Research article

An age- and sex-structured SIR model: Theory and an explicit-implicit numerical solution algorithm

  • Received: 26 May 2020 Accepted: 03 August 2020 Published: 31 August 2020
  • Since age and sex play an important role in transmission of diseases, we propose a SIR (susceptible-infectious-recovered) model for short-term predictions where the population is divided into subgroups based on both factors without taking into account vital dynamics. After stating our model and its underlining assumptions, we analyze its qualitative behavior thoroughly. We prove global existence and uniqueness, non-negativity, boundedness and certain monotonicity properties of the solution. Furthermore, we develop an explicit-implicit numerical solution algorithm and show that all properties of the continuous solution transfer to its time-discrete version. Finally, we provide one numerical example to illustrate our theoretical findings.

    Citation: Benjamin Wacker, Jan Schlüter. An age- and sex-structured SIR model: Theory and an explicit-implicit numerical solution algorithm[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5752-5801. doi: 10.3934/mbe.2020309

    Related Papers:

  • Since age and sex play an important role in transmission of diseases, we propose a SIR (susceptible-infectious-recovered) model for short-term predictions where the population is divided into subgroups based on both factors without taking into account vital dynamics. After stating our model and its underlining assumptions, we analyze its qualitative behavior thoroughly. We prove global existence and uniqueness, non-negativity, boundedness and certain monotonicity properties of the solution. Furthermore, we develop an explicit-implicit numerical solution algorithm and show that all properties of the continuous solution transfer to its time-discrete version. Finally, we provide one numerical example to illustrate our theoretical findings.


    加载中


    [1] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, P. Roy. Soc. A Math. Phy., 115(1927), 700-721. https://dx.doi.org/10.1098/rspa.1927.0118.
    [2] F. Brauer, Epidemic models with treatment and heterogeneous mixing, B. Math. Biol., 70(2008), 1869-1885. https://dx.doi.org/10.1007/s11538-008-9326-1.
    [3] F. Brauer, Age of infection models and the final size relation, Math. Biosci. Eng., 5(2008), 681-690. https://dx.doi.org/10.3934/mbe.2008.5.681.
    [4] R. Lande, S. H. Orzack, Extinction dynamics of age-structured populations in fluctuating environment, P. Natl. Acad. Sci. USA, 85(1988), 7418-7421. https://dx.doi.org/10.1073/pnas.85.19.7418.
    [5] C. Liu, X. X. Zhan, Z. K. Zhang, G. Q. Sun, P. M. Hui, How events determine spreading patterns: Information transmission via internal and external influences on social networks, New J. Phys., 17(2015), 113045. https://dx.doi.org/10.1088/1367-2630/17/11/113045.
    [6] Z. K. Zhang, C. Liu, X. X. Zhan, X. Li, C. X. Zhang, Y. C. Zhang, Dynamics of information diffusion and its applications on complex networks, Phys. Rep., 651(2016), 1-34. https://dx.doi.org/10.1016/j.physrep.2016.07.002.
    [7] X. X. Zhan, C. Liu, G. Zhou, Z. K. Zhang, G. Q. Sun, J. J. H. Zhu, et al., Coupling dynamics of epidemic spreading and information diffusion on complex networks, Appl. Math. Comput., 332(2018), 437-448. https://dx.doi.org/10.1016/j.amc.2018.03.050.
    [8] M. T. Li, G. Q. Sun, J. Zhang, Y. Zhao, X. Pei, L. Li, et al., Analysis of COVID-19 transmission in Shanxi Province with discrete time imported cases, Math. Biosci. Eng., 17(2020), 3710-3720. https://dx.doi.org/10.3934/mbe.2020208.
    [9] G. F. Webb, Population models structured by age, size, and spatial position, In: Structured Population Models in Biology and Epidemiology, Lecture Notes in Mathematics 1936, Springer, Berlin (2008). https://dx.doi.org/10.1007/978-3-540-78273-5_1.
    [10] M. Iannelli, F. A. Milner, The basic approach to age-structured population dynamics: Models, methods and numerics, Springer, New York (2017). https://dx.doi.org/10.1007/978-94-024-1146-1.
    [11] B. Wacker, T. Kneib, J. Schlüter, Revisiting maximum log-likelihood parameter estimation for two-parameter weibull distributions: Theory and applications, Preprint (2020). https://dx.doi.org/10.13140/RG.2.2.15909.73444/1.
    [12] F. Brauer, Some simple epidemic models, Math. Biosci. Eng., 3(2006), 1-15. https://dx.doi.org/10.3934/mbe.2006.3.1.
    [13] E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis., (2020). https://dx.doi.org/10.1016/S1473-3099(20)30120-1.
    [14] D. G. Schaeffer, J. W. Cain, Ordinary differential equations: Basics and beyond, Springer, New York (2016). https://dx.doi.org/10.1007/978-1-4939-6389-8.
    [15] M. Reed, B. Simon, Functional analysis, Academic Press, San Diego (1980).
    [16] F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Springer, New York (2012). https://dx.doi.org/10.1007/978-1-4614-1686-9.
    [17] M. Martcheva, An introduction to mathematical epidemiology, Springer, New York (2015). https://dx.doi.org/10.1007/978-1-4899-7612-3.
    [18] R. Kress, Numerical analysis, Springer, New York (1998). https://dx.doi.org/10.1007/978-1-4612-0599-9.
    [19] M. Hanke-Bourgeois, Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens (Basics of Numerical Mathematics and Scientific Computing), Vieweg, Wiesbaden (2009).
    [20] F. M. G. Magpantay, Vaccine impact in homogeneous and age-structured models, J. Math. Biol., 75(2017), 1591-1617. https://dx.doi.org/10.1007/s00285-017-1126-5.
    [21] F. M. G. Magpantay, A. A. King, P. Rohani, Age-structure and transient dynamics in epidemiological systems, J. Roy. Soc. Interf., 16(2019), 20190151. https://dx.doi.org/10.1098/rsif.2019.0151.
    [22] N. Kosovalić, F. M. G. Magpantay, Y. Chen, J. Wu, Abstract algebraic-delay differential systems and age structured population dynamics, J. Differ. Equat., 255 (2014), 593-609. https://dx.doi.org/10.1016/j.jde.2013.04.025.
    [23] J. F. David, S. A. Iyaniwura, M. J. Ward, F. Brauer, A novel approach to modelling the spatial spread of Airborne diseases: An epidemic model with indirect transmission, Math. Biosci. Eng., 17(2020), 3294-3328. https://dx.doi.org/10.3934/mbe.2020188.
    [24] F. A. Milner, R. Zhao, S-I-R Model with Directed Spatial Diffusion, Math. Popul. Stud., 15(2008), 160-181. https://dx.doi.org/10.1080/08898480802221889.
    [25] T. Kostova, An explicit third-order numerical method for size-structured population equations, newblock Numer. Meth. Part. D. E., 19(2003), 1-21. https://dx.doi.org/10.1002/num.10037.
    [26] M. Iannelli, T. Kostova, F. A. Milner, A fourth-order method for numerical integration of ageand size-structured population models, Numer. Meth. Part. D. E., 25(2008), 918-930. https://dx.doi.org/10.1002/num.20381.
    [27] G. Clermont, S. Zenker, The inverse problem in mathematical biology, Math. Biosci., 260(2015), 11-15. https://dx.doi.org/10.1016/j.mbs.2014.09.001.
    [28] A. Akossi, G. Chowell-Puente, A. Smirnova, Numerical study of discretization algorithms for stable estimation of disease parameters and epidemic forecasting, Math. Biosci. Eng., 16(2019), 3674-3693. https://dx.doi.org/10.3934/mbe.2019182.
    [29] B. Wacker, J. Schlüter, Time-discrete parameter identification algorithms for two deterministic epidemiological models applied to the spread of COVID-19, Preprint (2020). https://dx.doi.org/10.21203/rs.3.rs-28145/v1.
    [30] Y. Chen, J. Cheng, Y. Jiang, K. Lia, A time delay dynamical model for outbreak of 2019-nCov and the parameter identification, J. Inverse Ill-Pose. P., 28(2020), 243-250. https://dx.doi.org/10.1515/jiip-2020-0010.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4758) PDF downloads(150) Cited by(9)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog