, An explicit third-order numerical method for size-structured population equations, newblock Numer. Meth. Part. D. E., 19(2003), 1-21. https://dx.doi.org/10.1002/num.10037. |
[26] | M. Iannelli, T. Kostova, F. A. Milner, A fourth-order method for numerical integration of ageand size-structured population models, Numer. Meth. Part. D. E., 25(2008), 918-930. https://dx.doi.org/10.1002/num.20381. |
[27] | G. Clermont, S. Zenker, The inverse problem in mathematical biology, Math. Biosci., 260(2015), 11-15. https://dx.doi.org/10.1016/j.mbs.2014.09.001. |
[28] | A. Akossi, G. Chowell-Puente, A. Smirnova, Numerical study of discretization algorithms for stable estimation of disease parameters and epidemic forecasting, Math. Biosci. Eng., 16(2019), 3674-3693. https://dx.doi.org/10.3934/mbe.2019182. |
[29] | B. Wacker, J. Schlüter, Time-discrete parameter identification algorithms for two deterministic epidemiological models applied to the spread of COVID-19, Preprint (2020). https://dx.doi.org/10.21203/rs.3.rs-28145/v1. |
[30] | Y. Chen, J. Cheng, Y. Jiang, K. Lia, A time delay dynamical model for outbreak of 2019-nCov and the parameter identification, J. Inverse Ill-Pose. P., 28(2020), 243-250. https://dx.doi.org/10.1515/jiip-2020-0010. |