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Abstract: Since age and sex play an important role in transmission of diseases, we propose a SIR
(susceptible-infectious-recovered) model for short-term predictions where the population is divided
into subgroups based on both factors without taking into account vital dynamics. After stating our
model and its underlining assumptions, we analyze its qualitative behavior thoroughly. We prove
global existence and uniqueness, non-negativity, boundedness and certain monotonicity properties of
the solution. Furthermore, we develop an explicit-implicit numerical solution algorithm and show that
all properties of the continuous solution transfer to its time-discrete version. Finally, we provide one
numerical example to illustrate our theoretical findings.
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1. Introduction

1.1. Motivation

Mathematical models of disease spreading date back to the beginning of the twentieth century when
Kermack and McKendrick published their famous epidemiological SIR model [1]. Since its invention,
many researchers have relied heavily on these basic assumptions and have established more advances
models [2—4]-only to name a few publications and references therein. Additionally, networks in epi-
demiology have been recently considered to describe dynamics of disease spreading and spreading
patterns [5-8].

Special attention has been currently attracted by structured models which take age or spatial struc-
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ture into account [9, 10]. However, transmission rates depend on age structure as well as sex structure
in general. For that reason, we develop a simple age- and sex-structured SIR model for short-time
prediction because we want to keep modeling as interpretable as possible [12]. Therefore, we structure
our population by both sexes and same size age groups.

Due to current epidemics like COVID-19 [13], we decided to stay with a SIR-typed model because
data are suited for this type of models. If we take a closer look at data from Robert-Koch Institute
in Germany, the assumption of same size age groups will be acceptable for current data. Theoreti-
cally, we have to consider continuous age-structure as presented in [10]. After this short motivational
introduction, we can state our contributions in this article.

1.2. Contributions

Our contributions can be summarized as follows.

1) We develop a time-continuous age- and sex-structured SIR model for short-term predictions with
time-dependent transmission rates between susceptible and infectious people and time-dependent
recovery rates.

2) At first, we show certain properties such as non-negativity and boundedness of solutions.

3) Additionally, we provide a thorough proof of global existence of solutions in time to our pro-
posed system. We need non-negative and boundedness to conclude global existence and global
uniqueness of the solution in time from inductive arguments based on Banach’s fixed point the-
orem. This underlines usefulness of fixed point theorems for arguments regarding existence and
uniqueness of solutions in different mathematical areas [11].

4) Furthermore, we prove monotonicity properties of the global unique solution and investigate an-
alytically that it convergences to a disease-free equilibrium.

5) Afterwards, we introduce a time-discrete problem formulation which heavily relies on an explicit-
implicit formulation of the right-hand-side function. As a consequence, our numerical solution
scheme becomes unconditionally stable with respect to chosen time increments. We further show
that all properties of the time-continuous formulation transfer to the time-discrete case.

6) We finally summarize our numerical solution scheme in pseudo-code and one numerical example
stresses our theoretical findings.

1.3. Structure

Our article is structured as follows. After our motivational introduction of Section 1, we formulate
the time-continuous age- and sex-structured SIR model in Section 2. Additionally, we analyze global
existence and global uniqueness, non-negativity, boundedness, monotonicity and long-time behavior
of the solution of this model. After that, we propose an explicit-implicit numerical solution scheme in
Section 3. Here, we show that all properties of our time-continuous model transfer to our time-discrete
problem formulation. We present one numerical example to illustrate our theoretical findings in Section
4 and finally, we conclude our article with some remarks on possible future research directions in
Section 5.
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2. Time-continuous problem

The aim of this section is the description and analysis of an age- and sex-structured SIR model.
For that purpose, we briefly state our model and its assumptions. At first, we prove global existence
based on a modified version of Gronwall’s Lemma. Afterwards, we provide proofs for non-negativity,
boundedness, global uniqueness, monotonicity and long-time behavior of our model’s solution.

2.1. Mathematical background material

To especially state global existence and global uniqueness of the solution of our age- and sex-
structured SIR model, we need to introduce some theoretical background material regarding nonlinear
ordinary differential equations. Let us first recall Lipschitz continuity of a function on Euclidean
spaces.

Definition 2.1 ( [14, Subsection 3.2]). Let d,,d, € N. If § ¢ R%, a defined function F: § — R® is

called Lipschitz continuous on S if there exists a non-negative constant L > 0 such that

IF () = F (y)llge < L-[1X = yllza, (2.1)

holds for all x,y € §. Here, ||-|| denotes a suitable norm on the corresponding Euclidean space.

Let U ¢ R% be open, let F: U — R%. We shall call F locally Lipschitz continuous if for every
point Xy € U there exists a neighborhood V of xy such that the restriction of F to V is Lipschitz
continuous on V.

We consider an initial-value problem

Z()=G@tz®),
(1) (1,2 (1)) 22)
2(0) =z
where z(t) = (x;(?),...,x,(t)) denotes our solution vector. Our vectorial function is represented
by G (t,z (1) = (g, (t,z(2)),...,8,(t,Z(2))) and zy € R" are our given initial conditions. To conclude

global existence, we can apply the following theorem that is a direct consequence of Gronwall’s lemma.

Theorem 2.2 ( [14, Theorem 4.2.1]). If G: [0, c0) X R" — R" is locally Lipschitz continuous and if
there exist non-negative real constants B and K such that

IG (#,zO)ller < K- [l2(Dllzr + B (2.3)

holds for all z.(t) € R", then the solution of the initial value problem (2.2) exists for all time t € R and
moreover; it holds

B
iz (Ol < l|Zollz - exp (K - []) + I (exp (K -1t — 1) (2.4)
forallt € R.
Finally, we need Banach’s fixed point theorem to derive global uniqueness.

Theorem 2.3 ( [15, Theorem V.18]). Let (X, 0) be a complete metric space with the metric mapping
0: XXX — [0,00). Let T: X — X be a strict contraction, i.e. there exists a constant K € [0, 1) such
that o (Tx,Ty) < K - o (x,y) holds for all x,y € X. Then the map T has a unique fixed point.
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2.2. Time-continuous problem formulation

At first, we define the supremum norm of a continuous function f: [0, c0) — R. It is given by

1flleo = sup [f (@)

te[0,00)

An equivalent definition can be given for continuous functions on intervals [a, b]. Let us now state the
model’s assumptions [10, 16, 17]:

1) The population size N is fixed over time ¢, i.e. N (t) = N for all ¢ € [0, c0);

2) We divide the population into three homogeneous subgroups, namely susceptible people (S),
infectious people (I) and recovered people (R). We can clearly assign every individual to exactly
one subgroup. Hence, we obtain

N=S®O+I@®)+R® (2.5
for all t € [0, 00);

3) We further distinguish our subgroups. Let N, € N be the number of age groups and let f and m
be the subscripts for female and male persons respectively. Let k € {1,..., N,} be arbitrary. We
denote the k-th female susceptible subgroup by S ¢, and the k-th male susceptible subgroup by
S mx- Consequently, it is clear how we denote the infectious and recovered subgroups;

4) Additionally, no births and deaths occur;

5) The time-varying transmission rates fBs,, 1., : [0,00) — (0, c0) are Lipschitz continuous and
continuously differentiable for fixed j € {1,...,N,}, arbitrary k € {1,...,N,} and arbitrary s €
{f,m}. In addition to that, there exists a positive constant Mgz > 0 such that ||Bs,, .1, |l < Mp for
all # > 0, arbitrary s € {f, m} and arbitrary j, k € {1,...,N,};

6) The time-varying recovery rates y;,: [0,00) — (0, c0) are Lipschitz continuous and continu-
ously differentiable for arbitrary s € {f, m} and arbitrary k € {1,..., N,}. Additionally, there are
positive constants M, > 0 and m, > 0 such that ||y, |l. < M, and y;, (t) > m, for all t > 0,
arbitrary s € {f, m} and arbitrary k € {1,...,N,}.
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For abbreviation, we write g’ (¢) := diit) for the first derivative of a differentiable function g at time ¢.
Our equations of the time-continuous age- and sex-structured SIR model read
S50 =~ i{ﬁsﬁj’lﬁk (@) - —S L (t)]\.ilf’k ® +Bs s b () - —Sf’j (t)]\.flm’k (t)},
k=1
S0 == S o0 OO gy SO O}
k=1
I, = i{ﬁsm 15 () - M + Bsud (D) - M} =1, () - 17 (1), (2.6)
k=1

’ - m,j (t) -1 s (t) Sm, j (t) : Im, (t)
I, = ;{ﬁsm,,.,zf,k OF ’Tfk # Byt (0 2y @0 (),

Ry () =y, (017 (D),
R:n] ( ) Vi, (t) ' Im,j (t)

with susceptible initial conditions S ; (0) = S, ; > 0, infectious initial conditions I, ; (0) = I, ; >
and recovered initial conditions R, ; (0) = R, ; > O for arbitrary s € {f, m} and arbitrary j € {1,...,N,
At least one initial condition of the infectious subgroups should be positive. Obviously, it holds

0
}.

Na
N ()= 87,0+ 85,0+ 1,0 + 1, ;) + R, () + R, , (0} =

J=1

such that population size is preserved for all ¢ > 0.

2.3. Non-negativity and boundedness

We examine non-negativity and boundedness of (2.6).

Lemma 2.4. We obtain
0<S8,;(® <N,

0<I;(t) <N, (2.7)
O0<R,;(t)<N

for arbitrary s € {f,m}, forall j€{1,...,N,} and for all t > 0 with respect to (2.6).

Proof. We divide our proof into four parts. Let s € {f,m} and j € {1,...,N,} be arbitrary in the

following.
1) We consider

Na

S ()1, S (1) Lot
) Z {'Bss’j’lf £ (@ s + Bt () - M}

55 @ N N

SSJ(t) Z{,st,lfk(l‘) fk()+IBS” mk() mk(t)}

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5752-5801.



5757

since S, (¢) is contained in both summands and does not depend on the summation index k. Hence,
we can put this term outside our considered sum. Division by §; ; (f) now yields

$, 0 () 30
S,J m
SS’J(I) kz;{ﬁssjlfk ﬂS.Sj mk() }

ds;; (@)
dt

and since we are able to write S , (1) = , we can rewrite this equation by

ds,; (@) o 1y (0) I )
T](t) Z{ﬁsy,lﬂc() +Bs s (D) - }

through separation of variables. By integration on the respective time interval [0, 7], we observe that

o 2 i ()
tn (SIJA]) fZ{ﬁSUIN ﬁS” Ik (T) k }

holds. We finally obtain

LN, I L
SSJ n=S5 L,s,j - €XP [_ fz {ﬁS.v.ij,k ’ f, @ ﬁS” Ik (7) - £ (T)} dT] .
0 k=1

Hence, it holds S, ; (#) > O for all # > 0 by our approach of separation of variables. This procedure is
feasible because our initial conditions for susceptible people are positive.
2) We examine

N S5 @ - Iri (1) S5 (1) - L (1)
I (1) = Bs. 1. (D) - S R LB i (D) - P sj\) " imk A
' kZ‘{ Bl N Surh N }

— i, ®-I;(1),

under the initial condition I ; (0) = I, ;; > O for arbitrary s € {f, m} and arbitrary j € {1,...,N,}. Let
us additionally assume that I, (0) = I, ;x > O for arbitrary s € {f, m} and arbitrary k € {1, ..., N,} with

k # j. Atleast one initial condition /; - should be positive. This implies

Yo S (T) 114 (0) S, (0) - Iz (0)
I/ ) — 8, Js . . 8, m, _ . . I )
o ;{ﬁs” 1o O RIS s, @) 2y 004 ©
N O S, (0)-1,, (0
— {ﬁs&‘h[ﬁk (O) . S,] ( )N f,k ( ) +ﬁ5x’j,lmk (0) . S,] ( )N k ( )}

=
1l

1
$4,(0)- I;5(0)

N

v

Bs. .1+ (0)
> 0
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for all derivatives of initial conditions for infectious subgroups where the initial conditions are zero at
time ¢ = 0 since all §;(0) > 0 by assumption and all /;; (0) > 0 with at least one positive function
117(0) > 0 by assumption. Hence, there exists a time 7 > O such that I, ; (T;) > 0 for all s € {f, m}
and all j € {1,...,N,}. Additionally, it holds I, ;(z) > O for all ¢ € [0,7,] for all s € {f, m} and all
Je{l,....N,}.

Now, we interpret 77 > 0 as our new starting point for our argument. We have to distinguish two
cases.

Case 1: Let T, > T, and let I, ; (T,) = O be one function of an infectious subgroup which is non-
negative for all # € [0, T,]. This is feasible due to continuity of these functions. Let there be at least
one function of infectious subgroups which is positive at = T,. As proven in the previous inequality,
this implies [7 ; (T>) > 0. However, this yields the existence of a positive constant 6 > 0 such that
I, ;, (1) < Oforall t € (T, — 6, T,) by continuity. This contradicts our assumption. Hence, all functions
of infectious subgroups stay non-negative - even positive - in this case. By induction, this even holds
on future time subintervals.

Case 2: Let T, > Ty and let I, ;(T,) = O for all s € {f,m} and all j € {1,...,N,}. This implies the
status of disease-free equilibrium for all future time points.

Hence, (2.6) preserves non-negativity with respect to all infectious subgroups.

3) By our second property and integration of

R ;@) =1, (1) 1@

on the time interval [0, ¢], we obtain

t

R, () =Ri,;+ f’}’lw- (1) -1 (7) dr.
0

It yields full non-negativity preservation of our non-linear ordinary differential equation system (2.6).
4) Our upper bound is a direct consequence of

No
N () = Zl (S, @0+, O+, O+, ;()+R,; (0 +R,, (0} =0
=

for all # > 0 and our proof is complete. O

2.4. Global existence

We now prove a global existence theorem of (2.6) based on Theorem 2.2.

Theorem 2.5. The non-linear first order ordinary differential equation system (2.6) has at least one
global solution, i.e. these possible solutions exist for all t > 0.

Proof. We define the six vectors

Sy ()
S (1)

T
(Spa@.....85m, @) €R™,
(Sm,l (t) LI Sm,Na (t))T S RNQ,
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T
I = (In®..... Iy, ) R,
L) = (I (@),.... Ly, ) €RY,
r N,
Rf (r = (Rf,l ®,... aRf,Na (l)) e R,
Ry(@® = Rui(®,....,Ruy, () €R™
which build our solution vector
Sy ()
S (0
1 (D 6N,
z(1) = 1) € R,
Ry (1)
R, (1)

Now, we define G: [0, c0)xR*Ne —s RN« by (2.6) in a straightforward manner. By applying maximum
norms, triangle inequalities, non-negativity and boundedness by Lemma 2.4, we obtain

17, Olle < 2+ Ny - max{Mg, My} - Iz (1)]lo,
1S}, Ol < 2+ N, - max {Mg, M, } - ||z (1)l

I, Ol < (2 Ny + 1) - max {Mg, My} - |12 (D),
1, ; Olle < (2 No+ 1) - max (Mg, My } - |z (D)o,
IR} ; Dl < max {Mp, M,} 12 (D)l
IR, Ol < max{My, M, |- iz @)l

for all j € {1,...,N,} and this yields
IG (1,2 ()l < 2+ Ny + 1) - max {Mg, M, } - 12 ()|

Hence, Theorem 2.2 implies global existence of the system’s possible solutions in time. O

2.5. Global uniqueness

Now, we are able to prove global uniqueness of our time-continuous problem formulation (2.6).

Theorem 2.6. The non-linear first order ordinary differential equation system (2.6) has exactly one
global unique solution in time.

Proof. 1) At first, we need one inequality for our proof. Let xi, x2,y;,¥, € R be arbitrary. By the
triangle inequality, we obtain

X1 - y1 = X2 y1 + X2 - Y1 — X2+ ya
|x1 - y1 = X2 - yil + [x2 - y1 — X2 - yol

il - lx1 = X2 + |x2] - [y1 = y2l.

lx1 - y1 = X2 - yol

IA
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2) Let -
S (1) S;(®
S, (1) S, (1)
2(t) = Z 8 e RN and Z(1) = % 8 € RONe
Ry (1) R/ (1)
Ry, (1) R, (1)

be two solutions of our initial value problem (2.6) with same time-varying coefficients and same initial
value conditions. Let us consider

_ _ (e (Bsoap O —
S =8.,@ = §,;00-5,;0)- Z{%-(&J(n-lﬁk (0) =S, (0) I (z))} dr
0 k=1

=0

TN, 18 S b (t) . —_—
+f DA (500 Lk (0= S () - L () p
0 k=1

for arbitrary s € {f, m} and arbitrary j € {1,..., N,}. Application of the triangle inequality and assump-
tions on our time-varying coefficients yields

_ M. N
IS, =8,;@| < Wﬁ f kZ‘
J

Mg
N

SO L) =S ;O L)+ S, (0 L ()= S, () - Ly (1)] dt

T N,
: fZ 15/ O T ) = S5 (@O L () + S (1) - Tug (1) = S (1) - g ()] .
0 k=1

Since all functions are bounded above by the population size N, we obtain

T N,
S @=8,,0| < Mﬁ-fZ{z-
0 k=1

T N,
4-Mﬂ-f2|rz'<r>—z<r>||wdr
k=1

0
< 4-Mg-Ny-7-z(t) -z ()|l

S (0 =S O] + [k (1) = L O] + [T () = L (0]} dt

IA

by application of our inequality from the first step of this proof.
3) Let us now consider

Ly 0-1;0 = (=S O-y,0-1;0) - {=S";® -y, ® 1,0}
= (S, (0=5 O)+ v, 0 (L) = I; (1().

By integration on the time interval [0, 7], we obtain

T

L@ —1,;@)=8,,;@)-5,;@)+ f Y1, @O (L (0 = I, () dt.

0
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Application of the triangle inequality and the second part of this proof yields

T

L;@0-1,@ < |$,;,@-S,;@)|+ f i, @ (L (0 = I (1) dt
0
< 4-MyN, 720 -2(Olleo + My - 7+ |Z(0) = 2Dl
< (4-Ny+1)-max (Mg, M} -7 |Z(0) - 2(D)l.

4) Furthermore, it holds
Ry @)= Ry = [, 0+ ([0~ 1,0) .
0

We obtain

Ryj (D) = Ryj ()| < My -7 [Z(D) = 2Dl
5) Combining the previous steps, we conclude
2@ =2 @)l <4 (Na + 1) -max (Mg, My} - 7 [Z2(0) = 2Dl

1
on the time interval [0, 7]. Choose T := . This implies

8- (N, + 1) - max { M, M, |

4-(N,+ 1) - max {Mﬁ, My}
8-(N,+ 1) -max {M/g, My}

1
lz(#) — 2@l < Nz @) -zl = 3 [AGESAQ]S

and hence, the solution is unique on the time interval [0, 7] by Banach’s fixed point theorem. Induc-
tively, all previous steps hold on following time intervals [k - 7, (k + 1)] with arbitrary k € N and initial
conditions at time point ¢ = k - 7. Therefore, we conclude that the solution is unique for all # > 0 which
proves our assertion. O

2.6. Monotonicity and long-time behavior

We conclude our analysis of our time-continuous problem formulation (2.6) by an investigation of
monotonicity and long-time behavior.

Theorem 2.7. We obtain the following properties for arbitrary s € {f,m} and for all j € {1,...,N,}:

1) S j is monotonically decreasing and there exists a number S = 0 such that lim S ; (1) = S* ;
g t—0o0 >
holds. Additionally, we obtain S :j > 0;

2) R,,; is monotonically increasing and there exists a number R’ ;2 0 such that im R, ; (1) = R:j;
: Isoo :
3) I, is Lebesgue-integrable on [0, 0o) and we get lim I ; (t) = 0;
[—o0

4) Our system (2.6) always converges to a disease-free equilibrium

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5752-5801.



5762

for all solution functions of (2.6).

Proof. We divide our proof in four parts. Let s € {f,m} and j € {1,..., N,} be arbitrary.
1) Since 0 < S, (1) < Nand 0 < [ ; () < N hold for all > 0 by Lemma 2.4, we obtain S;,j <0
for all # > 0. By separation of variables, we know that

RS I (@) i (7)
fk (T m ke \T
S0 =S5 exp| - f ;{ﬁsm (1) 4 Bs s (0 T }dr
J

is valid and this implies
S.j(1)2 S exp(-2- Mg+ Ny-1) > 0.

Since S ; ; is monotonically decreasing, bounded below by zero and
S, (1) 2 S1,;-exp(-2- Mg+ N, 1) >0,

there exists a positive real number S :/ such that we obtain the limit tlgg Ssj(H=8 :/

2) By considering R;, j () = y1,,; (@ - I;;(®) = 0 from Lemma 2.4, we conclude that Ry ; is mono-
tonically increasing. Since R, ; is further bounded above by N according to Lemma 2.4, there exists a
positive real number R;j such that ,ll)r?o R, (1) = R;j.

3) We have R’s’ ; () = y1,,; (@) - I,; (¢) according to our non-linear differential equation system (2.6).
Integration on [0, co) yields

(o)

Rij=Rij = f Vi, (0 - I () dT
0

[ee)

> my-fls’j(f) dr.
0
This yields
fls,j(T)| dr = flw-(r) dr
0 0
Ry, —Ris;
< p
. N
ny

and hence, I ; is Lebesgue-integrable on [0, co). This shows lim [ ; () = 0.
[—o0
4) Remember the notation introduced at the beginning of the proof of Theorem 2.5. By our three
aforementioned properties, we obtain the limiting vector

77 = limz()

t—0o

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5752-5801.
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S¢()
S (1)
I (1)
[—00 Im (l)
R (1)
R, (1)
lim S (1)

—0o0
lim S, (¢)
1—00
lim I/ (t)

—o0

lim 7, (¢)
t—o00
lim R, (1)

t—00

lim R,, (¢)
—00

S *
S*
ORNII 6N
= e R
Op .
o
I*

and this vector represents the disease-free equilibrium. Hence, our non-linear differential equation
system converges to the disease-free equilibrium. This finishes our proof. O

3. Explicit-implicit numerical solution algorithm

Here, we develop an explicit-implicit time-discrete variant of our time-continuous age- and sex-
structured SIR model. We organize this section similar to the previous one. Our constructive goal in
this section is to present a numerical solution scheme that captures as many properties of its continuous
analogue as possible.

M
Let us assume that our time interval [0, 7] can be divided by a strictly increasing sequence {tp} X
p:

for M € N with t{ = 0 and #); = T. To distinguish continuous and time-discrete solutions, all time-
discrete functions are denoted by S (tp) for example. We additionally assume that time-continuous
and time-discrete time-varying transmission rates and recovery rates coincide for all times.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5752-5801.
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3.1. Time-discrete problem formulation
Here, we state our explicit-implicit time-discrete problem formulation

Sy (tpr) =Sy (1) & S (1) - 175" (1)

== > {Bommm (1) >

Ipr1 — 1p

k=1
+ Bsnam jum (tp+1) , Sy (tp+1])v' Lk (tp)},
an“;n(ml) _Snmu;n< Ny Snmuyl<p+l),];’1;cm (tp)
—— k:l{ m o (1p11) )
+ﬂS“U1?‘,Inu;(n (tp+1) S:]nu;n ( p+l]2] ]’T;llin ( p)}’
1 (i) = 1 (1)
tp+] - t N

k=1
Snum Inum
+,8525m713n?£, (tp+1) (tp+12] ( p)
mm Inum N, S o In

m,j (lp+1) m,j (tp) - Z{ Sg o Lpe" (tp+1) (lp+1127 ik (p)

k=1
S num Inum
+ Bgrnum goum (tp+1) (tp+12] ( p)} — Yoy (tl’“) Ly (t!’“) ’

= (i) 135 1)

Snum (tp+]) Inum ( p)
{ Snum Inum p+1)
um

Ip+1 = 1p

R (1p01) = R (1)

= v (100) 357 (1)

Ip+1 = 1p
REET (tp+l) B anlj;n (tp) (t ) Inum ( )
=y \fpi 1
Ipy1 — 1y Y e "

3.1
of the time-continuous SIR model (2.6) for all p € {1,..., M — 1} and for all subscripts of age groups
jell,...,N,}. Our initial conditions read

$™M (1) > 0 and I™™ (1) = 0 and R™™ () > 0

for arbitrary s € {f,m} and all j € {1,..., N,} with at least one initial condition of infectious subgroups
to be positive. For abbreviation, we write in short A, = (tp+1 - tp) forall p € {1,...,M — 1} in the
following. This explicit-implicit time-discrete problem formulation obviously fulfills

Ng
N = YIS () # S t) 127 () + 27 (1)
j=1
+RY (z,,+1) + R (10 )] (3.2)

—Z (1) S (1) + 11 (1) + 1 (1) + RET (1) + B3 (1)
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forall p ef{l,..., M -1}

3.2. Solvability

Let us proceed with unique solvability of our numerical scheme (3.1).
1) We observe from

G num — §num N, § num . Joum
. (tp+lA),,+1 . ;{ﬁsf;?,m,z;‘-,“k ) (tpﬂjzf 1)
§ num . Jnu
+,BS"ujm If,lul?l (tp+1) L (tp+l]27 mk (tp)
that
Snum
S (tpe1) = —5— ) (33)
L S (10
holds for arbitrary s € {f, m}, for all j € {l,..., N,}and for all p € {1,..., M — 1}. Here, the sum in the
denominator is given by
Na
17 ()= 2 B () 177
=1
Bz i) T ()
2) We see from
7)) 527 1) ()
j p+Ap+l — - ;{ﬂsﬁ,‘}“}? ) p+N —
§num . Joum
+’8523m’1;::,§“ (tp+l)' 5, (tp+1]2[ mk (fp)}
= Y (tp+1) ' I?f;’m (tp+l)
that
mem (zp)
Inu_m — 5]
S,J] (tp+1) 1+ Ap+1 . ’y[:l}m (tp+l)
; § num . Joum § num . Joum
Apir k]é {ﬂS?};mJ;};{m ( fp+1) s (tp+1]2, Sk (lp) n ﬂs?f{"v’%‘fxﬁ" (fp+1) s (tp+1]2, mk (lp)}
" I+ Ap+l ' 71;“;"‘ (tp+l)
(3.4
holds for arbitrary s € {f,m}, forall j € {l,..., N,}and forall p e {1,..., M —1}.
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3) We conclude from

RE™ (tp+lA) — R (t” ) = Y (tp+1) LT (tp+1)
p+1

that
R (tp1) = R (1) + Ymom (ta1) - Aper - I (101) (3.5)
holds for arbitrary s € {f,m}, forall j € {l,...,N,}and forall p e {1,...,M — 1}.

4) Hence, all our computations demonstrate that our numerical solution scheme (3.1) is uniquely
solvable. We even infer that, in contrast to typical explicit Euler-time stepping schemes, it is uncondi-
tionally stable and we avoid non-linearities as in implicit Euler-time stepping schemes. We summarize
our computations and our observations in the following theorem.

Theorem 3.1. Our numerical solution scheme (3.1) is uniquely solvable for all time steps. Addition-
ally, it is also unconditionally stable.

Proof. Follow the above computations in Subsection 3.2. O

3.3. Non-negativity and boundedness
Let us first remark that our initial conditions are non-negative. By induction, it follows that
S™m(,) 20, 1™ (1,) 2 0 and R™™(1,) 2 0
hold from (3.3) - (3.5) for all s € {f,m}, all j € {1,...,N,}and all p € {1,..., M}. Boundedness is a
consequence of (3.2). Thus, we can state the following lemma.

Lemma 3.2. We obtain

= Ls,j

0<8™ (r,) <N, 0<I™ (1) <N and 0 < R™™(1,) < N

for arbitrary s € {f,m}, forall je€{l,...,N,} and forall p € {1,..., M}.

3.4. Monotonicity and long-time behavior

We continue this section with our theorem on monotonicity and long-time behavior of the solution
of our explicit-implicit numerical scheme (3.1).

Theorem 3.3. We have the following properties:

M
1) The sequence {S o (tp)} 1 is monotonically decreasing and there exists a non-negative real num-
, p=

ber §*™™ such that lim S (1,) = §*mm,

p—)OO

M
2) The sequence {R;“}m (tp)} is monotonically increasing and there exists a non-negative real num-

ber R*™™ such that lim R™™ (1,) = R*™m;

p—)OO

3) The sequence {I;“}m (tp)}f_lfulﬁlls lim 70%7" (tp) =" =0
, - poco
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for arbitrary s € {f,m} and for all j € {1,...,N,}.

Proof. 1) By Lemma 3.2, we know that the sequence {S o (tp)}M

B is bounded. Again by Lemma 3.2
and (3.3) - (3.5), we get

num
Snum _ Sssj (tp)
S, j tP‘*'l - A -
4 sum,num
1+T‘S‘Y’j (lp+1)

num
<S5 (tp)

for arbitrary s € {f,m}, for all j € {1,...,N,} and for all p € {1,...,M — 1}. Hence, the sequence

S, j
negative real number S *™™ such that lim S o (tp) = §7*™™ holds.

p—)OO

M
{S un (tp)} | is monotonically decreasing and it thus converges. This implies the existence of a non-
[):

2) By Lemma 3.2, we know that the sequence {Rf‘;m (tp)}iil is bounded. Again by Lemma 3.2 and
(3.3) - (3.5), we conclude

RE" (tper) = R (1) + v (1) - Ao - 157 (1) = R (1)

for arbitrary s € {f,m}, for all j € {1,...,N,} and for all p € {1,...,M — 1}. Hence, the sequence

M
{Rf;“.m (tp)} is monotonically increasing and it thus converges. This yields the existence of a non-
$,] p:l

negative real number R*™™" such that lim R}"" (tp) = R*"™™ holds.

p—
3) Let us assume the contrary. This implies the existence of a positive real number /*"™™ such that
lim /™™ (tp) = "™ holds. By (3.4), we then know that all values of the sequence are positive from a

p—00 $J
certain sequence index. Hence, there exists a positive real number /™™ ™ such that / o (tp) > Joum. min,
Considering

R?,ujm (tp+l) - R?:ljm (tp) =Yy (tp+1) ) AP+1 ’ I?,l;'m (tp+1)
from (3.5), we obtain

. inum, min

\%

yl?:}m (tp+l) . Ap+1

. I”num, min

num num
R (tp+1) —-R; (tp)
> ny - Ap+1

and summation by parts yields
R*omum _ R?};m () > 111_1;?0 My - tpit - Joum, min __ my 1y - Jium, min

—> 0
p—oo

from the mentioned time index L as our summation beginning. However, this contradicts our second
property. Hence, lim /%" (tp) = [*™™ = ( holds. O
p—oo© >

3.5. Convergence analysis

Here, we want to discuss convergence of our proposed numerical scheme (3.1).
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Theorem 3.4. In addition to the assumptions of Subsection 2.2, all solution functions
Sl jRsj: [0,00) — [0,N] are assumed to be continuously differentiable twice with globally
bounded ﬁrst and second derivatives. Additionally, all first derivatives of time-varying transmission
rates and time-varying recovery rates are assumed to be globally bounded as well. Let A, < 1 for all

p € N. If maxA, — 0 holds, the discrete solution of the numerical scheme (3.1) converges linearly
peN
towards the global unique continuous solution on a considered time interval [0, T].

Proof. Since this proof become relatively technical, we briefly describe our strategy. At first, local
errors between continuous and time-discrete solutions are considered. Afterwards, we need to take
into account that errors propagate in time. Finally, we investigate cumulation of these errors which
finalizes our proof. We adapt ideas from [18] and [19]. In general, we follow [19, Satz 74.1] and
modify ideas for explicit Eulerian time-stepping schemes because our scheme is a mixture of explicit-
implicit parts.

1) For investigation of local errors, we assume that

(10357 (10)) = (100811 (1)) (1002357 (1)) = (1 s (1)) andd (1, R3S (1)) = (1, R (1)

hold for arbitrary s € {f, m} and arbitrary j € {1,...,N,} and we consider the time interval [tp, tp+]].

—~— o~

Here, we thus only consider one time step and denote solutions by S um ( p+1), e ¥ (tp+ 1) and R‘;}‘jm (tp+1)
respectively.
1.1) It first holds

—~—~—

-~ Na §num .
S?’ujm (IPH) =S (tp) ~ Bpar- Z Z ﬁSs,j’Iq,k (fp+1) a2l (tp+;3 -k (tp)
k=1 ge{f.m}

—~—

and solving this equation for § " (tp+1) yields

S S,J (tp)

Snum(p+1) = N Ik (tp)
b+ Ap+l 'kgl qE{Zf,ml ﬁs‘v"i’lq’k (IPH). N
me-5us()- 35 Lo () 222
Pt s;i\*p E gelFm Ssjdgr \"p+1 N
) Ss’j(tp)_ Ng quk(tp)
b+ B 'k; qe§m} Pyt (tl“l)' N

We consider It holds

SS,(p+l) Snum(p+l)
2y (tpe) = 52 (1)
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’ I\t
Api1- Sy, (tp) . kNg‘l qeg":m} {ﬁsw’l‘”‘ (tpH) . qk]\([ p)}

= |8 (tp+1) =155 (lp) -

k=1 ge{f,m}

p I
L+ Ay % 2 {ﬂsw,lqk (lp+1)' e (tp }

Zero addition and application of the triangle inequality implies

$54(tpn) =357 ()

S5 (tp1) = S (1) + Apar Z D {Bs e Ss,j(fp)&’q’k(fp)}

k=1 ge{f,m}

3 Bs.,, S (tp) ok (tl’)
1 S,
p+ k=1 ge{f.m} N
It
Api1- Sy ( ) kNgl qe%“:m} {ﬁsé’j’lq’k (tpH) ) q,k]\g p)}

] I
L+ Ay % 2 {'st,f”qk (tp“)' ‘1’](]\(:17)}

k=1 ge{f,m}
S 1
< |8 (P+l) +Ap+1 Z Z {’BS ly tp J(tp)N qk(t )}
k=1 ge{f,m}
Na SS’~ -1
SWEID) {ﬁs ol 2 ”(tp)}
k=1 q&{fm}
Lt
Api1 S, (tl’) sz::1 qe%:m} {IBS”’I*" (tp+1) q’k]\g p)}
’ Ny Ly (tl’)
1+ Ap+1 . kgl qe§m} ﬁSS,_ Igk (ZP“) N

We define the two terms

N S, I,
SN ECHIARTWED Y)Y {ﬂ ()2 qk(fﬁ)}
}

I, =

and
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a

Ap+1 ) 8,J (tp)

=~

=1 g€{f,

: % 2 }{ﬁSw‘J%k (fp+1)'

P

¥ (fp)

N

+

Ny
1"‘Ap+1' Z Z

k=1 ge{f,m}

For 1,,, we obtain

N,
L= |80 (tpet) = S0 (1) + Ape Z Z
k=1 m
Ipt1 qe{tiﬂ}
= fS;,.,- () dr = Apii - S (tp) = fS;’j
= f{s;,j(r)—sg,j(t,,)} dr].
Ip

{ﬁs sijlqk (tl’+ 1) ’

&MM@»

I,k

tp+l

(r) dr - fs;,j (1) dr

t

Application of the mean value theorem of calculus yields the existence of &, € (t,,, tp+1) such that

Sy i) = al (Ti : f;j (tp)
P
holds. This implies
Ip+l
I, = f{s;,j 0 -57;(1)} dr
I
Ip+1 , _qr Ip+1
= (T - tp) . > (:)_ — f” (tp) dr| = f(‘r - lp) S5 (&) dr
Iy g Ip
Ip+1 )
< teﬁ:,etl,i]] S;”j(t)|- f(T—tp) dr| < [;l IS5 illeo
Ip

For I,, we obtain

a

% D }{ﬁSw,Iq,k (l‘p+1)'

M

Ap+1 ’ Ss,j (tp) N

& (tp)

|

., S i(t))- Ll k=1 gelf,
I, = |[-Ap- Z Z {ﬁs°’j’l‘1’k (tp> — ( p)N - ( p)} ' N, : I (t
k=1 ge{f,m} ) S
1+A-Y X

Mathematical Biosciences and Engineering

N

k=1 ge{f.m}
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—Ap+1‘% ) }{ﬁsé,j,zq,k (tp)- ! p]\.] - }

k=1 ge{f.m

k=1 ge{f,m}

N, S.i(ty) - Lo (1)) N, Ly (t)
A2 {kzl qe{zf,m} {ﬁss’j’lq’k (tp ) ' N . kgl qeg“jm} P (tp+1) N
Iy (tp) }

N{l
I+Ap- DY ﬁss,_/»lqﬁ (lp”) . T

’ I
1+ Ap+1 : % Z {ﬁsw’l"‘k (lpH) ' q’k]\gtp)}

p+1 ’

k=1 ge{f,m}

=

a Lt
Apei Sy, (tp) . kNgl qeg‘%m} {IBSA./,Iq,k (tp+1) ' - ( p)}
Iq,k (lp)} .

N,
1+ Ap+1 DI ﬁS.v,_qu»k (ZPH) . T

k=1 q&{f,m}

+

Application of the triangle inequality and rearranging yields

APH.{:leqeg_’m}{(ﬁsr,,,zqk( ) 0) ! ) b )}}

I, <
Na I (tp
L+Ap- 2 X 3Bs, qu p+1
k=1 gelfm) N
Nq ok Ly (tp)
. t
) {kzl qe%;,m} {'st’j’lq’k ( p) }} {que{f m) {ﬁs Hak pH) N
+ Ap+1 '
L+AL-Y % 1B (1pe1)- q—)
p+1° & wem) S sjlgk \tp+1 N
Since (
qu Ip
1<1+ AP+1 Z Z ,BS qu p+l N
k=1 ge{f,m}

is valid, we obtain

el

k=1 ge{f.m}

B2 0 e }} B )

Volume 17, Issue 5, 5752-5801.
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By the mean value theorem of calculus, there exists &, € (tp, tp+1) such that

Bs, qk(p+1) —Bs.,;, qk( )

Ipr1 = 1p

Bs, 1, ) =

holds. This implies

IA
>
(3]

I

2 i 3 (B 151) = Bs o (8 ))_Ss,j(tp)-ltp(tp)

=1 qe(fom) fpe1 = 1p N

k
N, Ny
+A§+1-{Z D Mg-Np-d> Y My

k=1 ge{f.m) k=1 ge{f.m}
Ng : .
e I3 5 e Se (rpzv 1, ()
k=1 ge{f.m}
+A2, {2 Mg Ny - NJ-{2- Mg - N}
< AL 2Ny N-|IBllw+ A2, -4-M;-N;-N
= A2, -{2-No-N-|IBllw +4- Mj- N - N}

Here, 8’ denotes the vector of all derivatives of time-varying transmission rates. We conclude

S (p+1) AN m(p+l) < Ia+1b
2
< LR NSl + MYy (2 No N Bl +4- MG - N - N}
< A ISl + 2 N N+ |18 lleo + 4 - Mj - N2 - N}
=Cyloc
and summarizing our results, this implies
Ss,] ( p+l) S aum ( p+l) < Cs,loc ' A127+]- (36)
1.2) From
— N, Snu?n\/ ]
I?,l}m (tp+1) — Is,j (tp) + Ap+1 . Z Z IBSW_’IM (tp+l) LS (tp+113 q.k (t[’)
k=1 qe{f,m}
_Ap+1 “ Vi (tp+1) . I?:}%H)’
we obtain
: Snu‘/m\—/ .l
Apir - % Z Bs. i1 (fp+1)- 5. (tp+;3 q.k (tp)
— I (tp) k=1 qelf.m)
By (i) = *
L+ Aper -y, (1) L+ Aper -y, (1)
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= Is,j

(t )_ Ap+l )’1 (p+l) I j(tp)
g I+ Ap+1 715,]' ( p+1)

: Snu/m\/ .
Ap+l . % Z {ﬁs&j,lqk (tp+l) s,j (tp+l) gk (tp)}

k=1 ge{f,m) N

1+ Ap+1 : ’YIW' (tp+1)

(tp+1) I?‘;W;;_])

I, (tp+1) - ]23%+1)
Apst1 Vi1, ("+1) Sj(tp)

o (tp1) = L (1) + L By, ()

A num . I
Ap+l . % Z {ﬁSS,,,Iq,k (tp+]) (tp 1 qk( )}

We consider |/ It holds

k=1 gelf.m) N

I+ Ap+1 : ’}/Ix,j (tp+1)

k=1 ge{f,m}

A {2 D {ﬁs i) (t”)l\}lq’k(tp} fp)}

qelfom)
Na Snum tp+1 qu
Aper- 2 X }{,BS qu(tp+l) N

By (tpe) - Isj(tp)_ i1 gelfm

L+ At -1, (1) L+ At 1, (1)

o) = D)~ Ao {z Z{ﬁs () S }-y, }

Rearranging of these terms and application of the triangle inequality yields

L (1) = 257 (i)
{Iw(fp+1) Aper {;qevm}{ﬂs i S”(tp)]\',lq’k(tp)}—m (tp)-ls,j(fp)}}

o [ 21 P”) S0 1))

I+ Ay VI, (tp+l

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5752-5801.
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o Ssilty) Lgx\tp
i ST {ﬁsé'],,q’k () it )N it )}

k=1 qe{f.m}
Ny smm (e )Ly (t
s § o) L

L+Ap -, (p+1)

<

)= s ()~ A {z 5 {,Bs ) ‘(”’)&’“(”’)}-m (rp)-fs,jop)}

k=1 ge{f,m}

I { ", w hil) v (tp)}

L+ Ayt -y, (tp+l)

Na S, .1
NNy {ﬁ ) S0 1)

k=1 ge{fm}

Na S,' p+ : B
Ap+] * Z Z }{ﬁs;v,/,lq,k (tp+l) ’ : N

k=1 q€{f.m

L+ At - yi, (tp+l)

tp+l
, p+1
= | [ 1@ dr= A1 1) + - 1, (1) 1 (1)
p 1+ Ap+1 71 p+1
P
Na t
p
+ Ap+1 Z ﬁs qu )
k=1 ge{f.m}

p §oum -1
AP+1 . % Z }{ﬁsx,/,lq,k (tp+1) LS (tp+1) gk (tp)}

k=1 gelfum N

I+ Ay VI, (tp+l)

We define the following three terms

tp+l

f I () dr = Ay - I(5))|

Ip

I. =
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1, =

o [ AV ) )

I+ Ap+1 Vi, (tp+1

and

Na
I, =
k=

Soi(t) 1
Aper - Z Z ﬁss,_f,lq,k (tp) O (tP)N q.k (tp)
L qe{fm}
§ num (tp+]) . Iq,k (tp)}

N, 5.
Ap"'l ' Z Z } ﬁss’j,lqyk (tp+]) : N

k=1 q€lf,

I+ Ap+1 : 71%,. (tp+1)

1. can be rewritten as

tpr1 Ip+1 fprl
I = fli"j (1) dr — fl‘;’j (tp) dr| = f(];] (r) - I;,j (fp)) dr|.
ty Ip fr

By the mean value theorem of calculus, there exists &, € (tp, tp+1) such that

ey = 0Ll

T—1,

holds. This implies

Ip+1 Ip+1 7 ( )_ .
I = f(lé,j(r)—lg,j(tp)) dr| = f(T—tp)- i’ :__t;”(tp) N
tp tp
tp+| .
) f (v =10) - 13560 dr) < 5= I
tp

For 1,;, we obtain

Vi, (tp+1) 1y (tp)

I; = |Ap- {1 + At Y1, (tp+1) — Vi, (fp) Ay (fp)}

A . Is,' t,): 5. ] ALY 4
- = J1(+p)A E/] )/E pzlt)ﬂ)% < = A (1) v (1) L ()|
D s P

Application of the triangle inequality implies

Ap+1 ’ Is,j (tp) ' {'ylw- (tp+1) VI, (tp)}
L+ Apr -y, (l‘p+1)

+

Ain Vi (tl’“) Vi, (t”) s, (t”)'

I; <
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<

Apri 1y (IP) ' {713,_, (tP”) ~ Vi, (IP)}' A7 (tp”) Vi (IP) s, (tf')|'

By the mean value theorem of calculus, there is &; € (t,,, t,,+1) such that

Vi, (lp+1) =Y, (lp)

Ipv1 = 1p

7’; i o) =

holds. Hence, we conclude

N\ - A\t
1, < A127+1 . Is,j (tp) . VI ( l;;’i? - ::u ( l’) + Aiﬂ VI, (tp+1) Y1, (tp) . Is,j (Zp)|
< |2 Ly(t) o, €|+ AL, - M2 AN
< AN N-Yllo+AL,, - M, -N.

Here, y’ denotes the vector containing all derivatives of time-varying recovery rates. We consider

< Ss j -1
L = |Apa- Z Z {ﬁswm (tp) O (fp)N q.k (lp)}
k=1 ge{f.m}
\ §um ]
A klél qe%:m} {ﬂss,i»lq,k (lp+1) i (tp+;3 - (tp)}

1+ Ap+1 ' 71J,,- (tp+1)

By zero addition, we obtain

Ny
)
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$1 (111) Lo (fp)}

Nq
Apr1- 20 X }{IBS””W‘ (tp“)' N

k=1 ge{f.m

1+Ap+1 YI (17+1)

N

{ ) (S5 (t) = S (tp1)) - Lo (lp)}

'sz(fpu) W)}

+
~Ul>
+
M=
=M
—_—
A
=
S
t
~—
2

L+Ap -y, (p+1)

Application of the triangle inequality yields

A S {ﬁsg,,.,zq.k (tp)'(S”(t) — }

k=1 ge{f,m}

)
+ [ Aps1 - Z Z {IBS qu —Bs, qu(tp+l)) plN qk }

k=1 qe{f.m}
SSJ(IP*'I) qu(t )

Na
+ Ap+1 ’ Z Z {IBS°’f’I‘1"‘ (t'DJrl N }

e <

k=1 qE{fsM}
B3 5 B )S“”m(fp+1 Ly (1)
L S sjidgi \Ip+1
p+ i gelfm) Jrlgk \"PF N

L+ Apir -y, (tp+1)

We define the following three terms

Ny
Ap+i Z Z

k=1 qe{f’m}

N

1,
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]e’z =

N Ssiltpsr) -1,
Apsr - kZ:: Z {(ﬁsw,quk (lp) —Bs, i (tp+1)) s (tp 1]2] gk (tp)}

1 ge{fim}

and

b3 5 fi oy 22 )

gelfim

f Sei\tpn) - 1,
Ap+1 : % Z }{IBSV,,,I%,( (tp-H) (1’ ;\2 qk(rp)}

k=1 q€{f.m

I+ Ay VI, (tp+l)

Considering 1, ;, there exists &, € (t,,, t,,+1) such that

Ss,j (fp+1) - SSJ' (tp)

Ipv1 = 1Ip

S;,j (fe,l) =

holds due to the mean value theorem of calculus. Hence, we obtain

o= DY {ﬁ ) (Ss,f(rp)—Ss,gv(rpﬂ))-zq,k(tp)}

k=1 ge{f,m}
(S . (fp) = Sai (1)) Lue (1)

i ,,sz{ﬁs,qk .N}

k=1 ge{f,m}
(fp)
= 17+1 Z Z ﬁS 11k Ssj(ffEl)
k=1 q&{fm}
< Af)+1 2. Na : ”ﬁ”oo . ||S,s',]||oo

By the mean value theorem of calculus, there exists &, € (tp, tp+1) such that

Bs, qu(p+1) —Ps, qu( )

tp+1 t

B:S‘ sijlqk (‘fe,Z) -

is valid. Application of the triangle inequality yields

Ss,' +1)° I s
L, = p+1 Z Z {ﬁs qu ,BS qu(l‘pﬂ)) J(tp 112] qk(tp)}

k=1 qe{f.m}
,BS o p+1) —PBs, 11k( )) Ss,j(tpn)‘lq,k(tp)

k=1 ge{f,m}
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>~
I
—_

Q

m

< St L (1
33 3 e 22 )
fm

i1 2 No - N |8l

Now, we consider

N Ss,' 'I,
Apii - Z {ﬁs qu p+1 J(tp+1])v qk(l‘p)}

k=1 ge{f.m)
q S num L (1
Ap+1 ' k]él qe%:fm} {ﬁsd,ﬁlq.k (tpﬂ) R ( p+;3 ok ( p)}

1+Ap+1 Vi (p+1)

By application of the triangle inequality, we obtain

y Ssjltper) -1
Ap+] . % Z }{ﬁSx,,,lqyk (tp+1) ) \J (tp 112] q.k (l},)}

k=1 ge{fm

1+Ap+1 Vi, (p+1)

1 g&{fm} N

>~
Il

y SS i\Zp+1) - 1,
A127+1 Vi (tp) ) % Z {ﬁss,i:h{,k (tp+1) — (tp 1) ak (tp)}

+

L+ Ay -y, .(tp+1)

{ §2 (1) - Ly (tp)}

Ng
A1D+1 ' Z Z

ﬂss il t 1
k=1 ge{f,m) sk ( P ) N

L+ Apr -y, (fp+1)

N,
SJ p+1 qk
S A127+1 71 Z Z IBS ok tp+1
k= lqE{fm
N, S (p+l) Snum p+1 qu
IZZ ﬁS qu p+1 N
k=1 ge{f.m}
2
< Ap+1 2-N,-N-Mg-M,
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+Ape1 -2 Ny - Mg -

25 (tpn) =535 ()|

By inequality (3.6) from Step 1.1), we know that

i (tper) = 57 (1,01

2
< Cs,loc A

p+1

holds. This implies
16’3 < A2

p+1

.2-N,-N-Mg-M,

+Ap+1 '2'Na'Mﬂ°'Ss,j(tp+1) S um(p+1)

< A?Hl 2-NH'N'Mﬁ'My+Ap+1'2'Na'M/3'CS»1OC'A2
N 2NN My My 02N, My Cone
= Afm {2~Na'N'Mﬁ'MV"'Z'Na'MB'CSJOC'AP“}

ALy 2Ny N-Mg-My+2-N,- M- Cypoe.

IA

Combining our results, we obtain

—~—

Is,j (tp+l) - I?,l;m (tP"'l)
< Le+lg+1
< Ic+ld+I€,l +Ie,2 +Ie,3
2
1 44 ! ;
< g+ ’ ”Is,j”oo + A?)H “N - “7 ”oo + A?)H M2 N + A?)H Na : ||ﬁ||oo : ”SSJ”‘X’
+A12)+1 2.Na-N'||ﬁ,||(X,+A[2)+1 {Z'Na'N‘Mﬂ'M’y+2'Na'Mﬁ'CS,IOC}

+2- Ny N |81l +2 Ny N - Mg - My +2- Ny - Mg - Cypoc
We define

2

N
Cre = { T N Yl + M2 N+ A2 2 Ny - Bl ISl

+2 Ny N |Blleo +2- Ny - N- Mg~ My +2- Ny - Mg - Cypoc}

We conclude
A CI loc-

I; (p+1) Ll ( p+1)

1.3) It holds

—~—

Rnum( p+]) R ; (tp) + Api1 - 1, (lp+1) : Iﬁ‘}m (l‘p+1)-

—~—

Ry (tpn) = RS (tpe1)

Reslir) - )

We consider and obtain

177 Ml
_ A,%H-{ LZ N Y o+ M2 N+ A2 2 N (Bl IS

3.7)

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5752-5801.
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Rs,j (tp+1) - Rs,j (tp) - Ap+1 Vi, (tp+l) . I?E'%+l)

Application of zero addition and the triangle inequality yields

R (1) =R (1)
Ips1

= fR;’j (T) dt = Apir 71, (t,,) Ay (tp)

Ip

+Ap+1 "I (tp) 1y (tp) - AP+1 Vi, (tp) Ay (tp+1)
+Api1 Vi1, (lp) Y (fp+1) = Api1 Y1, (lp+1) Ay (lp+1)

+Api1 Vi1, (lp+1) Ay (lp+1) EAVISI 70 (fp+1) I (fp+1)
tp+l

fR;,j (T) dr — Ap+1 “ Vi, (tp) ) Is’j (tp)

IA

+ Ap+l "I, (lp) . Is,j (tp) - Ap+l “ Vi, (tp) : IS,j (tP+1)

+ Ap+1 ' ylw- (tp) : Is,j (tp+1) - Ap+1 : 715,1- (tp+1> ' Is,j (tp+l)

—~—~——

+ Ap+1 ' le,,- (tp+1) ' Is,j (tp+1) - Ap+1 : VI_Y,_,- (tp+1) : I;l’l}m (tp+1)
Ip+1
= | [ (R @ =R () arl+ e, (1) (1 (1) = 1 102)
Ip =l

=)
Ap+l ' Is,j (tp+l) : (YIx,j (tp) - ’)/Iw- (tp+l))‘ + Ap+l ' ’}/Ix,j (tp+l) ' (Is,j (tp+l) - I?’L]l%+l))

=ly3 =lpa

+

By the mean value theorem of calculus, there are £, &0, &3, 674 € (tp, Iyt 1) such that

R (0)-R. (1
R (ér1) = = :_tp (1) 1 (¢2) =

Is,j (tp+1) - Is,j (tp) 7; (§f3) _ Vi, (tp+1) — Vi, (tp)
> VI \Sf

Ips1 = 1p Ipe1 = 1Ip
hold. This implies
tp+1 - R (D) -R
Iy, = f(R;,j (1) =R, (1,)) dr| = f(T—t,,)- — TT_IS’J () T
Ip 1 P
Ip+1 )
= f(T—tp)’R's:j(ff,l) dr| < ;1 MR illcos
Ip
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I (¢ — It
o= (A7 (1) - (B 1) = 1 (1) = A1 7, j(’;?-tf(p)

= |82y, 1 (6)] < ATy Bl Il

and

’ylw- (tp+l) - 71x,j (tp)

Ipr1 —Ip

b = [t ) O ) 7 )| = - s 1)

= (8 Lo (1) ¥ (67)] < B N
By inequality (3.7) from Step 1.2), we know that

Is,] ( p+1) IS m( p+1) < A129+] : Cl,loc

is valid. We infer that

If,4 = Ap+l )/IY] ( p+l) (Is,] ( p+l) IS m( p+l))'
Ap+1 : ”71,,/-”00 : A?)H : Cl,loc < Ap+1 : Cl,loc M

IA

holds. Summarizing our results, we obtain

Rs,j(l‘p+1)—R1;3m(l‘p+1) < If,l +If,2+lf,3+lf,4
2
p+l
< AIRY Moo + A%y - 1Bl - I lleo
2 3
+Ap+1 : ||7; ”00 + Ap+1 : Cl,loc M
(IR e , ,
= 82 I Bl M+ N 1Y)l + Ayt Coie M,
(IR || ,
< A2, 1Bl W fle + N -, [l + Crioe - M,
:=CRoc
= A2 .C
p+1 R.loc-
R;.; (tp+1) - Ry (tp+1) <AL, Crioc (3.8)

in a short manner.
1.4) Conclusively, we obtain

s (8 (ts) =2 (i) s (1) = 227 (i) Ry () = R ()
se{f,m) (3.9
< Ap+1 max {CS locs CI locs CR loc} = Af}+l : Cloc

:=Cloc
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from the inequalities (3.6), (3.7) and (3.8).

2) In reality, the points (tp,S ?‘;m (tp)), ( s I?‘;m (t )) and (tp,Rf;}‘jm (tp)) do not lie on the continu-
ous solution graph. For that reason, we must investigate how procedural errors § ;“jm (tp) -8, (tp),
Tl (t,,) - I (tp) and RY'" (t,,) - R, (tp) propagate to the (p + 1)-th time step. These estimates are
going to be carried out in the following steps 2) and 3) of this proof.

Remember that S ‘S‘fjmf\(tp) Ssj (tp). Note

2.1) At first, we must consider |S ?‘;m (t,,+ 1) S um ( o+ 1)

that
A Inum t
AI’“ ) S??/m (tf’) . kNgl qe%;m} {ﬁs‘”’l‘f" ’ qu( p)}
SE (1) = 27 (1) -
o B g ) B0
p+1 E yelfm Ssjlgk \Fp+1 N
and

g 1
Apei - S (1) Ngl > {ﬁs&,,,q,k- (1)

—~ gelf.m

ST (1) = S (1) - {

Nq
L+ Ay 2 X ﬁSs,qu,k (tp+1) )

k=1 g&{f,m}

are valid. Hence, we obtain

S (1e1) = 257 (1)

S (1) ) S (1)

: Inum A I
1+ Ap+1 . % > }{ﬁs‘r’/,]q,k (tp+1) q.k (lp)} 1+ Ap+] . % > }{IBSL,,I,,,/( (lp+1) . q’/;\(]fp)}

k=1 ge{fum N k=1 ge{fum

L (t
5170l 5170) 5, 3 )57

Ng Inum Iq,k tp
{1 + Ap+l . Z Z {BS qu p+1 }} {1 + Ap+1 Z {ﬁSS,iqu,k (tp+l) . ( )}}
i=1 gelfm) E i N

Inum l.
Bpt- S”(p) %qe{f,m}{ﬁs qu(tpﬂ) N(p)}

- ’ Jrum (7 , 1, *\ .
{1 + Ap+1 . klé] qeé‘jm} {ﬁss,/’lq,k (tp+l) q,kN( P)}} . {1 + Ap+] . ]Zé] qE%Em} {BSsii,lq,k (tp+]) . qk]\(] P) }}
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Application of the triangle inequality and zero addition yields

2 1) =S i)

(1) - S, (tp)‘ +

num
Sy

IA

Ap+1 Snum ( )

v, e (i,
~Apir -S4 (1) Z Bs st (tr1): N
k=1 qe{f,m}
Na It
= sm( )‘SSJ(IP)‘JF Api - Sgl;m(p).z {sx.,,zqk(tpn) q,k]\([p)}
k=1 ge{f,m}

N, I
“Api1 - S (1) Z {ﬁs e (1) q’kN }
k=1 gétrm)
Ny I
+Api1 Sw Z {ﬁS I"k ”“ q’thp)}
k=1 gélfm)
N Inum
—Api1 - SSj Z {ﬁS qu P+1 q’kN(tp)}
k=1 ge{f,m}
< Jsmm (1) =i
. N, L (1))
55050 0)- 33 3 Jos o) 224
k=1 gélfm)
N, I — Joum
AV SSJ Z Z {ﬁs qu P+1 qk(tp)Nq’k (tp)}
k=1 q€&{fm}
< s (e py+my2N-Mrﬂ?@%ﬂw@ﬂ
Ay 2Ny~ Mg+ max {‘qu 1;;};;“(:,))'}.

qelf.m}

Summarizing this result, we obtain

erl’um( p+1) Snum( p+1)

<|smm(s,) - S.(5))

+Apy1 -2 Ny M-

+Ap+1'2'N Mﬂ

et

max
ke{l,...,

qefm

Mathematical Biosciences and Engineering

S2 (1) = S0 ()

(3.10)

— (t,,)‘} .

Volume 17, Issue 5, 5752-5801.



5785

—~—

vk (tp+1) - I (tp+ 1) . We first observe that

2.2) Now, we consider

Aper -y, (tp“) ) I?,L}m (tp)

1+ Ayt -y, (tp+1)

B (tp) = 15" (1) -

N, SISl’um(t 1),In,um(t )
kgl qe%:,m} {'BS s, lak (tP+1) ' L N gk \'P }
A
+Ap4 L+A,n Vi, (fp+1)
and
— ~ Ay, (lp+1) . Iggm\(;p)

I?’L}m (l‘p+1) = Is,j (tp) - 1+ Ap+1 Y1 (tp+1)
8,J

g S“u;\/ . ]n:m\/
% Z }{ﬁss,j,]q,k(tp+])~ 8,J (tp+l) a.k (tp)}

N

L+ Aper -, (tp+1)

-l 16
o L+ Ap -y, (tp+1)

q S““?“\_/Jr 1,
% Z {ﬁsa,j,lq,k(tp+l)' s, j (tp 1) qk(tp)}

k=1 qe{f.m} N

+Ap+1 :
1+ AP+1 “ Vi (tp+1)

are valid from step 1.2). Application of the triangle inequality and zero addition yields

—~—

I (tp01) = 17 (21

= | (o) - A’”ll +7A’ (’f.’“) 1 (1)
p+l " Y (tp+1)

) S oum . Jnum
AZ] )y }{,BSW,[‘M (tp+1)- 5.J (tp+1) ok (tp)}

N

1+ Ap+1 VI, (tp+1)

o B ) L)
1+ Aper -y, (lp+1)
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5786

—~——

S (1y01) - Lo (t,,)}

% 2 {ﬁsw,lq,k (fp+1)' a N

k=1 gelf.m)

1+ Ap+1 : 715,,' (tp+1)

(A (1) - (B (1) = 1 (1)
L+Apir -y, (tp+l)
So (1) - 15" (1)

% )y {ﬁss,/,lq’k(tp+l)' : N : }

IA

k=1 q&{f,m}

+ Ap+1 *
1+ Ap+1 ' ’)/Is,j (tp+1)

—~—

S oum (tp+1) . Iq’k (lp)
N

N, 5,j
DI } {,335, ok (tp+1) :
m

I+ Ap+1 : 7’13,,» (tp+1)

b ) (201 )
L+ Ay -y, (lp+1)

5 1) = 1y 1) +

Na Snum 14 . Inum ¢
kgl qe%:jm} {IBSW,[(M (lp+1) — ( p+1]27 Tk ( p)}
A,
T |Ap+1 L+ Apir -y, (t,,H)
N, Snu'/m\t/ . um (;
&L gelFm Bs, it (tp+1) s ( 17+1]27 o ( p)
_Ap+l :

q S oum . Joum
% Z ﬁs.v,_j,[q,k (tp+]), 8,J (tp+1]2] .k (tp)

I+A, "V (l‘p+1)
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{, (3 ) 1t
klél qe%%m} {’BSW’I” (tpH) T ( p+;3 - ( p)}
-A
p+1 1 +Ap- Vi (ll’”)
u Aper 1, (p+1) (I;l}m (t,,) -1, (tp))
< I?]m (tp) _IS’J' (tp) + 1 +Ap+1 Vi, (p+1)
. (S num ( p+1) S num ( p+1)) I;l;(m (tl’)
kg'l g€l fm} Bs il (tp“) N
A
+ | Ap+1 1+ Ap+1 Vi (tp+1)
: S (tp01) - (17 (1) — T (1
'y {ﬁ Wl COR il qk<,,>>}
A .
T |Ap+1 L+Ap- Vi (tp+1)
< | (h) - L (e )' + Aper - My |1 (1) = 1 (1 )‘

+Ap+1'2'Na'Mﬁ' S

5 (p+1) Snum( ‘)
e () = e (1)}

max
kefl,....N,}
qelf.m}

+Ape1 -2 Ny - M-

Using (3.10), we obtain

2 (1) = 22 (1)

10 (1) = 1 ()| + Aper - M -

um
ISJ

IA

(1) - 1

(1)

smm ()-8 J(tp)'+Ap+1 2-N,-

-}
ke{el{,}ﬁa}{ (1) -1 (t”)'}

q.k
=1 (1) = Lo (0)] + A - My - 157 (1) = £ (1)

+Ap+1'2'Na'M,B'{

+App1 -2+ Ny - Mg+ max

ke{l,...,N,}
qe{f m}

Inum

+Api1 -2 Ny - My - s

max

Mathematical Biosciences and Engineering

" Mg -
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S2 (1) = 8 s (1)

+Apu -2 Ny~ My~ |7 (1,) = S o, (1 )'+A§+1 4-N>- M-

=

2 2 2 num
+AZ,, - 4.Na.Mﬁ.kefE?§V}{qu (tp)—lq,k (t,,)'}
q€{fim}
num _
+Ap1 -2+ Ny - Mg ke{r{}%}{lq,k (1) = Iou (t,,)'}
q€{f.m}

and the result reads

15 () = 13 (1)
< I?,le'm (fp) -1 (fp)' +Aprr - My - Inu'm (tp) — s (tp)‘

s (n,) = 80 (1)| + A2, -4 N2 M3

125 (1) = 1o (1)
5 (t,) = I (t,,)‘} .

+Ap+1'2'N M

S (1) = .1 (1) 3.11)
+ A

4-N2 M? - max {
p+l B kell,Ng

qe{f m}

+Api1 2Ny Mg- max {

ke(l,....Ng}
qelf.m}
2.3) We consider Rnum ( p+1) RY’J;‘\(;]) From step 1.3), we know that
R?Em (tp+1) Rnum( )+ Ap+1 Vi, (p+1) IA jm (tp+l)
and

Rnum ( p+1) RSJ( )+ Ap+1 71 (p+1) In’l;r/n\<t;+l)

hold. By application of the triangle inequality, this implies

—~—

Rnum p+1) s} ( p+1)
) + Ap+l 71 ( p+l) In}}m (tp+1) - Rs,j (tp) - Ap+l ' 71 i ( p+l) ' I?}}m (tp+l)
)= R (1) + gt -7, (o) (15 (tp00) = 227 (i)

R (1) = R (1) + B - My 257 (1) = 1557 i )|

_ num
= Rjt

IA

S5J

(
(
R (i,
(r

IA

Using inequality (3.11), we obtain

R (1) = 157 (101

< [RE (1) = Roj (1)) + Aper - My -

25" (1) = 12 (1)

1™ (1) = s (1)

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5752-5801.
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HBper - My |10 (1) = 1 (1) + Bper -2 No- My - [S297 (1,) = S o (1)
FA2, 4 N2 MRS (5,) - S, (0 )'
0G4 NG MG max, {Im‘m }
qu fn]1V
+Ap+1~2-Na-Mﬁ~krlna)1(v {I““m }}
Py

We conclude that
R () 2 )

=[R2 (1) = Ros (1)

Hper My |10 (1) = 1 (1) + Bper 2 Now M-

+Ap+]'M7'{

1 (1) = 1, (fp)‘
S35 (1) = S0 ()

P2, 4 N2 MG ST () = S (e )' (3.12)
+Af7+1 4'N§-M2- max {I““m }
ke{l,...,N,}

q€{fm}

+Api1-2- Ny - Mg+ max {

Inum }} .
qel fm}

ke{l,....Ng}

holds.

2.4) Now, we want to combine our results. Since s € {f,m}and j € {1,..., N,} are arbitrary indices,
we infer by inequalities (3.10), (3.11) and (3.12) that

max {15257 (1) = S () 127 (1) = 23 ()| RS (11) = R (1)
sef f,m}

< ma {182 (6) = S (1) + A -2 N My |52 (1) =55 (1)
se{f.m)

+Ape1-2-N, - Mg~ max {'Iq’k(tp)—lgf;{m(tp)‘},

ke{l,...,Ng}
(e (s, —Isj(tp)'

qe{f,m}
e (1,) - 1, (t,,)‘ + Ay - M,

S™ (1) = S o (1)) + A2, -4+ N2+ M3
010

+Ap1 2Ny My -

S2 (1) = S o ()

+A? 4-N2~M§- max {

ptl k(1. Na)
geifm)
num
Ay ~2-Na~Mﬂ-k€{r{13)1(v}{qu (1) - s (zp)‘}
qelf.m}

R??jm (tp) — Ry (tp)' + A - M, - {

1™ (1) = L (1)
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+Ap+] * M

19 (1) = 1o ()| + Aper -2 Ny - M -

S2 (1) = 8.5 (1)

Y
FA2, 4 N2 MRS (5) - S (e )'
+A, - 4-N§-M2-ker{1a)lcv {Im‘m }

qel fom}

S

IA

+Api1 -2 Ny - - max {I“”m }}}
kell....N,)
qelf.m}

max {

JE{L,...Nq}

S35 (1) = S ()| 10) = s ()] [R5 (1) = Ry ()
se{f.m}
X {1+ Aper - {2 My +4-Ny- Mg+ 8- N2 - My - Ay |}
s {76 = S G ) - 1) e () . )
se{f.m}

X {1+ Aper-{2- My +4-N,- Mg +8- N> - M3}

IA

max {

holds because A,,; < 1 by assumption. This yields

s {152 1) = 525 o) o) = 7 o) 2 1) = e )
se{f,m}
< max {1525 (1) = Sy 1)) [ (0) = 20 (0] [R5 (1) = Ry ()]
selfm) (3.13)

X1+ Aper {2 My +4-N,- Mg+ 8- N2 - M3}t

:=Cprop

3) Finally, we can finish our proof of convergence. For abbreviation, we write
”Znum (tp+1) z (tp+1)”conv

Srs],um(pﬁ) S um(p+1)

= max {
Jell,...,Ng}
se{f,m}

}

where z € R%M is defined as in the proof of Theorem 2.5. Our proof is heavily based on the inequality

5 (tpn) = 225 (i) R (100) = B2 ()

I +x<exp(x)

forall x > 0. Notethatt; =0<th <...<ty_1 <ty=T.
3.1) At first, we want to inductively prove that

12 (1) = 2 (1 lleony < 12 (1) = 2 Dlkeons * €XP (Cprop - {tp01 = 11})

o 3.14
+ Cioc - Z A; - exp (Cpmp : {lp+1 - fk}) o
=)
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holds for all p € {0,...,M —1}. Let p = O first. The inequality (3.14) is fulfilled. Let p = 1 to
understand the concept. By application of the triangle inequality and inequalities (3.9) and (3.13), we
see that

12" (22) — 2 (12)lconv

< ™™ () — 29 (@) lcony + 11277 (22) — Z (12)]cony
< ”Znum (tl) '/ (tl)”conv : {1 + Cprop : AZ} + Cloc : A%
2
< 1127 (1) = 2 () lcon - €XP (Cprop = Aa) + Cioe - ) A} exp (Cprop * (12 = 1))

k=2

2
= ” o (tl) —Z (tl)”conv eXp (Cprop . AZ) + Cloc : Z A]% - €Xp (Cprop ' {t2 - tk})
k=2

= ” o (tl) '/ (tl)”conv eXp (Cprop { 2~ + Cloc Z A exp prop * {t2 - tk})
is valid. We now assume that
12" (2,) = 2 (£ lleony < 127 (11) = 2 (t))lcons * €XP (Corop * {25 — 11))
+ Cloc Z A exp prop * {tp - tk})

holds. We now want to show that (3.14) follows. We see that

”Znum (lp+1) —Z (tp+1)||COHV
||Zrlllm (tp+1) —znm (tp+l)||conv + ||z (IPH) -z (tp+1)||conv

”Znum (tp) —Z (lp)”conv : {1 + Cprop ' Ap+1} + Cloc Af,.;.l
{nz““m (t1) = 2(t)llcons - €XP (Cprop - {£p = 11}) + Coc - Z A - exp(Corop - {tp = zk})}

X exp (Cprop . {tp+1 - tp}) + Cloc - A12)+1
”Znum (tl) —Z (tl)”conv - €Xp (Cprop ' {tp+1 - tl})

(cm Z A2 - exp (Cpon - {1 - zk})] exD (Comp - {11~ 1)) + Clo - A2,
= ”Znum (1) = 2 (t)lcony - exXp (Cprop : {tp+1 - Z‘1})
P
+ (Cloc . Z A]% - exp (Cprop . {lp+1 — lk})] + Cloc - A?’H
k=2

= 12" (1) = 2(t))llcony - €XP (Cprop * {tpe1 = 11})

p+1
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holds. This proves (3.14) by induction.

3.2) Concluding our proof, we consider

“Znum (tp+1) —z (tp+1)”conv < “Znum (1) =2 (@Dllcony - CXp (CPmp ’ {tpH B tl})
p+1

+ Coe Z A,% - exp (Cpmp . {tp+] - tk})
k=2

from (3.14). We define A := gla)gw | A,. We infer that
re{2,...,

Hznum (tp+l) —Z (tp+])||c0nv

p+l1

< 12" (1) = 2 () llcons - €XP (Cprop = T) + Cioe - A+ Y Ay exp (Cpuop - T)
k=2

< ||Znum (tl) '/ (tl)”conv - eXp (Cprop ' T) + Cloc “A-T- eXp (Cprop : T)

holds. If the initial conditions of our continuous and our time-discrete problem formulation coincide
and A — 0, the time-discrete solution convergences linearly towards the continuous solution. This
proves our assertion. O

3.6. Numerical solution algorithm

We briefly summarize our numerical solution algorithm for the time-discrete explicit-implicit nu-
merical scheme (3.1) in Table 1. This summary is intended to give a brief overview of aspects which
need to be considered during implementation. Especially, we state all inputs which are important for
our time-discrete numerical scheme.

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5752-5801.



5793

Table 1. Algorithmic summary of our time-discrete explicit-implicit numerical solution
scheme for the age- and sex-structured SIR model.

Input: - Population size N
- Increasing sequence of time points t; =0 <t <... <ty 1 <ty=T
- Initial condition of susceptible people S, ; (¢;) for arbitrary s € {f, m}
andall j e {l,...,N,}
- Initial condition of infected people I, ; (#,) for arbitrary s € {f, m}
andall j e {l,...,N,}
- Initial condition of recovered people R, ; (¢;) for arbitrary s € {f, m}
andall j e {l,...,N,}
- Time-varying transmission rates Bs, 1, [0, 00) — [0, 00)
for arbitrary s, g € {f,m} and arbitrary j k € {1,...,N,}
- Time-varying recovery rates y;, .: [0, c0) — [0, o)
for arbitrary s € {f, m} and arbitrary jell,....,N,}
Steps: For all p € {1,..., M — 1} do the following:
- Compute S ; (tp+ 1) for arbitrary s € {f, m} and all
jefl,...,N,} by (3.3)
- Compute I ; (tp+1) for arbitrary s € {f, m} and all
jef{l,...,N,} by (3.4)
- Compute R ; (t,,+1) for arbitrary s € {f, m} and all
jef{l,....,N,} by (3.5
Output: - Sequence of susceptible people {S 5. (tp)}iil for arbitrary s € {f, m}
andall j e {l,...,N,}
- Sequence of infected people {IS, j (t,,)}f:l for arbitrary s € {f, m}
andall j e {l,...,N,}
- Sequence of recovered people {RS, j (tp)}f:] for arbitrary s € {f, m}
andall j e {l,...,N,}

4. Numerical example

In this section, we illustrate our theoretical findings by one synthetic data example. At first, we
sum up all important information to set calculations up. Finally, we show the results and discuss these
findings with respect to our theoretical results.

4.1. Setting

Let us provide our setting. In Table 2, we summarize the corresponding indices of population
subgroups. The total population is divided into six subgroups. Now, we report the (time-varying)
transmission rates Bs ;.. : [0, 00) — [0, co) and (time-varying) recovery rates y; ;: [0, 00) — [0, o)

for arbitrary s,q € {f,m} and arbitrary j, k € {1,...,N,}. These data can be found in Tables 3 and 4.
This is an imaginary disease which spreads mainly in the adult population. All initial conditions of
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populations subgroups are described in Table 5. The final time is set 7 = 180 with an equidistant time
sequence
H=0<h=1<...<tg=179 < t151 = 180

and this implies M = 181. The total population size reads N = 100000 due to Table 5. Hence, all data
are available for our numerical simulation.

Table 2. Indices of corresponding population subgroups.

Young Adult Elder

Female f,y f.a f.e
Male m,y m,a m,e

Table 3. (Time-varying) transmission rates.

Bsi  Iry  Ira Ire  Iny  Ipa  Ine
S, 010 008 004 0.0 0.08 0.04
Sra 008 020 0.02 0.08 0.20 0.02
Sre 004 002 0.01 004 0.02 0.01
Smy 0.10 0.08 0.04 0.10 0.08 0.04
Sma 008 020 0.02 0.08 0.20 0.02
Sme 0.04 0.02 0.01 0.04 0.02 0.01

Table 4. (Time-varying) recovery rates.

If,y If,a If,e Im,y Im,a Im,e
v 020 0.10 0.05 0.20 0.10 0.05

Table 5. Initial conditions for all population subgroups.

fy f,a f,e m,y m,a m,e
S (0) 10000 20000 19900 10000 20000 19900
1(0) 35 35 30 35 35 30
R(0) 0 0 0 0 0 0

4.2. Results

Here, we present the results of our setting described before. In Figure 1, the temporal development
of all susceptible population subgroups is depicted. It can be clearly seen that the resulting graphs are
decreasing in time. In Figure 2, all graphs of the temporal development with regard to all infectious
subgroups are portrayed. Figure 3 illustrates the temporal development of all recovered population sub-
groups. As expected, these curves are increasing in time. Finally, conservation of the total population
size for our implicit-explicit numerical solution scheme is shown in Figure 4.
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Figure 1. Results for all susceptible population subgroups.
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Figure 2. Results for all infectious population subgroups.
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Figure 3. Results for all recovered population subgroups.
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Figure 4. Conservation of total population size.

5. Conclusion and outlook

We introduced an age- and sex-structured SIR model for short-term predictions in Section 2. We
established global existence, global uniqueness, non-negativity and boundedness of the solution. Ad-
ditionally, we showed some monotonicity properties and proved convergence to a disease-free equi-
librium in the continuous setting. Afterwards, we proposed an explicit-implicit numerical solution
scheme in Section 3. We were able to demonstrate that all aforementioned properties transfer to this
time-discrete setting of the age- and sex-structured SIR model for short-term predictions. We also
concluded that this scheme is linearly convergent towards the continuous solution. For short-term pre-
dictions, effects of demography and transmission between age groups can be simplified or neglected in
this case.

To continue this work and extend it to long-term predictions that definitely play an important role,
it might be fruitful to additionally take birth rates and death rates into account. The works [20, 21]
can serve as examples for extensions of our work. Incubation times also lead to delays from transfer
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between different compartments. Hence, introduction of delays in our system might be another pos-
sible future research direction. Examples can be seen in [22]. Furthermore, spatial inhomogeneities
should also be considered because spreading of diseases differ in regions depending on social status
for example [23,24], which leads to ODE-PDE coupled systems. Application of higher-order methods
might be considerable as well [25, 26].

Finally, we stress the fact that the inverse problem in dynamics of biological systems needs further
investigation [27-30].
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